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LOW-RANK OPTIMIZATION WITH TRACE NORM PENALTY"*

B. MISHRAT, G. MEYER', F. BACHf, AND R. SEPULCHRES

Abstract. The paper addresses the problem of low-rank trace norm minimization. We propose
an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank
optimization is characterized by an efficient factorization that makes the trace norm differentiable in
the search space and the computation of duality gap numerically tractable. The search space is non-
linear but is equipped with a Riemannian structure that leads to efficient computations. We present
a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the
proposed optimization scheme converges superlinearly to the global solution while maintaining com-
plexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions
efficiently for a grid of regularization parameters we propose a predictor-corrector approach that
outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance
of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate
linear regression.

Key words. trace norm, Riemannian optimization, trust region, regularization path, predictor-
corrector on quotient manifold, matrix completion, multivariate linear regression
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1. Introduction. The present paper focuses on the convex program

(1.1) chin - fX)+ X
where f is a smooth convex function, ||X||. is the trace norm (also known as nuclear
norm) which is the sum of the singular values of X [16, 35, 13], and A > 0 is the
regularization parameter. Programs of this type have attracted much attention in
recent years as efficient convex relaxations of intractable rank minimization problems
[16]. The rank of the optimal solution X*(\) of (1.1) decreases to zero as the regular-
ization parameter grows unbounded [3]. As a consequence, efficiently generating the
regularization path {X*(\;)}i=1,.. ~, for a whole range of values of A\; minimizers is
a convenient proxy for obtaining suboptimal low-rank minimizers of f.

Motivated by machine learning and statistical large-scale regression problems [35,
43, 41, 25, 39, 32], we are interested in very low-rank solutions (p < 10%) of very
high-dimensional problems (n > 10%). To this end, we propose an algorithm that
guarantees second-order convergence to the solutions of (1.1) while ensuring a tight
control on the data storage requirements (linear in n) and on the numerical complexity
of each iteration.
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The proposed algorithm is based on a low-rank factorization of the unknown ma-
trix, similar to the singular value decomposition (SVD), X = UBV?. Like in SVD,
U € R"P and V € R"™*P are orthonormal matrices that span row and column spaces
of X. In contrast, the p x p scaling factor B = BT ~ 0 is allowed to be nondiagonal
which makes the factorization nonunique. Our algorithm alternates between fixed-
rank optimization and rank-one updates. When the rank is fixed, the problem is no
longer convex but the search space has a Riemannian structure. We use the frame-
work of optimization on Riemannian quotient manifolds to propose a trust-region
algorithm that generates low-cost (linear in n) iterates that converge superlinearly to
a local minimum. Local minima are escaped by incrementing the rank until the global
minimum in reached. The rank-one update is always selected to ensure a decrease of
the cost.

Implementing the complete algorithm for a fixed value of the regularization pa-
rameter A leads to a monotone convergence to the global minimum through a sequence
of local minima of increasing ranks. Instead, we also modify A along the way with a
predictor-corrector method thereby transforming most local minima of (1.1) (for fixed
A and fixed rank) into global minima of (1.1) for different values of A\. The resulting
procedure, thus, provides a full regularization path at a very efficient numerical cost.

Not surprisingly, the proposed approach has links with several earlier contribu-
tions in the literature. Primarily, the idea of interlacing fixed-rank optimization with
rank-one updates has been used in semidefinite programming [12, 19]. It is here
extended to a nonsymmetric framework using the Riemannian geometry recently de-
veloped in [8, 28, 30]. An improvement with respect to the earlier work [12, 19] is the
use of a duality gap certificate to discriminate between local and global minima and
its efficient computation thanks to the chosen parameterization.

Schemes that combine fixed-rank optimization and special rank-one updates have
appeared recently in the particular context of matrix completion [21, 42]. The frame-
work presented here is in the same spirit but in a more general setting and with a global
convergence analysis. Most other fixed-rank algorithms [38, 21, 27, 36, 42, 28, 9, 40]
for matrix completion are first-order schemes. It is more difficult to provide a tight
comparison of the proposed algorithm to trace norm minimization algorithms that
do not fix the rank a priori [13, 26, 43, 2]. It should be emphasized, however, that
most trace norm minimization algorithms use a singular value thresholding (SVT)
operation at each iteration. This is the most numerically demanding step for these
algorithms. For the matrix completion application, it involves computing (potentially
all) the singular values of a low-rank + sparse matrix [13]. In contrast, the proposed
approach requires only dense linear algebra (linear in n) and rank-one updates using
only dominant singular vectors and value of a sparse matrix. The main potential of the
algorithm appears when computing the solution not for a single parameter A but for
a number of values of \. We compute the entire regularization path with an efficient
predictor-corrector strategy that convincingly outperforms the warm-restart strategy.

The paper is organized as follows. In section 2 the problem of fixed-rank opti-
mization is related to the trace norm minimization problem. Section 3 proposes a Rie-
mannian second-order geometry for the fixed-rank problem with a detailed numerical
complexity analysis. An algorithm for (1.1) that alternates between fixed-rank opti-
mization and rank-one updates is proposed in section 4. A novel predictor-corrector
approach to generate the regularization path of (1.1) for a grid of values of X is
discussed in section 5. For the sake of illustration and empirical comparison with
state-of-the-art algorithms we consider two particular applications, low-rank matrix
completion [14] and multivariate linear regression [43], in section 6. In both cases, we
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obtain iterative algorithms with a numerical complexity that is linear in the number
of observations and with favorable convergence and precision properties.

2. Relationship between convex program and nonconvex formulation.
Among the different factorizations that exist to represent low-rank matrices, we use
the factorization [30, 8] that decomposes a rank-p matrix X € R"*™ into

(2.1) X = UBVT,

where U € St(p,n), V € St(p,m), and B € Sy, (p). St(p,n) is the Stiefel man-
ifold or the set of n x p matrices with orthonormal columns. S;.(p) is the cone
of p x p positive definite matrices. We stress that the scaling B = BT =~ 0 is not
required to be diagonal. The redundancy of this parameterization has nontrivial al-
gorithmic implications (in section 3) but we believe that it is also the key to success
of the approach. Refer to [21, 30] for earlier algorithms advocating matrix scaling
and section 6.1 for a numerical illustration. With the factorization X = UBV7, the
trace norm is | X||. = Trace(B) which is now differentiable. For a fixed rank p, the
optimization problem (1.1) is recast as

(2.2) UmBinV F(UBVT) + \Trace(B)
' sﬁbject to U e St(p,n), BeSii(p), and V € St(p,m).

The search space of (2.2) is not Euclidean but the product space of two well-studied
manifolds, namely, the Stiefel manifold St(p,n) [15] and the cone of positive definite
matrices S;4(p) [37, 7]. The column and row spaces of X are represented on St(p, n)
and St(p, m) whereas the scaling factor is absorbed into Sy (p). A proper metric on
the space takes into account both rotational and scaling invariance.

2.1. First-order optimality conditions. In order to relate the fixed-rank
problem (2.2) to the convex optimization problem (1.1) we look at the necessary and
sufficient optimality conditions that govern the solutions. The first-order necessary
and sufficient optimality condition for the convex program (1.1) is [3, 35]

(2.3) 0 € Gradf(X) + A| X,

where Gradf(X) is the Euclidean gradient of f at X € R™*™ and 9| X||. is the
subdifferential of the trace norm [13, 10].
PROPOSITION 2.1. The first-order necessary optimality conditions of (2.2) are

SVB — USym(U?TSVB) = 0,
(2.4) Sym(UTSV + \I) = 0,
STUB — VSym(VTSTUB) =0,

where X = UBVT (2.1), Sym(A) = (A + AT)/2 for any square matriz A, and
S = Gradf (UBVT). S is referred to as the dual variable throughout the paper.
Proof. The first-order optimality conditions are derived either by writing the
Lagrangian of the problem (2.2) and looking at the KKT conditions or by deriving the
Riemannian gradient of the function on the product space St(p,n) x S14(p) x St(p, m)
with the metric (3.6) proposed in section 3. The proof is given in Appendix A.1. O
PROPOSITION 2.2. A local minimum of (2.2) X = UBVT is also the global
optimum of (1.1) iff ||S|lop = X\ where S = Gradf(UBV™) and ||S||op is the operator
norm, i.e., the dominant singular value of S. Moreover, ||S||op > X and equality holds
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only at optimality. Consequently, a local minimum of (2.2) is identified with the global
minimum of (1.1) if ||S|lop — A < €, where € is a user-defined threshold.

