Model-Driven Cloud Data Storage

Juan Castrejón1, Genoveva Vargas-Solar2, Christine Collet3, and Rafael Lozano4

1 Université de Grenoble, LIG-LAFMIA.
2 Centre National de la Recherche Scientifique, LIG-LAFMIA
3 Grenoble Institute of Technology,
681 rue de la Passerelle, Saint Martin d’Hères, France
{Juan.Castrejon, Genoveva.Vargas}@imag.fr,
Christine.Collet@grenoble-inp.fr
4 Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Ciudad de México, Calle del Puente 222, México, México
ralozano@itesm.mx

Abstract. The increasing adoption of the cloud computing paradigm has motivated a redefinition of traditional software development methods. In particular, data storage management has received a great deal of attention, due to a growing interest in the challenges and opportunities associated to the NoSQL movement. However, appropriate selection, administration and use of cloud storage implementations remain a highly technical endeavor, due to large differences in the way data is represented, stored and accessed by these systems. This position paper motivates the use of model-driven techniques to avoid dependencies between high-level data models and cloud storage implementations. In this way, developers depend only on high-level data models, and then rely on transformation procedures to deal with particular cloud storage details, such as different APIs and deployment providers, and are able to target multiple cloud storage environments, without modifying their core data models.

1 Introduction

Cloud computing represents one of the most promising paradigms for software development nowadays, due to its natural separation between users, applications and the services they require. In this utility computing model, resources are provided as services, easily accessible over a distributed network [12].

Cloud storage represents a paradigm to store, retrieve and manage large amounts of data, using highly scalable distributed infrastructures. This area has received a great deal of attention in recent years, due to a growing interest in the challenges and opportunities associated to the NoSQL movement [3]. However, unlike traditional environments, where the use of the relational model is pervasive, there is a wide variety of data models that can be used in cloud applications. These data models include [3]: key-value, document, extensible record, graph and relational repositories. Each of these data models are designed for different use cases, and provide different support for functional and non-functional
requirements of distributed systems [3], such as different degrees of consistency, scalability, replication and concurrency [3]. Moreover, there is also a wide variety of both public and private providers for the distributed infrastructure that is required for cloud data storage [15]. These providers offer different combinations of pricing, support, service levels, and usually have different APIs to store, retrieve and manage data. These differences make it difficult to design and deploy applications targeting different cloud environments [16].

A key challenge in this heterogeneous environment is the appropriate selection of a data store that best matches the requirements of particular applications [15, 16]. This can be a daunting task, due to the high number of implementations in this environment, over 120 as of this writing [5], and the technical knowledge required to make an appropriate selection, as outlined in [15].

Furthermore, applications may require more than one type of data store, in order to support different use cases. In this regard, the appropriate use of data stores, either traditional or NoSQL, to support multiple use cases in a single application, is currently being studied as part of an emerging movement, named polyglot persistence [6]. Nonetheless, the selection and administration of suitable storage systems for each use case, remain an open challenge.

This paper motivates the use of model-driven engineering (MDE) techniques [10], in order to characterize cloud data storage requirements, and to effectively encapsulate the selection, administration and use of cloud data storage implementations, specially, in polyglot persistence environments. We believe that MDE is a natural fit for this purpose, due to its emphasis in relying on different levels of modeling notations [10], which can be ultimately used to generate the implementation of software systems [1]. In particular, these multi-level structures can be used to avoid dependencies between high-level data models, cloud storage implementations and deployment providers.

The remainder of this paper is organized as follows. Section 2 outlines collaborations between cloud data storage and MDE. Section 3 describes related work. Finally, conclusions and future challenges, are discussed in Section 4.

2 Model-driven cloud data storage

In this section, we outline a set of collaborations between cloud data storage and MDE, that are intended to avoid dependencies between high-level data models and cloud storage implementations. In particular, we strive for the following objectives: (i) provide adequate notations and environments to characterize cloud data storage requirements; (ii) selection of storage implementations and deployment providers; and, (iii) management of the required artifacts to work with different combinations of cloud storage implementations and providers.

2.1 Data modeling for the cloud

The specification of data models for software systems is traditionally performed using notations such as entity-relation (ER) or UML class diagrams. MDE tech-
niques can currently be applied to transform these diagrams into their corresponding relational database models and programming language entities.

However, these notations are usually not enough to characterize all the possible cloud data models. For instance, consider the document data model [3], that lacks a rigid schema and in which semi-structured information can be stored. Another example would be the adequate modeling of families of attributes [3], usually associated to extensible record scenarios [3]. In this regard, different techniques are currently being proposed to overcome these limitations [9].

