K_1-injectivity for properly infinite C*-algebras
Etienne Blanchard

To cite this version:

HAL Id: hal-00922851
https://hal.archives-ouvertes.fr/hal-00922851
Submitted on 31 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
K\textsubscript{1}-INJECTIVITY FOR PROPERLY INFINITE C*-ALGEBRAS

ÉTIENNE BLANCHARD

Dedicated to Alain Connes on the occasion of his 60th birthday.

1. Introduction

One of the main tools to classify C*-algebras is the study of its projections and its unitaries. It was proved by J. Cuntz in [Cun81] that if \(A \) is a purely infinite simple C*-algebra, then the kernel of the natural map for the unitary group \(\mathcal{U}(A) \) to the K\textsubscript{1}-theory group \(K\textsubscript{1}(A) \) is reduced to the connected component \(\mathcal{U}^0(A) \), i.e. \(A \) is \(K\textsubscript{1} \)-injective (see §3). We study in this note a finitely generated C*-algebra, the \(K\textsubscript{1} \)-injectivity of which would imply the \(K\textsubscript{1} \)-injectivity of all unital properly infinite C*-algebras.

Note that such a question was already considered in [Blac07], [BRR08].

The author would like to thank H. Lin, R. Nest, M. Rørdam and W. Winter for helpful comments.

2. Preliminaries

Let us first review briefly the theory introduced by J. Cuntz ([Cun78]) of comparison of positive elements in a C*-algebra.

Definition 2.1. ([Cun78], [Rør92]) Given two positive elements \(a, b \) in a C*-algebra \(A \), one says that:
- \(a \) is dominated by \(b \) (written \(a \precsim b \)) if and only if there is a sequence \(\{ d_k; k \in \mathbb{N} \} \) in \(A \) such that \(\| d_k^* b d_k - a \| \to 0 \) when \(k \to \infty \),
- \(a \) is properly infinite if \(a \neq 0 \) and \(a \oplus a \precsim a \oplus 0 \) in the C*-algebra \(M_2(A) := M_2(\mathbb{C}) \otimes A \).

This leads to the following notions of infiniteness for C*-algebras.

Definition 2.2. ([Cun78], [Cun81], [KR00]) A unital C*-algebra \(A \) is said to be:
- properly infinite if its unit \(1_A \) is properly infinite in \(A \),
- purely infinite if all the non zero positive elements in \(A \) are properly infinite in \(A \).

Remark 2.3. E. Kirchberg and M. Rørdam have proved in [KR00] Theorem 4.16 that a C*-algebra \(A \) is properly infinite (in the above sense) if and only if there is no character on the C*-algebra \(A \) and any positive element \(a \) in \(A \) which lies in the closed two-sided ideal generated by another positive element \(b \) in \(A \) satisfies \(a \precsim b \).
The first examples of such C*-algebras were given by J. Cuntz in [Cun81]: For any integer \(n \geq 2 \), the C*-algebra \(\mathcal{T}_n \) is the universal unital C*-algebra generated by \(n \) isometries \(s_1, \ldots, s_n \) satisfying the relation
\[
 s_1 s_1^* + \ldots + s_n s_n^* \leq 1 \tag{2.1}
\]
Then, the closed two sided ideal in \(\mathcal{T}_n \) generated by the minimal projection \(p_{n+1} := 1 - s_1 s_1^* - \ldots - s_n s_n^* \) is isomorphic to the C*-algebra \(K \) of compact operators on an infinite dimension separable Hilbert space and one has an exact sequence
\[
 0 \to K \to \mathcal{T}_n \xrightarrow{\pi} \mathcal{O}_n \to 0, \tag{2.2}
\]
where the quotient \(\mathcal{O}_n \) is a purely infinite simple unital nuclear C*-algebra ([Cun81]).

Remark 2.4. A unital C*-algebra \(A \) is properly infinite if and only if there exists a unital *-homomorphism \(\mathcal{T}_2 \to A \).

