Image thresholding framework based on 2D fractional integration and Legendre moments'

Abstract : In this study, the authors present a new image segmentation algorithm based on two-dimensional digital fractional integration (2D-DFI) that was inspired from the properties of the fractional integration function. Although obtaining a good segmentation result corresponds to finding the optimal 2D-DFI order, the authors propose a new alternative based on Legendre moments. This framework, called two dimensional digital fractional integration and Legendre moments' (2D-DFILM), allows one to include contextual information such as the global object shape and exploits the properties of the 2D fractional integration. The efficiency of 2D-DFILM is shown by the comparison to other six competing methods recently published and it was tested on real-world problem.
Type de document :
Article dans une revue
IET Image Processing, Institution of Engineering and Technology, 2012, 6 (6), pp.717-727
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00923845
Contributeur : Amir Nakib <>
Soumis le : dimanche 5 janvier 2014 - 18:06:01
Dernière modification le : mercredi 27 janvier 2016 - 17:38:00
Document(s) archivé(s) le : jeudi 10 avril 2014 - 16:10:45

Fichier

article_IET.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00923845, version 1

Collections

Citation

A. Nakib, Y. Schulze, E. Petit. Image thresholding framework based on 2D fractional integration and Legendre moments'. IET Image Processing, Institution of Engineering and Technology, 2012, 6 (6), pp.717-727. <hal-00923845>

Partager

Métriques

Consultations de
la notice

108

Téléchargements du document

287