Proof. This is in fact rewriting the first-order optimality condition of (1.1) [13, 25].
The proof is given in Appendix A.2. O

2.2. Duality gap computation. Proposition 2.2 provides a criterion to check
the global optimality of a solution of (2.2). Here however, it provides no guarantees
on closeness to the global solution. A better way of certifying optimality for the
optimization problem (1.1) is provided by the duality gap. The duality gap charac-
terizes the difference of the obtained solution from the optimal solution and is always
nonnegative [10].

PROPOSITION 2.3. The Lagrangian dual formulation of (1.1) is

max —f*(M)

(2.5)
subject to  ||Mlop < A,

where M € R™*™ s the dual variable, |M||op is the largest singular value of M and
is the dual norm of the trace norm. f* is the Fenchel (convex) conjugate [4, 10] of f,
defined as f*(M) = supxecgnxm|[Trace(MTX) — f(X)].

Proof. The proof is given in Appendix A.4. d

When |[|[M||,, < A, the expression of duality gap is

(2.6) FX) + AIX ] + 7 (M),

where M is the dual candidate. A good choice for the dual candidate M is S (=
Gradf(X)) with appropriate scaling to satisfy the operator norm constraint: M =
min(1, m)s [4].

3. A Riemannian optimization approach for (2.2). In this section we pro-
pose an algorithm for the problem (2.2). In contrast to first-order optimization al-
gorithms proposed earlier in [30, 29, 21], we develop a second-order (trust-region)
algorithm that has a provably quadratic rate of convergence [1]. We rewrite (2.2) as

min »(U,B,V)
(3.1) UBYVvV
subject to  (U,B,V) € St(p,n) x S44+(p) x St(p,m),

where (U, B, V) = f(UBVT) + ATrace(B). The function ¢ : St(p,n) x S, (p) x
St(p,m) — R is introduced for notational convenience. An important observation

for second-order algorithms [1] is that the local minima of the problem (3.1) are not
isolated in the search space

M, = St(p,n) x S44(p) x St(p,m).

This is because the cost function is invariant under rotations, UBV’ = (UO)(O”BO)
(VO)T for any p x p rotation matrix O € O(p). To remove the symmetry of the cost
function, we identify all the points of the search space that belong to the equivalence
class defined by

(3.2) [(U,B,V)] ={(U0,0"BO,VO): 0 c O(p)}.
The set of all such equivalence classes is denoted by

(3.3) My = Mp/(’)(p)
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V M
w, (uBV)Mp
(U0,0"BO,VO)
(Uo. By, Vo) ,
U,B,V)Mp
My = Mp/O(p)

/\

[(Ug,Bo, Vo)|® °[(U,B,V)]

Fic. 3.1. The quotient manifold representation of the search space.

that has the structure of a smooth quotient manifold M,, by O(p) [24, Theorem 9.16].
Note that O(p) takes away all the symmetry of the total space as the dimension of
M, is (n+m —p)p which is equal to the dimension of the set of rank-p matrices. The
dimension of the quotient manifold is obtained by subtracting the dimension of O(p)
from the dimension of the product space M,. Problem (3.1) is thus conceptually
an unconstrained optimization problem on the quotient manifold M, in which the
minima are isolated. Computations are performed in the total space Mp, which is
the product space of well-studied manifolds.

Tangent space of M,. Tangent vectors at a point z € M, in the abstract
quotient manifold have a matrix representation in the tangent space of the total
space ﬂp that respects the equivalence relationship (3.2). Figure 3.1 gives a graphical
description of the search space and the matrix representations. Note that  belongs to
M,, and its equivalence class is represented by the element z € M,, such that z = [7].
Because the total space is a product space St(p,n) X S;4(p) x St(p,m), its tangent
space admits the decomposition at a point z = (U, B, V):

Tz M, = TuSt(p,n) x TeSy(p) x TvSt(p,m)
and the following characterizations of St(p,n) and S;4(p) are well known [15, 37]:

TuSt(p,n) = {Zy — USym(UT Zy) : Zy € R"*P},
TBS++(p) = {ZB = Zg 1 Zp € RPXP},

where Sym(-) extracts the symmetric part of a square matrix, i.e., Sym(A) = (A +
AT)/2. Note that an arbitrary matrix (Zu,ZB,Zyv) € R™P x RP*P x R™*P is
projected on the tangent space Tz M, by the linear operation
(3.4)

VU (Zy,Zs,Zv) = (Zy — USym(UTZy),Sym(Zg), Zv — VSym(VTZy)),

where Sym(Zg) = (Zg +2Z%)/2. A matrix representation of the tangent space at x €
M,, relies on the decomposition of 753 M), into its vertical and horizontal subspaces.
The vertical space Vz M), is the subspace of T3 M,, that is tangent to the equivalence
class [Z],

(3.5) ViM, = {(UQ,BQ — OB, VQ) : Q € S (p)},

where Ssew(p) is the set of skew symmetric matrices of size p x p. The horizontal
space Hz M, must be chosen such that Tz M, = Hz M, & VzM,. We choose HzM,,
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as the orthogonal complement of V; M, for the metric
(3.6) 93 (&, 7z) = Trace(§Gu) + Trace(B1ég B~ ijg) + Trace(&y v ),

which picks the normal metric of the Stiefel manifold [15] and the natural metric of
the positive definite cone [37, 7]. Here {; and 7z are elements of Tz M,,. With this
choice, a horizontal tangent vector (;z is any tangent vector belonging to the set
(3.7) - -

HEMZD = {(CUv CBv CV) S TEMP : gi((CUv CBv CV)a (Uﬂv (BQ - QB)a VQ)) = 0}

for all © € Sskew(p). Another characterization of the horizontal space is Hiﬂp =
{(¢u,¢B,¢v) € TeM, : ((FU+B (g — (8B~ +({ V) is symmetric}. The horizon-
tal space is invariant by the group action along the equivalence class. The horizontal
space Hjﬂp in the total space Mp provides a valid matrix representation of the
abstract tangent space T, M, of the quotient manifold M, [1, section 3.5.8]. The
tangent vector & € HzM,, is called the horizontal lift of &, € Ty M, at Z. Start-
ing from an arbitrary tangent vector fz € Tz M, we construct its projection on the
horizontal space, i.e.,

(3.8) Iz(77z) = (u — U, 778 — (BQ — OB), iy — VQ) € HzM,,

by picking © € Sgkew (p) such that it satisfies (3.7) and equivalently, it is the unique
solution of the Lyapunov equation

(3.9) QB? + B2Q = B(Skew(U”T7jy) — 2Skew(B~!9g) + Skew(VI7v))B,

where Skew(-) extracts the skew-symmetric of a square matrix, i.e., Skew(A) = (A —
AT)/2 and (7ju, 7B, 77v ) is the matrix representation of #z. The numerical complexity
of solving the above Lyapunov equation is O(p?) [6].

The Riemannian submersion (M, g). The choice of the metric (3.6), which
is invariant along the equivalence class [Z] turns the quotient manifold M, into a Rie-
mannian submersion of (M, §) [24, Theorem 9.16] and [1, section 3.6.2]. As shown in
[1], this special construction allows for a convenient matrix representation of the Rie-
mannian gradient [1, section 3.6.2] and the Riemannian Hessian [1, Proposition 5.3.3]
on the abstract manifold M,. The Riemannian gradient of ¢ : M, = R : z —
#(z) = ¢(Z) is uniquely represented by its horizontal lift in M,, which has the matrix

representation
(3.10) grad, ¢ = grad, .