3. \(K_1 \)-injectivity of \(\mathcal{T}_n \)

Given a unital C*-algebra \(A \) with unitary group \(\mathcal{U}(A) \), denote by \(\mathcal{U}^0(A) \) the connected component of \(1_A \) in \(\mathcal{U}(A) \). For each strictly positive integer \(k \geq 1 \), the upper diagonal embedding \(u \in \mathcal{U}(M_k(A)) \to (u \oplus 1_A) \in \mathcal{U}(M_{k+1}(A)) \) sends the connected component \(\mathcal{U}^0(M_k(A)) \) into \(\mathcal{U}^0(M_{k+1}(A)) \), whence a canonical homomorphism \(\Theta_A \) from \(\mathcal{U}(A)/\mathcal{U}^0(A) \) to \(K_1(A) := \lim_{k \to \infty} \mathcal{U}(M_k(A))/\mathcal{U}^0(M_k(A)) \). As noticed by B. Blackadar in [Blac07], this map is (1) neither injective, (2) nor surjective in general:

1. If \(\Omega_2 \) denotes the compact unitary group of the matrix C*-algebra \(M_2(\mathbb{C}) \), \(A := C(\Omega_2 \times \Omega_2, M_2(\mathbb{C})) \) and \(u, v \in \mathcal{U}(A) \) are the two unitaries \(u(x, y) = x \) and \(v(x, y) = y \), then \(z := uvu^*v^* \) is not unitarily homotopic to \(1_A \) in \(\mathcal{U}(A) \) but the unitary \(z \oplus 1_A \) belongs to \(\mathcal{U}^0(M_2(A)) \) ([AJT60]).
2. If \(A = C(\mathbb{T}^3) \), then \(\mathcal{U}(A)/\mathcal{U}^0(A) \cong \mathbb{Z}^4 \) but \(K_1(A) \cong \mathbb{Z}^4 \).

Definition 3.1. The unital C*-algebra \(A \) is said to be \(K_1 \)-injective if the map \(\Theta_A \) is injective.

J. Cuntz proved in [Cun81] that \(\Theta_A \) is surjective as soon as the C*-algebra \(A \) is properly infinite and that it is also injective if the C*-algebra \(A \) is simple and purely infinite. Now, the \(K \)-theoretical six-term cyclic exact sequence associated to the exact sequence (2.2) implies that \(K_1(\mathcal{T}_n) = 0 \) since \(K_1(K) = K_1(\mathcal{O}_n) = 0 \). Thus, the map \(\Theta_{\mathcal{T}_n} \) is zero.

Proposition 3.2. For all \(n \geq 2 \), the C*-algebra \(\mathcal{T}_n \) is \(K_1 \)-injective, i.e. any unitary \(u \in \mathcal{U}(\mathcal{T}_n) \) is unitarily homotopic to \(1_{\mathcal{T}_n} \) in \(\mathcal{U}(\mathcal{T}_n) \) (written \(u \sim_h 1_{\mathcal{T}_n} \)).

Proof. The C*-algebras \(\mathcal{T}_n \) have real rank zero by Proposition 2.3 of [Zha90]. And Lin proved that any unital C*-algebra of real rank zero is \(K_1 \)-injective ([Lin01, Corollary 4.2.10]). □

Corollary 3.3. If \(\alpha : \mathcal{T}_3 \to \mathcal{T}_3 \) is a unital *-endomorphism, then its restriction to the unital copy of \(\mathcal{T}_2 \) generated by the two isometries \(s_1, s_2 \) is unitarily homotopic to \(\text{id}_{\mathcal{T}_2} \) among all unital *-homomorphisms \(\mathcal{T}_2 \to \mathcal{T}_3 \).
Proof. The isometry $\sum_{k=1,2} \alpha(s_k) s_k^*$ extends to a unitary $u \in U(T_3)$ such that $\alpha(s_k) = us_k$ for $k = 1, 2$ ([BRR08, Lemma 2.4]). But Proposition 3.2 yields that $U(T_3) = U^0(T_3)$, whence a homotopy $u \sim_h 1$ in $U(T_3)$, and so the desired result holds. □

Remark 3.4. The unital map $\iota : C \to T_2$ induces an isomorphism in K-theory. Indeed, $[1_{T_2}] = [s_1 s_1^*] + [s_2 s_2^*] + [p_3] = 2[1_{T_2}] + [p_3]$ and so $[1_{T_2}] = -[p_3]$ is invertible in $K_0(T_2)$.

