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Abstract

The Grundy number of a graph G, denoted by Γ(G), is the largest

k such that there exists a partition of V (G), into k independent sets

V1, . . . , Vk and every vertex of Vi is adjacent to at least one vertex in

Vj , for every j < i. The objects which are studied in this article are

families of r-regular graphs such that Γ(G) = r + 1. Using the notion of

independent module, a characterization of this family is given for r = 3.
Moreover, we determine classes of graphs in this family, in particular the

class of r-regular graphs without induced C4, for r ≤ 4. Furthermore, our

propositions imply results on partial Grundy number.

1 Introduction

We consider only undirected connected graphs in this paper. Given a graph G =
(V,E), a proper k-coloring of G is a surjective mapping c : V → {1, . . . , k} such
that c(u) 6= c(v) for any uv ∈ E; the color class Vi is the set {u ∈ V |c(u) = i}
and a vertex v has color i if v ∈ Vi. A vertex v of color i is a Grundy vertex if v is
adjacent to at least one vertex colored j, for every j < i. A Grundy k-coloring
is a proper k-coloring such that every vertex is a Grundy vertex. A partial
Grundy k-coloring is a proper k-coloring such that every color class contains a
Grundy vertex. The Grundy number (partial Grundy number, respectively) of
G denoted by Γ(G) (∂Γ(G), respectively) is the largest k such that G admits a
Grundy k-coloring (partial Grundy k-coloring, respectively).

Let N(v) = {u ∈ V (G)|uv ∈ E(G)} be the neighborhood of v. A set X of
vertices is an independent module if X is an independent set and all vertices

∗Author partially supported by the Burgundy Council
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in X have the same neighborhood. The vertices in an independent module
of size 2 are called false twins. Let Pn, Cn, Kn and In be respectively, the
path, cycle complete and empty graph of order n. The concepts of Grundy k-
coloring and domination are connected. In a Grundy coloring, V1 is a dominating
set. Given a graph G and an ordering φ on V (G) with φ = v1, . . . , vn, the
greedy algorithm assigns to vi the minimum color that was not assigned in the
set {v1, . . . , vi−1} ∩ N(vi). Let Γφ(G) be the number of colors used by the
greedy algorithm with the ordering φ on G. We obtain the following result [7]:
Γ(G) = max

φ∈Sn

(Γφ(G)).

The Grundy coloring is a well studied problem. Zaker [15] proved that
determining the Grundy number of a given graph, even for complements of
bipartite graphs, is an NP-complete problem. However, for a fixed t, determining
if a given graph has Grundy number at least t is decidable in polynomial time.
This result follows from the existence of a finite list of graphs, called t-atoms,
such that any graph with Grundy number at least t contains a t-atom as an
induced subgraph. It has been proven that there exists a Nordhaus-Gaddum
type inequality for the Grundy number [8, 15], that there exist upper bounds
for d-degenerate, planar and outerplanar graphs [2, 5], and that there exist
connections between the products of graphs and the Grundy number [6, 1, 4].
Recently, Havet and Sampaio [9] have proven that the problem of deciding if for
a given graph G we have Γ(G) = ∆(G)+1, even if G is bipartite, is NP-complete.
Moreover, they have proven that the dual of Grundy k-coloring problem is in
FPT by finding an algorithm in O(2k2k.|E|+ 22kk3k+5/2) time.
Note that a Grundy k-coloring is a partial Grundy k-coloring, hence Γ(G) ≤
∂Γ(G). Given a graph G and a positive integer k, the problem of determining
if a partial Grundy k-coloring exists, even for chordal graphs, is NP-complete
but there exists a polynomial algorithm for trees [13].

