Geometric modeling of the movement based on an inverse optimal control approach

Abstract : The present paper analyses a class of optimal control problems on geometric paths of the euclidean space, that is, curves parametrized by arc length. In the first part we deal with existence and robustness issues for such problems and we define the associated inverse optimal control problem. In the second part we discuss the inverse optimal control problem in the special case of planar trajectories and under additional assumptions. More precisely we define a criterion to restrict the study to a convenient class of costs based on the analysis of experimentally recorded trajectories. This method applies in particular to the case of human locomotion trajectories.
Type de document :
Communication dans un congrès
52nd IEEE Conference on Decision and Control CDC 2013, Dec 2013, Florence, Italy. pp.1816-1821, 2013, 〈10.1109/cdc.2013.6760146 〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00925297
Contributeur : Paolo Mason <>
Soumis le : mardi 7 janvier 2014 - 18:48:40
Dernière modification le : samedi 22 septembre 2018 - 18:34:02
Document(s) archivé(s) le : mardi 8 avril 2014 - 00:20:54

Fichier

locomotion_cdc13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Frédéric Jean, Paolo Mason, Francesca Chittaro. Geometric modeling of the movement based on an inverse optimal control approach. 52nd IEEE Conference on Decision and Control CDC 2013, Dec 2013, Florence, Italy. pp.1816-1821, 2013, 〈10.1109/cdc.2013.6760146 〉. 〈hal-00925297〉

Partager

Métriques

Consultations de la notice

640

Téléchargements de fichiers

362