4. K_1-injectivity of properly infinite C^*-algebras

Denote by $T_2 \ast_C T_2$ the universal unital free product with amalgamation over C (in the sequel called full unital free product) of two copies of T_2 amalgamated over C and let j_0, j_1 be the two canonical unital inclusions of T_2 in $T_2 \ast_C T_2$. We show in this section that the K_1-injectivity of $T_2 \ast_C T_2$ is equivalent to the K_1-injectivity of all the unital properly infinite C^*-algebras. The proof is similar to that of the universality of the full unital free product $O_\infty \ast_C O_\infty$ (see Theorem 5.5 of [BRR08]).

Definition 4.1. ([Blan09], [BRR08, §2]) If X is a compact Hausdorff space, a unital $C(X)$-algebra is a unital C^*-algebra A endowed with a unital $*$-homomorphism from the C^*-algebra $C(X)$ of continuous functions on X to the centre of A.

For any non-empty closed subset Y of X, we denote by π_Y^A (or simply by π_Y if no confusion is possible) the quotient map from A to the quotient A_Y of A by the (closed) ideal $C_0(X \setminus Y) \cdot A$. For any point $x \in X$, we also denote by A_x the quotient $A_{\{x\}}$ and by π_x the quotient map $\pi_{\{x\}}$.

Proposition 4.2. The following assertions are equivalent.

(i) $T_2 \ast_C T_2$ is K_1-injective.

(ii) $D := \{f \in C([0, 1], T_2 \ast_C T_2); f(0) \in j_0(T_2) \text{ and } f(1) \in j_1(T_2)\}$ is properly infinite.

(iii) There exists a unital $*$-homomorphism $\theta : T_2 \to D$.

(iv) There exists a projection $q \in D$ with $\pi_0(q) = j_0(s_1 s_1^*)$ and $\pi_1(q) = j_1(s_1 s_1^*)$.

(v) Any unital properly infinite C^*-algebra A is K_1-injective.

Proof. (i)\Rightarrow(ii) We have a pull-back diagram

$$
\begin{array}{ccc}
D & \xrightarrow{\pi_2} & D_{[\frac{1}{2}, 1]} \\
\downarrow & & \downarrow \\
T_2 \ast_C T_2 & \xrightarrow{\pi_2} & T_2 \ast_C T_2
\end{array}
$$

and the two C^*-algebras $D_{[0, \frac{1}{2}]}$ and $D_{[\frac{1}{2}, 1]}$ are properly infinite (Remark 2.4). Hence, the implication follows from [BRR08, Proposition 2.7].

(ii)\Rightarrow(iii) is Remark 2.4 applied to the C^*-algebra D.

(iii)\Rightarrow(iv) The two full, properly infinite projections $j_0(s_1 s_1^*)$ and $\pi_0 \circ \theta(s_1 s_1^*)$ are unitarily equivalent in $j_0(T_2)$ by [LLR00, Lemma 2.2.2] and [BRR08, Proposition 2.3].
Thus, they are homotopic among the projections in the C∗-algebra \(J_0(T_2) \) (written \(j_0(s_1s_1^*) \sim \pi_0 \circ \theta(s_1s_1^*) \)) by Proposition 3.2. Similarly, \(\pi_1 \circ \theta(s_1s_1^*) \sim \pi_1 \circ \theta(s_1s_1^*) \) in \(J_1(T_2) \).

Further, \(\pi_0 \circ \theta(s_1s_1^*) \sim \pi_0 \circ \theta(s_1s_1^*) \) in \(T_2 \ast_C T_2 \) by hypothesis, whence the result by composition.

(iv) \(\Rightarrow (v) \) By [BRR08] Proposition 5.1, it is equivalent to prove that if \(p \) and \(p' \) are two properly infinite full projections in \(A \), then there exist full properly infinite projections \(p_0 \) and \(p'_0 \) in \(A \) such that \(p_0 \leq p \), \(p'_0 \leq p' \) and \(p_0 \sim_h p'_0 \).

Fix two such projections \(p \) and \(p' \) in \(A \). Then, there exist unital ∗-homomorphisms \(\sigma : T_2 \to pAp \), \(\sigma' : T_2 \to p'Ap' \) and isometries \(t, t' \in A \) such that \(1_A = t^*pt = (t')^*p't' \). Now, one thoroughly defines unital ∗-homomorphisms \(\alpha_0 : T_2 \to A \) and \(\alpha_1 : T_2 \to A \) by

\[
\alpha_0(s_k) := \sigma(s_k) \cdot t \quad \text{and} \quad \alpha_1(s_k) := \sigma'(s_k) \cdot t' \quad \text{for} \quad k = 1, 2,
\]

whence a unital ∗-homomorphism \(\alpha := \alpha_0 \ast \alpha_1 : T_2 \ast_C T_2 \to A \) such that \(\alpha \circ j_0 = \alpha_0 \) and \(\alpha \circ j_1 = \alpha_1 \).