Another coloring parameter with domination constraints on the colors is the
b-chromatic number, denoted by ϕ(G), which is the largest k such that there
exists a proper k-coloring and for every color class Vi, there exists a vertex
adjacent to at least one vertex colored j, for every j, with j 6= i. Note that a b-
coloring is a partial Grundy k-coloring, hence ϕ(G) ≤ ∂Γ(G). The b-chromatic
number of regular graphs has been investigated in a series of papers ([11, 10, 3,
12]). Our aim is to establish similar results for the Grundy coloring. We present
two main results: A characterization of the Grundy number of every cubic graph
and the following theorem: For r ≤ 4, every r-regular graphs without induced
C4 has Grundy number r+ 1. We conjecture that this assertion is also true for
r > 4.

Conjecture 1. For any integer r ≥ 1, every r-regular graph without induced
C4 has Grundy number r + 1.

Section 2 gives characterizations of some classes of graphs with Grundy num-
ber at most k, 2 ≤ k ≤ ∆(G), using the notion of independent module. Section 3
contains the first main theorem: A description of the cubic graphs with Grundy
number at most 3 that also allows us to prove that every cubic graph except
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K3,3 has partial Grundy number 4. This theorem implies the existence of a lin-
ear algorithm to determine the Grundy number of cubic graphs. In Section 4,
we present examples of infinite families of regular graphs with Grundy number
exactly or at most k, 3 ≤ k ≤ r. To determine these families we use recursive
definitions. The last section contains the second main theorem of this article:
4-regular graphs without induced C4 have Grundy number 5.

2 General results

The reader has to be aware of the resemblance of name between the following
notion and that of partial Grundy k-coloring.

Definition 2.1. Let G be a graph. A Grundy partial k-coloring is a Grundy
k-coloring of a subset S of V (G).

Observation 2.2 ([1],[6]). If G admits a Grundy partial k-coloring, then Γ(G) ≥
k.

This property has an important consequence: For a graph G, with Γ(G) ≥ t
and any Grundy partial t-coloring, there exist smallest subgraphs H of G such
that Γ(H) = t. The family of t-atoms corresponds to these subgraphs. This
concept was introduced by Zaker [15]. The family of t-atoms is finite and the
presence of a t-atom can be determined in polynomial time for a fixed t. The
following definition is slightly different from Zaker’s one, insisting more on the
construction of every t-atom.

Definition 2.3 ([15]). For any integer t, we define the family of t-atoms, de-
noted by At, t = 1, . . . by induction. Let the family A1 contain only K1. A graph
G is in At+1 if there exists a graph G′ in At and an integer m, m ≤ |V (G′)|,
such that G is composed of G′ and an independent set Im of order m, adding
edges between G′ and Im such that every vertex in G′ is connected to at least one
vertex in Im. Moreover a t-atom A is minimal, if there is no t-atom included
in A other than itself.

Theorem 1 ([15]). For a given graph G, Γ(G) ≥ t if and only if G contains an
induced minimal t-atom.

We now present conditions related to the presence of modules that allows us
to upper-bound the Grundy number.

Proposition 2.4 ([1]). Let G be a graph and X be an independent module. In
every Grundy coloring of G, the vertices in X must have the same color.

Definition 2.5. Let G be an r-regular graph. A vertex v is a (0, ℓ)-twin-vertex
if there exists an independent module of cardinality r + 2− ℓ that contains v.

Proposition 2.6. Let G be an r-regular graph. The color of an (0, ℓ)-twin-
vertex is at most ℓ in every Grundy coloring of G.
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Proof. Let v be a (0, ℓ)-twin-vertex colored ℓ + 1 in G. By Definition, v is in
an independent module X of cardinality r+2− ℓ and by Proposition 2.4, every
other vertex of X should be colored ℓ+ 1. Let u be a neighbor of v. There are
at most ℓ−2 neighbors of u in V (G−X). Therefore, u cannot be colored ℓ.

Definition 2.7. A vertex v of a graph G is a (1, ℓ)-twin-vertex if N(v) can be
partitioned into at least ℓ− 1 independent modules.

