Distance-Based Trace Diagnosis for Multimedia Applications: Help Me TED!

Abstract : Execution traces have become essential resources that many developers analyze to debug their applications. Ideally, a developer wants to quickly detect whether there are anomalies on his application or not. However, in practice, size of multimedia applications trace can reach gigabytes, which makes their exploitation very complex. Usually, developers use visualization tools before stating a hypothesis. In this paper, we argue that this solution is not satisfactory and propose to automatically provide a diagnosis by comparing execution traces. We use distance based models and conduct a user case to show how TED, our automatic trace diagnosis tool, provides semantic added-value information to the developer. Performance evaluation over real world data shows that our approach is scalable.
Type de document :
Rapport
[Research Report] RR-LIG-045, LIG. 2013
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00923547
Contributeur : Grégory Mounié <>
Soumis le : vendredi 25 novembre 2016 - 18:24:09
Dernière modification le : lundi 10 avril 2017 - 16:47:24
Document(s) archivé(s) le : mardi 21 mars 2017 - 04:00:13

Fichier

RR-LIG-045_orig.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00923547, version 2

Collections

Citation

Christiane Kamdem Kengne, Noha Ibrahim, Marie-Christine Rousset, Maurice Tchuente. Distance-Based Trace Diagnosis for Multimedia Applications: Help Me TED!. [Research Report] RR-LIG-045, LIG. 2013. 〈hal-00923547v2〉

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

42