The two full properly infinite projections \(p_0 = \alpha_0(s_1s_1^*) \) and \(p'_0 = \alpha_1(s_1s_1^*) \) satisfy \(p_0 \leq p \) and \(p'_0 \leq p' \). Further, the projection \((id \ast \alpha)(q) \) gives a continuous path of projections in \(A \) from \(p_0 \) to \(p'_0 \).

Remark 4.3. The C∗-algebra \(M_2(D) \) is properly infinite by [BRR08] Proposition 2.7.

Lemma 4.4. \(K_0(T_2 \ast_C T_2) = \mathbb{Z} \) and \(K_1(T_2 \ast_C T_2) = 0 \)

Proof. The commutative diagram:

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\iota_1} & T_2 \\
\downarrow{\iota_0} & & \downarrow{\iota_1} \\
T_2 & \xrightarrow{j_0} & T_2 \ast_C T_2
\end{array}
\]

yields by [Ger97] Theorem 2.2 a six-term cyclic exact sequence

\[
K_0(\mathbb{C}) = \mathbb{Z} \xrightarrow{(i_0 \oplus i_1)_*} K_0(T_2 \oplus T_2) = \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(j_0)_* - (j_1)_*} K_0(T_2 \ast_C T_2) \\
K_1(T_2 \ast_C T_2) \xleftarrow{} K_1(T_2 \oplus T_2) = 0 \oplus 0 \xleftarrow{} K_1(\mathbb{C}) = 0
\]

Now, Remark 3.4 implies that the map \((i_0 \oplus i_1)_*\) is injective, whence the equalities.

Remark 4.5. G. Skandalis noticed that the C∗-algebra \(T_2 \) is KK-equivalent to \(\mathbb{C} \) and so \(T_2 \ast_C T_2 \) is KK-equivalent to \(\mathbb{C} \ast_C \mathbb{C} = \mathbb{C} \).

This Lemma entails that the \(K_1 \)-injectivity question for unital properly infinite C∗-algebras boils down to knowing whether \(U(T_2 \ast_C T_2) = U(T_2 \ast_C T_2) \). Note that Proposition 3.2 already yields that \(U(T_2) \ast_T U(T_2) \subset U(T_2 \ast_C T_2) \).

But the following holds.

Proposition 4.6. Set \(p_3 = 1 - s_1s_1^* - s_2s_2^* \) in the Cuntz algebra \(T_2 \) and let \(u \) be the canonical unitary generating \(C^*(\mathbb{Z}) \).

(i) The relations \(j_0(s_k) \to s_k \) and \(j_1(s_k) \to us_k \) (\(k = 1, 2 \)) uniquely define a unital ∗-homomorphism \(T_2 \ast_C T_2 \to T_2 \ast_C C^*(\mathbb{Z}) \) which is injective but not \(K_1 \)-surjective.
(ii) The two projections $j_0(p_3)$ and $j_1(p_3)$ satisfy $j_1(p_3) \neq j_0(p_3)$ in $T_2 \ast_C T_2$.

(iii) There is no $v \in \mathcal{U}(T_2 \ast_C T_2)$ such that $j_1(s_1s_1^* + s_2s_2^*) = v j_0(s_1s_1^* + s_2s_2^*) v^*$.

(iv) There is a unitary $v \in \mathcal{U}(T_2 \ast_C T_2)$ such that $j_1(s_1s_1^*) = v j_0(s_1s_1^*) v^*$.