Proposition 2.8. Let G be a graph. The color of an (1, ℓ)-twin-vertex is at
most ℓ in every Grundy coloring of G.

Proof. By Proposition 2.4, vertices of the neighborhood of v can only have ℓ−1
different colors. Therefore, the color of v is at most ℓ.

Definition 2.9. A vertex v of a graph G is a (2, ℓ)-twin-vertex if N(v) is
independent and every vertex in N(v) is a (1, ℓ)-twin-vertex.

Proposition 2.10. Let G be a graph. The color of an (2, ℓ)-twin-vertex is at
most ℓ in every Grundy coloring of G.

Proof. Let v be a (2, ℓ)-twin-vertex in G. Every vertex in N(v) is a (1, ℓ)-twin-
vertex. If a vertex in N(v) is colored ℓ, then v could only have a color at most
ℓ− 1. If the vertices in the neighborhood of v have colors at most ℓ− 1, then in
every Grundy coloring of G, v has a color at most ℓ.

Corollary 2.11. Let G be a graph. If every vertex is a (1, ℓ)-twin-vertex or a
(2, ℓ)-twin-vertex, then Γ(G) ≤ ℓ.

Corollary 2.12. Let G be a regular graph. If every vertex is an (i, ℓ)-twin-
vertex, for some i, 0 ≤ i ≤ 2, then Γ(G) ≤ ℓ.

Proposition 2.13 ([1],[15]). Let G be a graph. We have Γ(G) ≤ 2 if and only
if G = Kn,m for some integers n > 0 and m > 0.

3 Grundy numbers of cubic graphs

In the following sections, the figures describe Grundy partial k-colorings. By a
dashed edge we denote a possible edge. The vertices not connected by edges in
the figures cannot be adjacent as it would contradict the hypothesis.

Proposition 3.1 ([6]). Let G be a connected 2-regular graph. ∂Γ(G) = Γ(G) =
2 if and only if G = C4.

The following definition gives a construction of the cubic graphs in which
every vertex is an (i, 3)-twin-vertex, for some i, 0 ≤ i ≤ 2. Figure 2 gives the
list of every graph of order at most 16 in this family.

Definition 3.2. Let K2,3 and K∗

3,3 be the graphs from Figure 1. We define
recursively the family of graphs F ∗

3 as follows:
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Figure 1: The graphs K2,3 (on the left) and K∗

3,3 (on the right).

K3,3

Figure 2: The cubic graphs G such that |V (G)| < 18 and Γ(G) < 4.

1. K2,3 ∈ F ∗

3 and K∗

3,3 ∈ F ∗

3 ;

2. the disjoint union of two elements of F ∗

3 is in F ∗

3 ;

3. if G is a graph in F ∗

3 , then the graph H obtained from G by adding an
edge between two vertices of degree at most 2 is also in F ∗

3 ;

4. if G is a graph in F ∗

3 , then the graph H obtained from G by adding a new
vertex adjacent to three vertices of degree at most 2 is in F ∗

3 .

The family F3 is the subfamily of cubic graphs in F ∗

3 .

Proposition 3.3. Let G be a cubic graph. Every vertex of V (G) is an (i, 3)-twin
vertex, for some i, 0 ≤ i ≤ 2, if and only if G ∈ F3.

Proof. Every graph G in F3 has three kind of vertices: (0, 3)-twin-vertices
(called also false twins), vertices where an edge is added by Point 3 and vertices
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added by Point 4. Vertices where an edge is added by Point 3 are (1, 3)-twin-
vertex and vice versa. Vertices added by Point 4 are (2, 3)-twin-vertices and
vice versa.

Theorem 2. Let G be a cubic graph. Γ(G) ≤ 3 if and only if every vertex is
an (i, 3)-twin-vertex, for some i, 0 ≤ i ≤ 2.