It should be emphasized that grad;¢ is in the the tangent space Tjﬂp. However, due
to invariance of the cost along the equivalence class [Z], grad,¢ also belongs to the
horizontal space Hz.M,, and hence, the equality in (3.10) [1, section 3.6.2]. The matrix
expression of grad; ¢ in the total space M,, at a point # = (U, B, V) is obtained from
its definition: it is the unique element of T3 M,, that satisfies Do[fz] = gz (grad, ¢, 7z)
for all 7z € Tiﬂp. Dqg[ﬁj] is the standard Euclidean directional derivative of ¢ in the
direction 7z, i.e.,

o O(Z +17z) — 9(2)

gz (grad; ¢, ;) = Do[nz] = lim

V7z Ti_ .
10, t e € TeMy




2130 B. MISHRA, G. MEYER, F. BACH, AND R. SEPULCHRE

This definition leads to the matrix representation

grady ¢ = grady ¢, gradg¢ = B (gradgér) B,

3.11
( ) grady, ¢ = grady, ¢,

where grad, ¢r = W;(0¢(Z)/07), i.e., the projection of the partial derivatives d¢(z)/07
on the tangent space Tiﬂp. Here 0¢(Z)/07 is the matrix representation of the partial
derivatives of ¢ with respect to (U, B, V) in the Euclidean space R™*" x R" <" x R™*".
And VU (-) is the operator (3.4) that projects onto the tangent space Tz M,,.
Likewise, the Riemannian connection V,,_ 17, on quotient manifold M,, is uniquely

represented by its horizontal lift in #zM,, which is [1, Proposition 5.3.3]

where v, and 7, are vector fields on the quotient manifold M, and vz and 7z are
their horizontal lifts in HzM,. Once again, the Riemannian connection V;_ 7z on
M,, has well-known expression as a result of the individual Riemannian connection
characterization on St(p,n) in [18, 1] and on S;+(p) in [37, 7]. The Riemannian
connection on the Stiefel manifold is derived in [18, Example 4.3.6] and on the positive
definite cone is derived in [28, Appendix B]. Finally, the Riemannian connection on
the total space is given by the product structure

(3.13)

Viutz = Vi (Diz[vz]) — Pz(rvuSym(UTny), Sym(ve B~ ns), vv Sym(Viny)).

Here Dijz[7z] is the standard Euclidean directional derivative of 7jz in the direction 3.
The Riemannian Hessian Hess, @[] of ¢ is the covariant derivative of the Riemannian

gradient grad,¢ in the direction &, € T, M,,. Its horizontal lift, from (3.12), in Hz M,
has the matrix expression

(3.14) Hess, ¢[¢] = 11z(Vggrad, ¢)

for any &, € T, M, and its horizontal lift & € Hjﬂp.

Trust-region subproblem and retraction on Hp. Trust-region algorithms
on a quotient manifold with guaranteed quadratic rate convergence have been pro-
posed in [1, Algorithm 10]. The convergence of the trust-region algorithm is quadratic
because the assumptions [1, Theorem 7.4.11] are satisfied locally. The trust-region
subproblem on the quotient manifold M is horizontally lifted to the horizontal space
HzM,, and is formulated as

. subject 117:0 gz(&z,&3) < 82,

where ¢ is the trust-region radius and grad,¢ and Hess,¢[{;] are the Riemannian gra-
dient and Hessian on M,,. In particular, we implement the Riemannian trust-region
algorithm [1, Algorithm 10] using the generic solver GenRTR [5]. The subproblem
(3.15) is solved using a truncated-conjugate gradient method with parameters set as in
[1, Algorithm 11]. This leads to a direction &; € HzM,, that minimizes the quadratic
model. To find a new iterate based on the obtained direction &z, a mapping from
the horizontal space Hz M, to the manifold M, is required. This mapping is more
generally referred to as retraction which maps the vectors from the horizontal space
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Hz M, onto M, Rz : HzM, — M, [1, Definition 4.1.1]. In the present case, a
retraction of interest is [1, 30]

(3.16) Rz () = (uf(U + €u), BFexpm(B~ 2B ~%)B%, uf(V + &v)),

where uf(-) extracts the orthogonal factor of the polar factorization, i.e., uf(A) =
A(ATA)~/2 and expm(-) is the matriz exzponential operator. The retraction on the
positive definite cone is the natural exponential mapping for the metric (3.6) [37].
The combination of these well-known retractions on the individual manifolds is also
a valid retraction on the quotient manifold M, by virtue of [1, Proposition 4.1.3].

Numerical complexity. The numerical complexity per iteration of the proposed
trust-region algorithm for (3.1) depends on the computational cost of the following
items.

Objective function ¢(z): problem dependent.
Metric g 3.6: O(np? + mp? + p3).
Projection operator W;(-) (3.4): O(np? + mp?).
Projection operator Iz(-) (3.8): O(np? + mp? + p3):
— Solving the Lyapunov equation for € (3.9): O(p?).
Retraction Rz(+) (3.16): O(np? + mp? + p?).
The Euclidean gradient grad;¢g: problem dependent.
Vi (3.13):
— The Euclidean directional derivative Dfj[7]: problem dependent;
— vuSym(UTny): O(np?);
— Sym(vgB~nB): O(p?);
— vwSym(VIny): O(mp?).
As shown above all the manifold related operations have linear complexity in n and m.
Other operations depend on the problem at hand and are computed in the search space
M,,. With p < min{n, m} the computational burden on the algorithm considerably
reduces.

4. An optimization scheme for (1.1). Starting with a rank-1 problem, we
alternate a second-order local optimization algorithm on fixed-rank manifold with a
first-order rank-one update. The scheme is shown in Table 4.1. The rank-one update
decreases the cost with the updated iterate in M, 1.

PROPOSITION 4.1. If X = UBVY is a stationary point of (2.2) then the rank-one
update

(4.1) X, =X — puv”

TABLE 4.1
Algorithm to solve the trace norm minimization problem (1.1).

ALGORITHM TO SOLVE CONVEX PROBLEM (1.1).
0. e Initialize p to pp, a guess rank.
e Initialize the threshold e for convergence criterion; refer to Proposition 2.2.
e Initialize the iterates Ug € St(po,n), Bo € S++(po), and Vo € St(po, m).
1. Solve the nonconvex problem (2.2) in the dimension p to obtain a local minimum
(U,B,V).
2. Compute o1 (the dominant singular value) of dual variable S = Grad f(UBVT).
e If o1 — X\ < € (or duality gap < €) due to Proposition 2.2, output X = UBVT
as the solution to problem (1.1) and stop.
e Else, compute the update as shown in Proposition 4.1 and compute the new
point (Uy,By, V) as described in (4.1). Set p = p + 1 and repeat step 1.
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ensures a decrease in the objective function f(X) + A||X||« provided that 8 > 0 is
sufficiently small and the descent directions u € R™ and v € R™ are the dominant left
and right singular vectors of the dual variable S = Gradf(UBVT).

The mazimum decrease in the objective function is obtained for § = ”1L;)‘, where

o1 s the dominant singular value of S and Ly is the Lipschitz constant for the first
derivative of f, i.e., ||Gradf(X)—Gradf(Y)||lr < L;|X=Y||r for all X, Y € R"*™.
Proof. This is in fact a descent step as shown in [13, 25, 26] but now projected
onto the rank-one dominant subspace. The proof is given in Appendix A.3. O
A representation of X, = X — BuvT on M, is obtained by performing the
SVD of X, . Since X is a rank-one update of X = UBV?, the SVD of X, only
requires O(np? + mp? + p3) operations [11]. Finally, to compute an Armijo optimal

B we perform a backtracking line search starting from the value ‘71L_)‘, where Ly is
f

the Lipschitz constant for the first derivative of f [33]. The justification for this value
is given in Appendix A.3. In many problem instances, it is easy to estimate Ly by
randomly selecting two points, say X and Y € R™*™ and computing ||Gradf(X) —
Gradf(Y)||r/|X = Y]|r [33].