One of the objectives of our current work is the definition of adequate notations and environments for the modeling of datasets, and their associated functional and non-functional requirements, for cloud environments. For this, we intend to rely on the ISO/IEC Software Product Quality Requirements and Evaluation (SQuaRE) standards [8], that already define software quality characteristics, such as performance efficiency, portability and functional suitability. These international standards also provide guidelines for the association, and evaluation, of metrics associated to quality characteristics. In this case, we propose to define these characteristics through the association of metrics relevant to cloud scenarios. We can reuse previously proposed metrics [15], such as performance, cost and access latency, but further validation of these metrics is also required. In particular, our modeling environments would allow users to specify expected values for these metrics, according to their datasets requirements.

We intend to organise our modeling notations based on a traditional MDE structure of platform independent and specific models (PIM/PSM) [10], in regard to cloud storage implementations. In this way, we could integrate current research and industrial efforts, such as specification languages for modeling cloud environments [11], and different cloud data management interfaces [7, 18].

2.2 Data storage selection

In order to ease the selection of data storage implementations and providers, we propose a decision process based on the analysis of historic data and usage patterns, both in test applications and within systems generated in our modeling environment. This analysis could be performed in a non-intrusive manner, during application runtime, by automatically generating aspect-oriented programming (AOP) monitoring artifacts, as outlined in [2]. In particular, dynamic crosscutting techniques can be used to monitor the behavior of the selected data stores, regarding the metrics associated to the SQuaRE quality standards. This monitoring information could then be used to compare with the expected values specified by the users of our modeling notations and environments. In turn, this analysis could be automatically integrated in applications designed with our modeling notations, with the objective of sharing the results in an open and collaborative environment, that could be exploited by new users of cloud data storage, and by our own modeling tools, as input for the data storage recommendation engine.

Developers could also generate the artifacts to work, at the same time, with multiple combinations of implementations and providers, as outlined in [2]. For instance, this would be helpful to compare their performance in real scenarios.
2.3 Cloud artifacts generation and management

Once the data storage implementations and providers have been selected for the application datasets, we propose to use transformation procedures to generate the low-level artifacts to work with them, that is, configuration files for the deployment environments and cloud data management interfaces. This process could be performed using different levels of transformation procedures, each of them more dependent with particular storage implementations and providers, using a similar approach as modern application development tools [17].

For example, an initial transformation could be defined between the graphical data models and an intermediate domain specific language (DSL), possibly extending the work in [11] and [17]. From this DSL, we could generate configuration files for the particular storage implementations, the AOP monitoring aspects, and the configuration of data management interfaces [7, 18].

3 Related work

The Modeling as a Service (MaaS) initiative is proposed in [1] as an approach to deploy and execute model-driven services over the Internet. This initiative is aligned with SaaS principles, since consumers do not manage the underlying cloud infrastructure and deal mostly with end-user systems. Our work deals with lower level service models (PaaS and IaaS) by allowing control over the deployed applications and the configuration settings of the deployment environments.

A model-driven approach for designing and deploying scalable applications on cloud platforms is described in [13]. This approach promotes the use of graphical models in order to capture cloud requirements, in particular, scalability features. These models are then bundled into a generic platform that automatically deploys them into PaaS and IaaS environments. Instead of striving for a generic platform, our work is focused only on data storage features.

An approach for the automatic selection of cloud storage services is proposed in [15]. This approach relies on the characterization of storage systems, based on capabilities, such as performance and cost, and on the specification of requirements for application datasets, such as expected dataset size, access latency and the number of concurrent clients. Based on this information, an assignment of datasets to the storage systems is proposed, for example, using a mathematical model that strives for optimal data allocation [16]. In comparison, we propose a recommendation engine based on the monitoring of usage patterns.

4 Conclusions and Future work

This paper outlined collaborations between MDE and cloud data storage, intended to facilitate both the specification of cloud data storage requirements, and to encapsulate the selection, administration and use of cloud data storage.

We mentioned challenges that are required to make these collaborations possible, and that are currently being addressed by members of our research group.
For future work, we intend to use our approach in the context of networking applications, managed as part of the UBIQUEST [4] and CLEVER [14] projects.

Acknowledgments

This work is funded by the French National Research Agency, through the UBIQUEST project (http://ubiquest.imag.fr) ANR-09-BLAN-0131-01, and by the STIC-AMSUD program, within the CLEVER project (http://clever.imag.fr).

References