Proof. By Corollary 2.12, the "if" part is proven. Assume that G contains a
vertex v which is not an (i, 3)-twin-vertex, for some i, 0 ≤ i ≤ 2 and Γ(G) <
4. In every configuration we want to either find a Grundy partial 4-coloring,
contradicting Γ(G) < 4 or proving that v is an (i, 3)-twin-vertex, for some i, with
0 ≤ i ≤ 2. We will refer to a given Grundy partial 4-coloring by its reference
in Figure 3. We consider three cases: v or a neighbor of v is in a C3, v is in an
induced C4 and v or a neighbor of v are not in a C3 and v is not in an induced
C4. Let C be an induced cycle of order 3 or 4 which contains v or a neighbor
of v and let D1 = {x ∈ V (G)|d(x,C) = 1}, where d(x,C) is the distance from
x to C in the graph G. To simplify notation, D1 will also denote the subgraph
of G induced by D1.

Case 1: Assume that v or a neighbor of v is in C and C = C3. If |D1| = 1,
then G = K4 and Γ(K4) = 4. If |D1| = 2 and D1 = P2, then v is a (0, 3)-
twin-vertex or a (1, 3)-twin-vertex. If D1 = I2 then Figure 3.1.a yields a
Grundy partial 4-coloring of G. If |D1| = 3, then we have four subcases:
D1 is C3 or P3 (Figure 3.1.b), P2 ∪ I1 (Figure 3.1.c) or I3 (Figure 3.1.d).
In every case G admits a Grundy partial 4-coloring.

Case 2: Assume that v is in C and C = C4. Note that for two non adjacent
vertices of C who have a common neighbor in D1, the vertex v is a (0, 3)-
twin-vertex or a (1, 3)-twin-vertex. Hence, we will not consider these cases.
If |D1| = 2, then D1 = P2 or D1 = I2 (Figure 3.2.a) and in both cases,
G admits a Grundy partial 4-coloring. If |D1| = 3, Figure 3.2.b yields
a Grundy partial 4-coloring of G. In the case |D1| = 4, we first assume
that two adjacent vertices of C have their neighbors in D1 adjacent (Figure
3.2.c). Afterwards, we suppose that the previous case does not happen and
that two non adjacent vertices of C have their neighbors in D1 adjacent
(Figure 3.2.d). In the case D1 = I4, we first suppose that two vertices of
D1 which have two adjacent vertices of C as neighbor, are not adjacent
to two common vertices (Figure 3.2.e) and after consider they are (Figure
3.2.f).

Case 3: Assume that v or a neighbor of v is not in a C3 and v is not in an
induced C4. Firstly, suppose that a neighbor u of v is in an induced C4.
Using the coloring from the previous case, G admits a Grundy partial 4-
coloring in every cases except in the case where two neighbors of v in the
C4 have a common neighbor outside the C4. However, this case cannot
happen for every neighbor of v, otherwise v would be a (2, 3)-twin-vertex.
Assume that u is the neighbor of v not in the previous configuration. If
u is in an induced C4, then using the coloring from the previous case, G
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admits a Grundy partial 4-coloring. If u is not in an induced C4, then
Figure 3.3.a yields a Grundy partial 4-coloring of G. In this figure, the
color 2 is given to a neighbor of u not adjacent to both f1 and f2. Secondly,
suppose that v is in an induced C5. Figure 3.3.b yields a Grundy partial
4-coloring of G. Thirdly, if v is not in an induced C5, then Figure 3.3.c
yields a Grundy partial 4-coloring of G.

Therefore, if Γ(G) ≤ 3, then every vertex is an (i, 3)-twin-vertex, for some i,
0 ≤ i ≤ 2.

Observe that if an edge is added between the two vertices of degree 2 in
K∗

3,3, then we obtain K3,3 which has Grundy number 2. By Proposition 3.3, in
all the remaining cases, the cubic graphs which have Grundy number at most
3 are different from complete bipartite graphs. Therefore, they have Grundy
number 3.