There is no theoretical guarantee that the algorithm in Table 4.1 stops at p = p*
(the optimal rank). However, convergence to the global solution is guaranteed from
the fact that the algorithm alternates between fixed-rank optimization and rank up-
dates (unconstrained projected rank-1 gradient step) and both are descent iterates.
Disregarding the fixed-rank step, the algorithm reduces to a gradient algorithm for
a convex problem with classical global convergence guarantees. This theoretical cer-
tificate, however, does not capture the convergence properties of an algorithm that
empirically always converges at a rank p < min(m,n) (most often at the optimal
rank). One advantage of the scheme, in contrast to trace norm minimization algo-
rithms proposed in [13, 39, 25, 26], is that it offers a tighter control over the rank at all
intermediate iterates of the scheme. It should also be emphasized that the stopping
criterion threshold of the nonconvex problem (2.2) and of the convex problem (1.1)
are chosen separately. This means that rank increments can be made after a fixed
number of iterations of the manifold optimization without waiting for the trust-region
algorithm to converge to a local minimum.

5. Regularization path. In most applications, the optimal value of A is un-
known [26] which means that in fact problem (1.1) can be solved for a number of
regularization parameters. In addition, even if the optimal \ is a priori known, a
path of solutions corresponding to different values of \ provides interpretability to
the intermediate iterates which are now global minima for different values of A. This
motivates us to compute the complete regularization path of (1.1) for a number of
values A, i.e., defined as X*(\;) = argmingcpnxm f(X) + Xi[| X%, where X*();) is
the solution to the \; minimization problem.

A common approach is the warm-restart approach where the algorithm to solve
the A\;4+1 problem is initialized from X*()\;) and so on [26]. However, the warm-restart
approach does not use the fact that the regularization path is smooth especially when
the values of A are close to each other. An argument towards this is given later in
the section. We propose a predictor-corrector scheme to compute the regularization
path efficiently. We first take a predictor (estimator) step to predict the solution and
then rectify the prediction by a corrector step. This scheme has been widely used in
solving differential equations and regression problems [34]. We extend the prediction
idea to the quotient manifold M. The corrector step is carried out by initializing the
algorithm in Table 4.1 from the predicted point. If X*(\;) = U,;B,;V,;” is the fixed-
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TABLE 5.1
Algorithm for computing the regularization path. If N is the number of values of X and r is
the number of rank increments then the scheme uses r warm restarts and N — r predictor steps to
compute the full path.

COMPUTING THE REGULARIZATION PATH.
0. Given {\;};=1,...,N in decreasing order. Also given are the solutions X*(A1) and
X*(A2) at A1 and A2, respectively, and their low-rank factorizations.
1. Predictor step:
o If X*(A\j—1) and X*(\;) belong to the same quotient manifold M, then con-
struct a first-order approximation of the solution path at A\; and estimate
X (Ait1) as shown in (5.3).
o Else X(Aiy1) = X*(\i).
2. Corrector step: Using the estimated solution of the A;41 — problem, initialize the
algorithm described in Table 4.1 to compute the exact solution X*(Xj4+1).
3. Repeat steps 1 and 2 for all subsequent values of A.

rank factorization (2.1) then the solution of the \;11 optimization problem is predicted
(or estimated), i.e., X(Aip1) = IAJH;LBHlVﬂl, by the two previous solutions X*()\;)
and X*(\;_1) at A; and \;_1, respectively, belonging to the same rank manifold M,,.
When X*(\;_1) and X*()\;) belong to different rank manifolds we perform instead a
warm restart to solve A\;;1 problem. The complete scheme is shown in Table 5.1 and
has the following advantages.
e With a small number of rank increments we traverse the entire path.
e Potentially every iterate of the optimization scheme is now a global solution
for a value of A.
e The predictor-corrector approach outperforms the warm-restart approach in
maximizing prediction accuracy with minimal extra computations.
In this section, we assume that the optimization problem (1.1) has a unique solution
for all A\. A sufficient condition is that f is strictly convex, which can be enforced by
regularizing f with the square Frobenius norm of X.
In order to characterize smoothness of the regularization path we observe that
the global solution X*(\) = UBVT is uniquely characterized by the nonlinear system
of equations

SV =AU, UTSV = AI, and STU =)V

which is obtained from the optimality conditions (2.4) and Proposition 2.2. The
smoothness of X*(\) with respect to A follows the implicit function theorem [22]. A
geometrical reasoning is followed by inspection of the dual formulation. Note that
we employ the predictor-corrector step only when we are on the fixed-rank manifold
which corresponds to a face of the dual operator norm set. From Proposition 2.3,
the dual optimal solution is obtained by projection onto the dual set. Smoothness
of the dual variable, say M*()), with respect to A follows from the smoothness of
the projection operator [17]. Consequently, smoothness of the primal variable X*(\)
follows from the smoothness assumption of f.

Predictor step on the quotient manifold M. We first build a first-order
approximation of the geodesic on M, (and its representation on Mp), the curve
of shortest length, connecting z; = (U;,B;,V;) and Z;—1 = (U;—1,B;-1,V,;_1) in
M,,. The estimated solution X()\;;1) is then computed by extending the first-order
approximation of the geodesic in the direction of Z;. The approach is shown in Figure
5.1. In other words, we need to identify a vector &, € T, M, and its horizontal lift
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Fic. 5.1. Tracing the path of solutions using the predictor-corrector approach. The blue line
denotes the curve of optimal solutions.

&, € Ha, M, at T; € M, defined as &, = Log;, (Z;—1) that maps Z;_1 to a vector
in the horizontal space Hz, M,,. Log is called the logarithmic mapping (inverse of the
exponential map) [24, 1]. Computing the logarithmic mapping might be numerically
costly in general. For the case of interest there is no analytic expression for the
logarithmic mapping. Instead a numerically efficient way is to use (locally around
Z;) an approximate inverse retraction R;il (Zi—1), where R;il : M, — & to obtain
a direction in the space & followed by projection onto the horizontal space Hz, M.
Note that £ := R"*P x RP*P x R™*P. The projection is accomplished using projection
operators Vs, : €& — Ty, M, and Iz, : T5, M,, — Hz, M, defined in section 3. Hence,
an estimate on &z, is given as

(5.1) o = s, (Vs (R (Fi1)).

For the retraction of interest (3.16) the Frobenius norm error in the approximation of
the logarithmic mapping is bounded as

”551 - gil F = ”f;fl - ]?ijl (ji—l) + R%ilgji—l) - gﬂfl {7
< s, — Rz (@)l p + [|RE (@im1) — &l r
< min_ [|G, — Rz (@1 F + O(I&z 1F)

CiiGH@MP
as ||&,| — 0.

The O(||éz,]|%) approximation error comes from the fact that the retraction Rz, (3.16)
used is at least a first-order retraction. This approximation is exact if M, is the
Euclidean space. The approximate inverse retraction R;il, corresponding to the re-
traction Rz, proposed in (3.16), is computed as

(52) Ril ({fifl) = (Ui,1 - U, Bl%logm(B:%Bz,lB;%)BZ%, Vi1 — Vi),

where logm(-) is the matrix logarithm operator. The predicted solution is then ob-
tained by taking a step ¢t > 0 and performing a backtracking line search in the direction

_fiiv i'e'a

(5.3) X(Ais1) = R, (—t&z,).