Proof. (i) The unital C^*-subalgebra of O_3 generated by the two isometries s_1 and s_2 is isomorphic to T_2, whence a unital C^*-embedding $T_2 \ast_C T_2 \subset O_3 \ast_C O_3$ ([ADEL04]). Let Φ be the $*$-homomorphism from $O_3 \ast_C O_3$ to the free product $O_3 \ast_C C^*(\mathbb{Z}) = C^*(s_1, s_2, s_3, u)$ fixed by the relations

$$\Phi(j_0(s_k)) = s_k \quad \text{and} \quad \Phi(j_1(s_k)) = us_k \quad \text{for} \quad k = 1, 2, 3$$

and let $\Psi : O_3 \ast_C C^*(\mathbb{Z}) \rightarrow O_3 \ast_C O_3$ be the only $*$-homomorphism such that

$$\Psi(u) = \sum_{i=1}^3 j_1(s_i)j_0(s_i)^* \quad \text{and} \quad \Psi(s_k) = j_0(s_k) \quad \text{for} \quad k = 1, 2, 3.$$

For all $k = 1, 2, 3$, we have the equalities:

$$- \Psi \circ \Phi(j_0(s_k)) = \Psi(s_k) = j_0(s_k),$$

$$- \Psi \circ \Phi(j_1(s_k)) = \Psi(us_k) = j_1(s_k),$$

$$- \Phi \circ \Psi(s_k) = \Phi(j_0(s_k)) = s_k.$$

Also, $\Psi(u)^* \Psi(u) = \sum_{i,i'} j_0(s_{i'})(s_i')^* j_1(s_i)j_0(s_i)^* = 1_{O_3 \ast_C O_3} = \Psi(u)^* \Psi(u)$, i.e. $\Psi(u)$ is a unital $*$-homomorphism which satisfies:

$$- \Phi \circ \Psi(u) = \sum_{i=1,2,3} \Phi(j_1(s_i)) \Phi(j_0(s_i)^*) = u.$$

Thus, Φ is an invertible unital $*$-homomorphism with inverse Ψ ([Blac07]), and the restriction of Φ to the C^*-subalgebra $T_2 \ast_C T_2$ takes values in $T_2 \ast_C C^*(\mathbb{Z}) \subset O_3 \ast_C C^*(\mathbb{Z})$.

Now, there is (see [Ger97]) a six-term cyclic exact sequence

$$K_0(\mathbb{C}) = \mathbb{Z} \quad \hookrightarrow \quad K_0(T_2 \oplus C^*(\mathbb{Z})) = \mathbb{Z} \oplus \mathbb{Z} \quad \twoheadrightarrow \quad K_0(T_2 \ast_C C^*(\mathbb{Z}))$$

$$K_1(T_2 \ast_C C^*(\mathbb{Z})) \quad \hookleftarrow \quad K_1(T_2 \oplus C^*(\mathbb{Z})) = 0 \oplus \mathbb{Z} \quad \twoheadleftarrow \quad K_1(\mathbb{C}) = 0$$

and so, $K_1(T_2 \ast_C C^*(\mathbb{Z})) = \mathbb{Z}$, whereas $K_1(T_2 \ast_C T_2) = 0$ by Lemma 4.4

(ii) Let $\pi_0 : T_2 \rightarrow L(H)$ be a unital $*$-representation on a separable Hilbert space H such that $\pi_0(p_3)$ is a rank one projection, let $\pi_1 : T_2 \rightarrow L(H)$ be a unital $*$-representation such that $\pi_1(p_3)$ is a rank two projection and consider the induced unital $*$-representation $\pi = \pi_0 \ast \pi_1$ of the unital free product $T_2 \ast_C T_2$.

Then the two projections $\pi[j_0(p_3)] = \pi_0(p_3)$ and $\pi[j_1(p_3)] = \pi_1(p_3)$ have distinct ranks and so cannot be equivalent in $L(H)$. Hence, $j_0(p_3) \nleftrightarrow j_1(p_3)$ in $T_2 \ast_C T_2$.

(iii) This is just a rewriting of the previous assertion since $s_1s_1^* + s_2s_2^* = 1 - p_3$. Indeed, the partial isometry $b = j_1(s_1)j_0(s_1)^* + j_1(s_2)j_0(s_2)^*$ defines a Murray-von Neumann equivalence in $T_2 \ast_C T_2$ between the projections $j_0(s_1s_1^* + s_2s_2^*) = 1 - j_0(p_3)$ and $j_1(s_1s_1^* + s_2s_2^*) = 1 - j_1(p_3)$. Thus, they are unitarily equivalent in $T_2 \ast_C T_2$ if and only if $j_0(p_3) \sim j_1(p_3)$ in $T_2 \ast_C T_2$ ([LLR00 Proposition 2.2.2]).
(iv) There exists a unitary $v \in \mathcal{U}(T_2 \ast C T_2)$ (which is necessarily K_1-trivial by Lemma 4.4) such that $j_1(s_1 s_1^*) = v j_0(s_1 s_1^*) v^*$. Indeed, we have the inequalities

$$1 > s_2 s_2^* + p_3 > s_2 s_2^* > s_2 (s_2 s_2^* + p_3) s_2^* + s_2 s_2 (p_3) s_2 s_2^* \quad \text{in } T_2.$$