Corollary 3.4. A cubic graph G does not contain any induced minimal subcubic
4-atom if and only if every vertex is an (i, 3)-twin-vertex, for some i, 0 ≤ i ≤ 2.

Corollary 3.5. Let G be a cubic graph. If G is without induced C4, then
Γ(G) = 4.

Proof. As every graph G with Γ(G) < 4 is composed of copies of K2,3 or K∗

3,3,
the graph G always contains a square if Γ(G) < 4.

For a fixed integer t, the largest (t+1)-atom has order 2t. Thus, for a graph

G of maximum degree t, there exists an O(n2t)-time algorithm to determine if
Γ(G) < t+1 (which verifies if the graph contains an induced (t+1)-atom). For
a cubic graph, we obtain an O(n8)-time algorithm, whereas our characterization
yields a linear-time algorithm.

Observation 3.6. Let G be a cubic graph of order n. There exists an O(n)-time
algorithm1 to determine the Grundy number of G.

Proof. Suppose we have a cubic graph G with its adjacency list. Verifying if G
is K3,3 can be done in constant time. We suppose now that G is not K3,3. For
each vertex v, the algorithm verifies that v is an (i, 3)-twin-vertex, for some i,
0 ≤ i ≤ 2. If the condition is true for all vertices, then Γ(G) = 3, else Γ(G) = 4.
To determine if a vertex v is a (0, 3)-twin-vertex, it suffices to verify that there
is a common vertex other than v in the adjacency lists of the neighbors of v.
To determine if a vertex v is a (1, 3)-twin-vertex, it suffices to verify that there
are two neighbors of v which have the same adjacency list. To determine if a
vertex v is a (2, 3)-twin-vertex, it suffices to verify that the neighborhood of v is
independent and that every neighbor is a (1, 3)-twin-vertex. Hence, checking if
a vertex is an (i, 3)-twin vertex can be done in constant time, so the algorithms
runs in linear time.

1Independently of our work, Yahiaoui et al. [14] have established a different algorithm to
determine if the Grundy number of a cubic graph is 4.
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Figure 3: Possible configurations in a cubic graph (bold vertices: Uncolored
vertices, vertices with number i: Vertices of color i).
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Proposition 3.7. If G is a connected cubic graph and G 6= K3,3, then ∂Γ(G) =
4.

Proof. Let G be a cubic connected graph. Note that if Γ(G) = 4 then ∂Γ(G) = 4.
Every graph G with Γ(G) < 4 is composed of copies of K2,3 or K∗

3,3. If G
contains more than two copies (so it is different from K3,3), then a vertex can
be colored 4 in the first copy and a vertex can be colored 3 in the second copy.
Hence, ∂Γ(G) = 4.

Only K3,3 and three other cubic graphs have b-chromatic number at most 3
[10]. Thus, our result is coherent with the results on the b-chromatic number.
Shi et al. [13] proved that there exists a smallest integer Nr such that every
r-regular graph G with more than Nr vertices has ∂Γ(G) = r+1. Observe that
we have N2 = 4 and N3 = 6. It is an open question to determine Nr for r ≥ 4.
However, using results on b-chromatic number [3], we have Nr ≤ 2r3 − r2 + r.

4 Properties on the Grundy number of r-regular

graphs

Definition 4.1. Let r ≥ 2 be an integer. We define recursively the family of
graphs G ∗

r as follows:

1. Kr−k,k+2 ∈ G ∗

r , for any k, 0 ≤ k ≤ (r − 2)/2;

2. the disjoint union of two elements of G ∗

r is in G ∗

r ;

3. if G is a graph in G ∗

r , then the graph H obtained from G by adding an
edge between two vertices of degree at most r − 1 is also in G ∗

r ;

4. if G is a graph in G ∗

r , then the graph H obtained from G by adding a new
vertex adjacent to r vertices of degree at most r − 1 is in G ∗

r .