A good choice for the initial step-size ¢ is (Ai+1 — Ai)/(Ai — Ai—1). The motivation
for the choice comes from the observation that it is optimal when the solution path
is a straight line in the Euclidean space. The numerical complexity to perform the
prediction step in the manifold M, is O(np? + mp® + p?).
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Fia. 6.1. Convergence of a gradient descent algorithm is affected by making B diagonal.

6. Numerical experiments. The overall optimization scheme with descent-
restart and trust-regions algorithm is denoted as “Descent-restart + TR”. We test
the proposed optimization framework on the problems of low-rank matrix completion
and multivariate linear regression where trace norm penalization has shown efficient
recovery. Full regularization paths are constructed with optimality certificates. All
simulations in this section have been performed in MATLAB on a 2.53 GHz Intel
Core i5 machine with 4 GB of RAM. Our matrix completion implementation may be
downloaded from http://www.montefiore.ulg.ac.be/ mishra/codes/traceNorm.html.

6.1. Diagonal versus matrix scaling. Before entering a detailed numerical
experiment we illustrate here the empirical evidence that constraining B to be di-
agonal (as is the case with SVD) is detrimental to optimization. To this end, we
consider the simplest implementation of a gradient descent algorithm for the ma-
trix completion problem (see below). The plots shown Figure 6.1 compare the be-
havior of the same algorithm in the search space St(p,n) x Sii(p) x St(p,m) and
St(p,n) x Diag, (p) x St(p,m) (SVD). Diag, (p) is the set of diagonal matrices with
positive entries. The empirical observation that convergence suffers from imposing
diagonal structure on B is a generic observation that does not depend on the partic-
ular problem at hand. The problem here involves completing a 200 x 200 of rank 5
from 40% of observed entries. \ is fixed at 10717,

6.2. Low-rank matrix completion. The problem of matrix completion in-
volves completing an n x m matrix when only a few entries of the matrix entries are
known. Given an incomplete low-rank (but unknown rank) n x m real matrix X, a
convex relaxation of the matrix completion problem is

i W o (X —X)[|2 + N[X]|«
(6.1) cin - [Wol )z + X
for X € R™*™ and a regularization parameter A\ € Ry. Here | - ||z denotes the

Frobenius norm, matrix W is an n X m weight matrix with binary entries, and the
operator ® denotes elementwise multiplication. If WV is the set of known entries in X,
then W;; = 1if (4,5) € W and W;; = 0 otherwise. The problem of matrix completion
is known to be combinatorially hard. However, by solving the convex relaxation (6.1)
a low-rank reconstruction is possible with a very high probability under Gaussian
distribution of the observed entries [14, 21]. For an exact reconstruction, the lower
bound on the number of known entries is typically of the order O(nr 4+ mr), where
r is the optimal rank, |[W| > max(n,m) > r. Consequently, it leads to a very
sparse weight matrix W, which plays a very crucial role for efficient algorithmic
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implementations. For our case, we assume that the lower bound on the number of
entries is met and we seek a solution to the optimization problem (6.1). Customizing
the terminology for the present problem, the convex function is f(X) = [|[W & (X —
X)||%. Using the factorization X = UBV? of (2.1), the rank-p objective function is
#(U,B,V) = |[Wo (X —UBV?)|]2 4 ATrace(B), where (U, B, V) € M,. The dual
variable S = 2(W ® (UBVT — X)).

The matrix representation of the partial derivative of ¢ in R™*P x RP*P x R™*P
is

0¢(z)/0x = (SVB,UTSV + \I,STUB).

Similarly, the Euclidean directional derivative of d¢(z)/0Z along (Zu,Zp,Zv) €
T:M, is (SVZp +SZvB +S.VB,ZLSV + USZy + UTS,V,STUZg +STZyB +
STUB), where the auxiliary variable S, = D p,v)S[(Zu.ZB,Zv)] = 2(W ©
(ZuBVT + UZgVT + UBZI)) is the directional derivative of the dual variable
S along (Zy,Zg, Zv).

The Riemannian gradient and Hessian are computed using formulas (3.11) and
(3.14). Note that since W is sparse, S and S, are sparse too. As a consequence, the
numerical complexity per iteration for the trust-region algorithm is of order O(|W|p+
np? +mp? + p?), where |[W| is the number of known entries. In addition computation
of dominant singular value and vectors for rank-one updating (4.1) costs O(|W]) [23],
potentially allowing us to handle large datasets.

Fenchel dual and duality gap for matrix completion. From Proposition 2.3,
after a routine calculation, the Fenchel conjugate of f has the expression f*(M) =
Trace(MTM) /4+Trace(M? (W ®X)), where the domain of f* is the nonzero support
of W. Therefore, the duality gap for a duality gap candidate M = min(1, O_—Af )Grad f(X)

1S
F(X) 4+ A|X| + Trace(MTM) /4 + Trace(M” (W © X)),

where oy is the dominant singular value of Gradf(X).

Simulations. Next we provide some benchmark simulations for the low-rank
matrix completion problem. For each example, an n X m random matrix of rank p is
generated as in [13]. Two matrices A € R"*? and B € R™*? are generated according
to a Gaussian distribution with zero mean and unit standard deviation. The matrix
product AB” then gives a random matrix of rank p. A fraction of the entries are
randomly removed with uniform probability. The dimensions of n x m matrices of
rank p is (n+m — p)p. The oversampling (OS) ratio determines the number of entries
that are known. An OS = 6 means that 6(n + m — p)p randomly and uniformly
selected entries are known a priori out of nm entries.

Example 1. Fixed A. A 100 x 100 random matrix of rank 10 is generated as
mentioned above. 20% (OS = 4.2) of the entries are randomly removed with uni-
form probability. To reconstruct the original matrix we run the optimization scheme
proposed in Table 4.1 along with the trust-region algorithm to solve the nonconvex
problem. For illustration purposes A is fixed at 107°. We also assume that we do
not have any a priori knowledge of the optimal rank and, thus, start from rank 1.
The trust-region algorithm stops when the relative or absolute variation of the cost
function is below 107!°. The rank-incrementing strategy stops when the relative du-

ality gap is less than 107°, i.e., f(X)JrT‘JUf%lIL};Tf*(M) < 107°. Convergence plots of the
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FI1G. 6.2. Matriz completion by trace norm minimization algorithm with A = 10~°
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Rel. error of reconstruction
IX — X" r/IIX]|lF 6.86 x 10~°
Recovered rank 10
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. Upper left:

Rank incremental strategy with descent directions. Upper right: Optimality certificate of the solution
with duality gap. Lower left: Convergence to the global solution according to Proposition 2.2. Lower
right: Recovery of the original low-rank matriz.

TABLE 6.1
Efficacy of trace norm penalization to reconstruct low-rank matrices by solving (6.1).

A 10 102 1077 10-8
Rel. reconstruction error | 6.33 x 1072 7.42 x 1075 7.11x 1078 | 6.89 x 10~ 11
Recovered rank 10 10 10 10
Iterations 113 120 119 123
Time in seconds 2.7 2.8 2.9 2.9

scheme are shown in Figure 6.2. A good way to characterize matrix reconstruction at
X is to look at the relative error of reconstruction, defined as

Rel. error of reconstruction = | X — X||z/|| X £.

Next, to understand low-rank matrix reconstruction by trace norm minimization we
repeat the experiment for a number of values of A all initialized from the same starting
point and report the relative reconstruction error in Table 6.1 averaged over five runs.
This, indeed, confirms that matrix reconstruction is possible by solving the trace norm
minimization problem (6.1).

