No differentiable perturbed Newton's method for functions with values in a cone

Abstract : This paper deals with variational inclusions of the form 0 2 f(x) + g(x) K where f is smooth function from a re exive Banach space X into a Banach space Y , g is a Lipschitz function from X into Y and K is a nonempty closed convex cone in the space Y . We show that the previous problem can be solved by an extension of the Zincenko's method which can be seen as a perturbed Newton's method. Numerical results are given at the end of the paper.
Type de document :
Article dans une revue
Revista Investigacion Operacional, 2014, 35 (1), pp.58-67
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00924143
Contributeur : Alain Pietrus <>
Soumis le : lundi 6 janvier 2014 - 14:12:30
Dernière modification le : lundi 21 mars 2016 - 17:39:00

Identifiants

  • HAL Id : hal-00924143, version 1

Collections

Citation

Alain Pietrus. No differentiable perturbed Newton's method for functions with values in a cone. Revista Investigacion Operacional, 2014, 35 (1), pp.58-67. <hal-00924143>

Partager

Métriques

Consultations de la notice

89