The family Gr is the subfamily of r-regular graphs in G ∗

r .

Proposition 4.2. Let G be an r-regular graph. If G ∈ Gr, then Γ(G) < r + 1.

Proof. By Ir−k and Ik+2, with |Ir−k| = r − k and |Ik+2| = k + 2, we denote
the two sets of vertices in the bipartition of an induced subgraph Kr−k,k+2 in
G. Firstly, suppose there exists a vertex u in an induced subgraph Kr−k,k+2

colored r+1. Without loss of generality, suppose u is in Ir−k. The r neighbors
of u should have colors from 1 to r. Among the neighbors of u, k+ 2 neighbors
are in Ik+2. Let v be the neighbor of u in Ik+2 with the largest color in Ik+2.
The vertex v has color at least k + 2. Hence, there exists an integer s ≥ 0 such
that the color of v is k + 2 + s. Note that there are s vertices in N(u) \ Ik+2

which have colors at most k + 2 + s. The colors of the s vertices are the only
one possible remaining colors at most k + 2 + s in Ir−k. Hence, as there are k
vertices in N(v) \ Ir−k, the neighbors of v can only have at most k+ s different
colors at most k+ 2+ s. Therefore, we have a contradiction and u cannot have
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Ir1 Ir2

Ir3

Ir2 Ir1

Ir3

Ir1 Ir2

Ir3

Ir2 Ir1

Ir3

Figure 4: The Graph Gr,4,i, i ≥ 2, r = r1 + r2 + r3.

color r + 1. Secondly, suppose there exists a vertex u added by Point 4 which
has color r + 1. As a neighbor of u in an induced Kr−k,k+2 should be colored
r, the argument is completely similar to the previous one.

Corollary 4.3. Let G be a 4-regular graph. If G ∈ G4, then Γ(G) < 5.

The reader can believe that the family of 4-regular graphs with Γ(G) < 5
contains only the family G4. However, there exist graphs with Grundy number r
which are not inside this family. For example, the power graph (the graph where
every pair of vertices at pairwise distance 2 become adjacent) of the 7-cycle C2

7

satisfies Γ(C2
7 ) < 5 and is not in G4.

The next proposition shows that unlike the b-chromatic number, r-regular
graphs of order arbitrarily large with Grundy number k can be constructed for
any r and any k, 3 ≤ k ≤ r + 1.

Proposition 4.4. Let r ≥ 4 and 3 ≤ k ≤ r + 1 be integers. There exists
an infinite family H of connected r-regular graphs such that for all G in H ,
Γ(G) = k.

Proof. Let i ≥ 2 be a positive integer and r1, . . ., rk−1 be a sequence of positive
integers such that r = r1 + . . . + rk−1. We construct a graph Gr,k,i as follows:
Take 2i copies of Kr1,...,rk−1

. Let Hj−1 be the copy number j of Kr1,...,rk−1
and

Hj,rl be the independent rl-set in Hj . If j ≡ 1 (mod 2), do the graph join of
Hj (mod 2i),r1 and Hj−1 (mod 2i),r1 and for an integer l, 1 < l < k, do the graph
join of Hj (mod 2i),rl and Hj+1 (mod 2i),rl . The r-regular graph obtained is the
graph Gr,k,i. Figure 4 gives Gr,k,i, for k = 4 and i ≥ 2. Note that Hj,ri is an
independent module. Thus, every vertex is a (0, k)-twin-vertex. By Proposition
2.6, Γ(Gr,k,i) ≤ k.
For an integer l, 1 < l < k, color one vertex l−1 in H1,rl and H2,rl . Afterwards,
color one vertex k − 1 in H1,r1 and one vertex k in H2,r1 . The given coloring
is a Grundy partial k-coloring of Gr,k,i for i ≥ 2. Therefore, Γ(Gr,k,i) = k, for
i ≥ 2.
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5 Grundy number of 4-regular graphs without in-

duced C4

The following lemmas will be useful to prove the second main theorem of this
paper: The family of 4-regular graphs without induced C4 contains only graphs
with Grundy number 5.