Example 2. Regularization path for matrix completion. In order to com-
pute the entire regularization path, we employ the predictor-corrector approach de-
scribed in Table 5.1 to find solutions for a grid of A values. For the purpose of
illustration, a geometric sequence of A\ values is created with the maximum value
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Fia. 6.3.  Computation of entire regularization path wusing Descent-restart + TR with a
predictor-corrector approach. Upper left: Recovery of solutions of all ranks. Upper right: Opti-
mality certificate for the regularization path. Lower left: Path traced by the algorithm. Lower right:
Better prediction by the algorithm in Table 5.1 than a pure warm-restart approach. Table: Number
of iterations per value of \ is < 3.

fixed at A\; = 102, the minimum value is set at Ay = 1073, and a reduction factor
v = 0.95 such that \;11 = v\;. We consider the example proposed previously. The al-
gorithm for a \; € {\1,..., Ay} stops when the relative duality gap is less than 1075.
Various plots are shown in Figure 6.3. Figure 6.3 also demonstrates the advantage of
the scheme in Table 5.1 with respect to a warm-restart approach. We compare both
approaches on the basis of

(6.2) Inaccuracy in prediction = ¢(X(\;)) — ¢(X*(\;)),

where X*();) is the global minimum at ); and X();) is the prediction. A lower
inaccuracy means better prediction. It should be emphasized that in Figure 6.2 most
of the points on the curve of the objective function have no other utility than being
intermediate iterates towards the global solution of the algorithm. In contrast all the
points of the curve of optimal cost values in Figure 6.3 are now global minima for
different values of \.

Example 3. Competing methods for matrix completion. In this section,
we analyze the following state-of-the-art algorithms for low-rank matrix completion,
namely,

1. SVT algorithm by Cai, Candeés, and Shen [13],
2. FPCA algorithm by Ma, Goldfarb, and Chen [25],
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3. SOFT-IMPUTE (SOFT-I) algorithm by Mazumder, Hastie, and Tibshirani
[26],
4. APG and APGL algorithms by Toh and Yun [39].
While FPCA, SOFT-I, and APGL solve (6.1), the iterates of SVT converge towards
a solution of the optimization problem that minimizes 7||X||. + | X]|% subject to the

constraint that the entries of X belonging to the set W agree with that of X, i.e.,
W o X =W e X. 7is aregularization parameter for SVT.

For our simulation studies we use the MATLAB codes supplied on the authors’
webpages for SVT, FPCA, and APGL. Due to simplicity of the SOFT-I algorithm we
use our own MATLAB implementation. The numerically expensive step in all these
algorithms is the computation of the SVT operation. To reduce the computational
burden FPCA uses a linear time approximate SVD. Likewise, implementations of
SVT, SOFT-I, and APGL exploit the low-rank + sparse structure of the iterates to
optimize the thresholding operation [23].

The basic algorithm FPCA by Ma, Goldfarb, and Chen [25] is a fixed-point algo-
rithm with a proven bound on the iterations for e-accuracy. To accelerate the conver-
gence they use the technique of continuation that involves approximately solving a
sequence of parameters leading to the target A\. The SVT burden step is carried out by
a linear time approximate SVD. The basic algorithm APG of Toh et al. is a proximal
method [33] and gives a much stronger bound O(1/+/€) on the number of iterations for
e-accuracy. To accelerate the scheme, the authors propose three additional heuristics:
continuation, truncation (hard thresholding of ranks by projecting onto fixed-rank
matrices), and a line search technique for estimating the Lipschitz constant. The
accelerated version is called APGL. The basic algorithm SOFT-I iteratively replaces
the missing elements with those given by an approximate SVD thresholding at each
iteration. Accelerated versions involve postprocessing like continuation and trunca-
tion. It should be emphasized that the performance of SOFT-I greatly varies with
the singular values computation at each iteration. For our simulations we compute
20 dominant singular values at each iteration of SOFT-I.

Convergence behavior with varying A. In this section we analyze the algo-
rithms FPCA, SOFT-I, and Descent-restart + TR in terms of their ability to solve
(6.1) for a fixed value of A. For this simulation, we use FPCA, SOFT-I, and APGL
without any acceleration techniques like continuation and truncation. SVT is not
used for this test since it optimizes a different cost function. We plot the objective
function f(X) + A|X]|« against the number of iterations for a number of A values. A
100 x 100 random matrix of rank 5 is generated under standard assumptions with OS
ratio = 4 (61% of entries are removed uniformly). The algorithms Descent-restart +
TR, FPCA, SOFT-I, and APG are initialized from the same point. The algorithms
are stopped when either the variation or relative variation of f(X) + A||X]|« is less
than 1071°, The maximum number of iterations is set at 500. The rank incrementing
procedure of our algorithm is stopped when the relative duality gap is less than 1075,

The plots are shown in Figure 6.4. The convergence behavior of FPCA is greatly
affected by A. It has a slow convergence for a small A while for a larger A, the
algorithm fluctuates. SOFT-I has a better convergence in all three cases; however,
the convergence suffers when a more accurate solution is sought. The performance of
APG is robust to the change in values of A. For moderate accuracy it outperforms all
other algorithms. However, when a higher accuracy is sought it takes a large number
of iterations. Descent-restart + TR, on the other hand, outperforms others in all the
cases here with minimal number of iterations.
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F1c. 6.4. Convergence behavior of different algorithms for different values of X. The algorithms
compared here do not use any acceleration heuristics.

Convergence test. To understand the convergence behavior of different algo-
rithms involving different optimization problems, we look at the evolution of the
training error [13, 26] defined as

(6.3) Training error = [W © (X — X)||%,

with iterations. We generate a 150 x 300 random matrix of rank 10 under standard
assumptions with OS = 5. The algorithms Descent-restart + TR, FPCA, and SOFT-
I are initialized similarly. We fix A\ = 107° as it gives a good reconstruction for
comparing algorithms. For SVT we use the default values of 7 and step size as
suggested in [13]. The algorithms are stopped when the variation or relative variation
of the training error (6.3) is less than 107!°. The maximum number of iterations is
set at 500. The rank incrementing procedure of our algorithm is stopped when the
relative duality gap is below 1075,

In Figure 6.5 APG has a fast convergence but the performance slows down later.
Consequently, it exceeds the maximum limit of iterations. Similarly, SOFT-I con-
verges to a different solution but has a faster convergence in the initial phase (for
iterations less than 60). FPCA and Descent-restart + TR converge faster at a later
stage of their iterations. Descent-restart + TR initially sweeps through ranks un-
til arriving at the optimal rank where the convergence is accelerated owing to the
trust-region algorithm.

Scaling test. To analyze the scalability of these algorithms to larger problems
we perform a test where we vary the problem size n from 200 to 2200. The reason for
choosing a moderate value of n is that large-scale implementations of SVT, FPCA, and
SOFT-I are unavailable from authors’ webpages. For each n, we generate a random
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F1G. 6.5. Convergence behavior of different algorithms for minimizing the training error (6.3).
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F1a. 6.6. Analysis of the algorithms on randomly generated datasets of rank 10 with varying
fractions of missing entries. SVT, FPCA, and Descent-restart + TR have similar performances but
Descent-restart + TR usually outperforms the others.

matrix of size n X n of rank 10 under standard assumptions with different OS ratios.
The initializations are chosen as in the earlier example, i.e., A = 107%. We note the
time and number of iterations taken by the algorithms until the stopping criterion is
satisfied or when the number of iterations exceed 500. The stopping criterion is the
same as the one used before for comparison, when the absolute variation or relative
variation of the training error (6.3) is less than 10719, Results averaged over five runs
are shown in Figure 6.6. We have not shown the plots for SOFT-I and APG as in all
the cases either they did not converge in 500 iterations or took much more time than
the nearest competitor.

Below we have shown two more case studies where we intend to show the numerical
scalability of our algorithm to large-scale instances. The first one involves comparisons
with fixed-rank optimization algorithms. The second case is a large-scale comparison
with APGL (the accelerated version of APG). We consider the problem of completing
a 50000 x 50000 matrix X of rank 5. The OS ratio is 8 implying that 0.16% (3.99 x 10°)
of entries are randomly and uniformly revealed. The maximum number of iterations
is fixed at 500.

