Geometric modeling of the movement based on an inverse optimal control approach

Abstract : The present paper analyses a class of optimal control problems on geometric paths of the euclidean space, that is, curves parametrized by arc length. In the first part we deal with existence and robustness issues for such problems and we define the associated inverse optimal control problem. In the second part we discuss the inverse optimal control problem in the special case of planar trajectories and under additional assumptions. More precisely we define a criterion to restrict the study to a convenient class of costs based on the analysis of experimentally recorded trajectories. This method applies in particular to the case of human locomotion trajectories.
Document type :
Conference papers
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00925297
Contributor : Paolo Mason <>
Submitted on : Tuesday, January 7, 2014 - 6:48:40 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:04 AM
Long-term archiving on : Tuesday, April 8, 2014 - 12:20:54 AM

File

locomotion_cdc13.pdf
Files produced by the author(s)

Identifiers

Citation

Frédéric Jean, Paolo Mason, Francesca Chittaro. Geometric modeling of the movement based on an inverse optimal control approach. 52nd IEEE Conference on Decision and Control CDC 2013, Dec 2013, Florence, Italy. pp.1816-1821, ⟨10.1109/cdc.2013.6760146 ⟩. ⟨hal-00925297⟩

Share

Metrics

Record views

739

Files downloads

481