Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies

Oscar P. Bruno 1 Bérangère Delourme 2
2 LAGA
LAGA - Laboratoire Analyse, Géométrie et Applications
Abstract : We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic Green function ceases to exist at Wood anomalies. The approach introduced in this text produces fast Green function convergence throughout the spectrum on the basis of a certain "finite-differencing" approach and smooth windowing of the classical Green function lattice sum. The resulting Green-function convergence is super-algebraically fast away from Wood anomalies, and it reduces to an arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

https://hal.inria.fr/hal-00923678
Contributeur : Bérangère Delourme <>
Soumis le : vendredi 3 janvier 2014 - 17:50:10
Dernière modification le : mardi 11 octobre 2016 - 14:53:05
Document(s) archivé(s) le : jeudi 3 avril 2014 - 22:40:47

Fichier

BrunoDelourme.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00923678, version 1

Collections

Citation

Oscar P. Bruno, Bérangère Delourme. Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum--including Wood anomalies. 2014. <hal-00923678>

Partager

Métriques

Consultations de
la notice

973

Téléchargements du document

164