Fixed-rank comparison. Because our algorithm uses a fixed-rank approach for
the fixed-rank subproblem, it is also meaningful to compare its performance with other
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F1G. 6.7. Rank 5 completion of 50000 x 50000 matriz with OS = 8. All the algorithms are
initialized by taking 5 dominant SVDs of sparse X as proposed in [20]. Algorithms are stopped when
the objective function falls below a threshold, |W @ (X — X)||% < 10710, The proposed trust-region
scheme is competitive with LMaF'it for large scale problems. Although LMaFit has a smaller time
complexity per iteration, its convergence seems to suffer for large-scale problems. With respect to
LRGeom, the performance is poorer although both have a similar asymptotic rate of convergence.

fixed-rank optimization algorithms. However, a rigorous comparison with other algo-
rithms is beyond the scope of the present paper. We refer to a recent paper [31] that
deals with this question in a broader framework. Here we compare with the two state-
of-the-art algorithms LMaFit [42] and LRGeom (trust-region implementation) [40].
LMakFit is an alternating minimization scheme with a different factorization for a fixed-
rank matrix. We use the fixed-rank implementation of LMaFit. It is a tuned version
of the Gauss—Seidel nonlinear scheme and has a smaller time complexity per iteration.
LRGeom is based on the embedded geometry of fixed-rank matrices. This viewpoint
allows us to simplify notions of moving on the search space. We use their trust-region
implementation. The geometry leads to an efficient guess of the optimal step size in
a search direction. Figure 6.7 shows a competitive performance of our trust-region
scheme with respect to LMaFit. Asymptotically, both our trust-region scheme and
LRGeom perform similarly with LRGeom performing better in the initial phase.

Comparison with APGL. APG has a better iteration complexity than other
optimization algorithms. However, scalability of APG by itself to larger dimensional
problems is an issue. The principal bottleneck is that the ranks of the intermediate
iterates seem to be uncontrolled and only asymptotically, a low-rank solution is ex-
pected. To circumvent this issue, an accelerated version of APG called APGL is also
proposed in [39]. APGL is APG with three additional heuristics: continuation (a se-
quence of parameters leading to the target \), truncation (hard thresholding of ranks
by projecting onto fixed-rank matrices), and a line-search technique for estimating the
Lipschitz constant Ly for the first derivative of the cost function. We compare our
algorithm with APGL. The algorithms are stopped when either absolute variation or
relative variation of the objective function is less than 10~!°. For our algorithm, the
trust-region algorithm is also terminated with the same criterion. In addition, the
rank-one updating is stopped when the relative duality gap is below 107°.

For a fixed A = X\, APGL proceeds through a sequence of values for A such that
Ax = max{0.7\,_1, A}, where k is the iteration count of the algorithm. Initially o
is set to 2|W © )~(||Op. We also follow a similar approach and create a sequence of
values. A decreasing sequence is generated leading to \ by using the recursive rule,
Ai = Ni—1/2 when \;—1 > 1 and \; = \;_1/100 otherwise until \;_; < X. Initial \g is
set to |[W © X||op. For A; # A we also relax the stopping criterion for the trust region
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F1G. 6.8. A large-scale instance of rank 5 completion of 50000 x 50000 matriz with OS = 8.
A =2[|W ©®X||op/10% as suggested in [39]. The proposed framework is competent for very low ranks
and when a high accuracy is sought. However, we spend considerable time in just traversing through
ranks before arriving at the optimal rank.

to 10~° as well as stopping the rank-one increment when the relative duality gap is
below 1 as we are only interested in an accurate solution for A = \.

In Figure 6.8 we compete favorably with APGL in large-scale problems for very
low ranks and when a higher accuracy is required. However, as the rank increases,
APGL performs better. This is not surprising as our algorithm traverses all ranks,
one by one before arriving at the optimal rank. In the process we spend a considerable
effort in traversing ranks. This approach is most effective only when computing in
the full regularization path. Also for moderate accuracy, APGL performs extremely
well. However, the better performance of APGL significantly relies on heuristics like
continuation and truncation. The truncation heuristic allows the APGL algorithm to
approximate an iterate by a low- and fixed-rank iterate. On the other hand, we strictly
move in the low-rank space. Exploiting this leads to an efficient way for computing
the full regularization path using a predictor-corrector strategy of section 5.

Comments on matrix completion algorithms. We summarize our observa-
tions in the following points.

e The convergence rate of SOFT-I is greatly dependent on the computation of
singular values. For large-scale problems this is a bottleneck and the per-
formance is greatly affected. However, in our experiments, it performs quite
well within a reasonable accuracy as seen in Figures 6.4 and 6.5.

e SVT, in general, performs well on random examples. However, the choice of
step size and regularization parameter 7 affect the convergence speed of the
algorithm [25, 26].

e FPCA has a superior numerical complexity per iteration owing to an approx-
imate SVD [25], but the performance suffers as the regularization parameter
A is increased as shown in Figure 6.4.

e APG has a better iteration complexity than the others and is well suited when
a moderate accuracy is required (Figures 6.4 and 6.5). As the ranks of the
intermediate iterates are not necessarily low, scalability to large dimensions
is an issue. Its accelerated version APGL does not suffer from this problem
and performs very well for large dimensions.

e In all our simulation studies on random examples, Descent-restart + TR has
shown a favorable performance on different benchmarks. In particular our
framework is well suited when the optimal solution is low rank and when
one needs to compute the regularization path. The Riemannian geometry
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of the set of fixed-rank matrices allows us to make a first-order prediction
of the regularization path, thereby employing an efficient predictor-corrector
strategy.

6.3. Multivariate linear regression. Given matrices Y € R™** (response
space) and X € R"*9 (input data space), we seek to learn a weight /coefficient matrix
W € R7*F that minimizes the loss between Y and XW [43]. Here n is the number
of observations, ¢ is the number of predictors, and k is the number of responses. One
popular approach to the multivariate linear regression problem is by minimizing a
quadratic loss function. Note that in various applications, responses are related and
may therefore, be represented with many fewer coefficients. From an optimization
point of view this corresponds to finding a low-rank coefficient matrix. The papers [43,
2], thus, motivate the use of trace norm regularization in the following optimization
problem formulation, defined as

min  [|[Y = XW|% + \|[W]..
WERaxk
(The optimization variable is W.) Although the focus here is on the quadratic loss
function, the framework can be directly applied to other smooth loss functions. Other
than the difference in the dual variable S and S, the rest of the computation of the
gradient and its directional derivative in the Euclidean space is similar to that of
the low-rank matrix completion case. The matrix representations of the auxiliary
variables are S = 2(X"XW — X"Y) and S, =D s,v)S[Z] = 2(X"X(ZuBV” +
UZg V7" + UBZY)), where the rank of W is p and W = UBV™.

The numerical complexity per iteration is dominated by the numerical cost to
compute ¢(U,B, V), S, and terms like SVB. The cost of computing ¢ is of O(ngp +
nkp+ kp?+nk) and SVB is O(¢*p+ gkp+ kp?). And that of full matrix S is O(¢?p+
qkp + kp?). From a cubic numerical complexity of O(q?k) per iteration (using the full
matrix W ) the low-rank factorization reduces the numerical complexity to O(¢?p +
gkp) which is quadratic. Note that the numerical complexity per iteration is linear in n.

Fenchel dual and duality gap computation. As an extension for some func-
tions f of type f(W) = ¥ (A(W)), where A is a linear operator, computing the Fenchel
conjugate of the function ) may be easier than that of f. When ||.A*(M)|lop < A the
duality gap, using calculations similar to Proposition 2.3, is f(W)+A||W||. +* (M),
where A* is the adjoint operator of A and ¢* is the Fenchel conjugate of the trans-
formed function ©. A good choice of M is again min{1, %}Gradw, where oy, is the
dominant singular value of A*(Grady) [4].