Thus, if we set $w := j_1(s_1) j_0(s_1)^*$, then $1 - w^* w = j_0(s_2 s_2^* + p_3)$ and $1 - w w^* = j_1(s_2 s_2^* + p_3)$ are two properly infinite and full K_0-equivalent projections in $T_2 \ast C T_2$. Thus, there is a partial isometry $a \in T_2 \ast C T_2$ with $a^* a = 1 - w^* w$ and $a a^* = 1 - w w^*$ (Cuntz81). The sum $v = a + w$ has the required properties (BRR08 Lemma 2.4).

Remarks 4.7. (i) The equivalence (iv)\iff(v) in Proposition 4.2 implies that all unital properly infinite C^*-algebras are K_1-injective if and only if the unitary $v \in \mathcal{U}(T_2 \ast C T_2)$ constructed in Proposition 4.6(iv) belongs to the connected component $\mathcal{U}^0(T_2 \ast C T_2)$.

Note that $v \oplus 1 \sim_h 1 \oplus 1$ in $\mathcal{U}(M_2(T_2 \ast C T_2))$ by [LLR00, Exercise 8.11].

(ii) Let $\sigma \in \mathcal{U}(T_2)$ be the symmetry $\sigma = s_1 s_1^* + s_2 s_2^* + p_3$, let $v \in \mathcal{U}(T_2 \ast C T_2)$ be a unitary such that $j_1(s_1 s_1^*) = v j_0(s_1 s_1^*) v^*$ (Proposition 4.6(iv)) and set $z := v^* j_1(\sigma) v j_0(\sigma)$. Then, $q_1 = j_0(s_1 s_1^*)$, $q_2 = j_0(s_2 s_2^*)$ and $q_3 = z j_0(s_2 s_2^*) z^*$ are three properly infinite full projections in $T_2 \ast C T_2$ which satisfy:

- $q_1 q_3 = j_0(s_1 s_1^*) v^* j_1(s_2 s_2^*) v = v^* j_1(s_1 s_1^*) j_1(s_2 s_2^*) v = 0 = q_1 q_2$,

- $q_2 \sim_h q_1 \sim_h q_3$ in $T_2 \ast C T_2$ since $\sigma \in \mathcal{U}^0(T_2)$ and so $z \sim_h v^* v = 1$ in $\mathcal{U}(T_2 \ast C T_2)$,

- $q_1 + q_3 = v^* j_1(s_1 s_1^* + s_2 s_2^*) v \not\sim_h j_0(s_1 s_1^* + s_2 s_2^*) = q_1 + q_2$ in $T_2 \ast C T_2$ by Proposition 4.6(iii).

Addendum

(iii) Let $\alpha = \alpha_0 \ast \alpha_1$ be the unital \ast-endomorphism of the free product $T_2 \ast C T_2$ defined by $\alpha_0(s_k) = j_0(s_k)$ and $\alpha_1(s_k) = v^* j_1(s_k)$ for $k = 1, 2$. Then $\alpha_0(s_2 s_2^* + p_3) = 1 - \alpha_0(s_1 s_1^*) = 1 - \alpha_1(s_1 s_1^*) = \alpha_1(s_2 s_2^* + p_3)$ and $\alpha_0(s_2 s_2^*) \sim_h \alpha_0(s_1 s_1^*) = \alpha_1(s_2 s_2^*) \sim_h \alpha_1(s_2 s_2^*)$ among the projections in $\alpha(T_2 \ast C T_2)$. But $\alpha_0(p_3) \not\sim \alpha_1(p_3)$ in $\alpha(T_2 \ast C T_2)$.

References

Etienne.Blanchard@math.jussieu.fr
IMJ, 175, rue du Chevaleret, F–75013 Paris