For the multivariate linear regression problem we have A(W) = XW which
suggests the choice f(W) = ¢¥(XW). Note that the domains of f and 1 are
different. Finally, the duality gap is f(W) + A|W]||. + ¢¥*(M), where the dual
candidate M = 2min(1, %)(XW —Y) and oy is the dominant singular value of

A*(Grady) = XTGrady = 2XT(XW —Y). As we use a low-rank factorization
of W, i.e., W = UBV7, the numerical complexity of finding the duality gap is
dominated by the numerical cost of computing ¢*(M) which is also of the order of
the cost of computing ¢(U,B,V). The numerical complexity of computing M is
O(ngp + nkp + kp?) and of ¥*(M) is O(nk).

Regularization path for multivariate linear regression. An input data
matrix X of size 5000 x 120 is randomly generated according to a Gaussian distribution
with zero mean and unit standard deviation. The response matrix Y is computed as
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F1G. 6.9. Regularization path for multivariate linear regression with various SNR values. Re-
sults are averaged over 5 random 70/30 splits.

XW.,, where W, is a randomly generated coefficient matrix of a rank 5 matrix with
size 120 x 100. We randomly split the observations as well as responses into training
and testing datasets in the ratio 70/30 resulting in Yirain/ Ytest and Xirain/Xiost.- A
Gaussian white noise of zero mean and variance o2 ;. is added to the training response
matrix Yirain resulting in Yygise. We learn the coefficient matrix W by minimizing
the scaled cost function, i.e.,
min

1
WeRaxk ||Ynoise - XtrainWH%‘ + )\HWH*i

nk
where ) is a regularization parameter. We validate the learning by computing the
root mean square error (RMSE) defined as

1

Ttest k

TeSt RMSE - \/ ||Ytest - XtestW”%‘

where nest 18 the number of test observations. Similarly, the signal to noise ratio

(SNR) is defined as ”Y(;;ﬂ

We compute the entire regularization path for four different SNR values. The
maximum value of \ is fixed at 10 and the minimum value is set at 10~° with the
reduction factor v = 0.95 (270 values of A in total). Apart from this we also put
the restriction that we only fit ranks less than 30. The solution to an optimization
problem for a value of )\ is claimed to have been obtained when either the duality gap
is less than 102 or the relative duality gap is below 1072 or o1 — A is less than 1072,
Similarly, the trust-region algorithm stops when relative or absolute variation of the
cost function is less than 1070, The results are summarized in Figure 6.9.
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7. Conclusion. Three main ideas have been presented in this paper. First, we
have given a framework to solve a general trace norm minimization problem (1.1)
with a sequence of increasing but fixed-rank nonconvex problems (2.2). We have
analyzed the convergence criterion and duality gap which are used to monitor con-
vergence to the solution of the original problem. The duality gap expression was
shown numerically tractable even for large problems thanks to the specific choice of
the low-rank parameterization. We have also given a way of incrementing the rank
while simultaneously ensuring a decrease of the cost function. This may be termed
as a descent-restart approach. The second contribution of the paper is to present
a second-order trust-region algorithm for a general rank-p (fixed-rank) optimization
in the quotient search space St(p,n) x Syi(p) x St(p,m)/O(p) equipped with the
natural metric g (3.6). The search space with the metric § has the structure of a
Riemannian submersion [1]. We have used the manifold-optimization techniques [1]
to derive the required geometric objects in order to devise a second-order algorithm.
With a proper parameter tuning the proposed trust-region algorithm guarantees a
quadratic rate of convergence. The third contribution of the paper is to develop a
predictor-corrector algorithm on the quotient manifold where the predictor step is
along the first-order approximation of the geodesic. The corrector step is achieved
by initializing the descent-restart approach from the predicted point. The resulting
performance is superior to the warm-restart approach.

These ideas have been applied to the problems of low-rank matrix completion and
multivariate linear regression leading to encouraging numerical results.

Appendix A. Proofs.

A.1. Derivation of first-order optimality conditions of (2.4). We derive
the gradient grad,¢ in the total space M, with the metric (3.6) using (3.11) at 7 =
(U,B, V). First, we compute the partial derivative 9¢(Z)/0Z of ¢ in the Euclidean
space R™"*P x RPXP x R™*P which has the matrix representation (SVB, UTSV +
AL, STUB), where S = Gradf(UBV?). Note that this development follows from the
chain rule of computing partial derivatives. Finally, from (3.11)

grady¢ = (SVB — USym(U”SVB), gradg¢ = B (Sym(UTSV) + A1) B,
grady ¢ = STUB — VSym(VISTUB).

The conditions (2.4) are obtained by equating ||grad;¢||,, to 0.

A.2. Proof of Proposition (2.2). From the characterization of the subdiffer-
ential of the trace norm [35] we have the following:
(A1)
X[+ ={UVT +W: W and X have orthogonal column and row spaces,
W e R and |[W]||op < 1},

where X = UBV7. Since X = UBV7 is also a stationary point for the problem
(2.2), the conditions (2.4) are satisfied including Sym(U7SV) + AI = 0. From the
properties of a matrix norm we have

A = —Sym(UT'SV)
= A= ||Sym(UTSV)HOp < HUTSVHOP < SHOp~

Equality holds iff U and V correspond to the dominant row and column subspace of S,
ie,if S=-AUVT +U, 2V, 7 where UTU, =0, VIV, =0, U, € St(n—p,n),
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V. € St(m —p,m), and 3 is a diagonal matrix with positive entries with ||X||,, < A.
Note that this also means that S € AJ||X||, such that W = U, XV, T which satisfies
(A.1) and the global optimality condition (2.3). This proves Proposition (2.2).

A.3. Proof of Proposition (4.1). Since X = UBV" is a stationary point
for the problem (2.2) and not the global optimum of (1.1) by virtue of Proposition
2.2 we have ||S|lop > A (strict inequality). We assume that f is smooth and hence,
the first derivative of f is Lipschitz continuous with the Lipschitz constant Ly, i.e.,
|Gradf(X) —Gradf(Y)|r < Lf||X=Y| r for any X,Y € R"*"™ [33]. Therefore, the
update (4.1), Xy = X — Buv” results in the following inequalities:

(A.2)
F(X4) < f(X) + (Grad f(X), Xy = X) + [ Xy — X% (from [33])
= f(X) — o1 + 5%
also
IX 4]« < IX]l« + 8 (from triangle inequality of matrix norm)

= F(Xy) T Xl < FX) AKX~ Blor — A~ %B)

for 8 > 0 and o7 being equal to ||S|lop = ||Gradf(X)||ep. The maximum decrease in

the cost function is obtained by maximizing f(c; — A — % B) with respect to 8 which
g1 — A

gives Bmax = > 0. Bmax = 0 only at optimality. This proves the proposition.

A.4. Proof of Proposition (2.3). Without loss of generality we introduce a
dummy variable Z € R™*™ to rephrase the optimization problem (1.1) as

min f(X) + Al Z]].
subject to Z =X.

The Lagrangian of the problem with dual variable M € R™*™ is £(X,Z,M) =
F(X)+A||Z]|++Trace(M? (Z—X)). The Lagrangian dual function g of the Lagrangian
L is, then, computed as [10, 4]
g(M) = 1)1(11%1 f(X) — Trace(M”X) + Trace(MT'Z) + \||Z|
= g(M) = Ir;én {f(X) — Trace(M"X)} + min  {Trace(M7Z) + \|Z].}.

Using the duality trace norm, i.e., operator norm we have
min Trace(M”Z) + A|Z][. =0 if || M]|op < .
Similarly, using the concept of the Fenchel conjugate of a function we have
min  f(X) - Trace(M”X) = — f*(M),
where f* is the Fenchel conjugate [4, 10] of f, defined as f*(M) = supxcgnxm[Trace

(MTX)— f(X)]. Therefore when ||M]||,, < A, the final expression for the dual function
is g(M) = — f*(M)[4] and the Lagrangian dual formulation is

ml\%x—f*(M) such that [|M]op < A.

This proves the proposition.
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