Lemma 5.1. Let G be a 4-regular graph without induced C4. If G contains (an
induced) K4 then Γ(G) = 5.

Proof. Note that if G = K5, we have Γ(G) = 5. If G is not K5 then every
pair of neighbors of vertices of K4 cannot be adjacent (G would contain a C4).
Giving the color 1 to each neighbor of the vertices of K4 and colors 2, 3, 4, 5 to
the vertices of K4, we obtain a Grundy partial 5-coloring of G.

Lemma 5.2. Let G be a 4-regular graph without induced C4 and let W be the
graph from Figure 5. If G contains an induced W then Γ(G) = 5.

Proof. The names of the vertices of W come from Figure 5. Depending on the
different cases that could happen, Grundy partial 5-colorings of G will be given
using their references on Figure 5. Let D1 be the set of vertices at distance 1
from vertices of W in G−W . Suppose that two vertices of W have a common
neighbor in D1. This two vertices could only be u4 and u5 or u3 and u5 (or u1

and u4, by symmetry). In the case that u4 and u5 have a common neighbor
in D1, colors will be given to neighbors of u3 in D1, depending if they are
adjacent (Figure 5.1.a) or not (Figure 5.1.b). In the case that u3 and u5 have
a common neighbor w in D1, w can be adjacent with a neighbor of u3 in D1

(Figure 5.2.a) or not (Figure 5.2.b). Suppose now that no vertices in W have
a common neighbor in D1. Let w1 and w2 be the neighbors of u3 in D1. We
first consider that w1 and w2 are adjacent (Figure 5.3.a). Secondly, we consider
that w1 and w2 are not adjacent and that u5, u3 and w1 are in an induced
C5 (Figure 5.3.b). Finally, we consider that the previous configurations are
impossible (Figure 5.3.c).

Proposition 5.3. Let G be a 4-regular graph without induced C4. If G contains
C3 then Γ(G) = 5.

Proof. Depending on the different cases that could happen, a reference to the
Grundy partial 5-coloring of G in Figure 6 will be given. Let Mi, i = 2 or 3,
be the graph of order 2 + i containing two adjacent vertices u1 and u2 which
have exactly i common neighbors, {v1, . . . , vi}, that form an independent set.
Let D1 be the set of vertices at distance 1 from an induced Mi in G−Mi, for
2 ≤ i ≤ 3.

Case 1: Firstly, assume that G contains an induced M3 and a vertex of M3 has
its two neighbors in D1 adjacent (Figure 6.1.a). Secondly, assume that G
contains an induced M2 and a vertex of M2 has its two neighbors in D1

11
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Figure 5: Possible configurations when G contains an induced W .

adjacent (Figure 6.1.b). Note that these Grundy partial 5-colorings use
the fact that G cannot contain a K4 by Lemma 5.1.

Case 2: Assume that G contains an induced M3 excluding the previous con-
figuration. There are three cases: u1, v2 and v3 are in an induced C5

(Figure 6.2.a), u1, v2 and v3 are in an induced C6 and not in an induced
C5 (Figure 6.2.b) and u1, v2 and v3 are neither in an induced C5 nor C6

(Figure 6.2.c).

Case 3: Suppose that G contains an induced M2 excluding the previous con-
figurations. Firstly, we suppose that u1, v1 and v2 are in an induced C5

(Figure 6.3.a). Secondly, we suppose that u1, v1 are in an induced C5

excluding the previous case (Figure 6.3.b). Thirdly, we suppose that u1,
v1 and v2 are in an induced C6 and not in an induced C5 (Figure 6.3.c)
and finally neither in an induced C5 nor C6 (Figure 6.3.d).

Suppose that G contains a 3-cycle C and no induced M2. Let u1, u2 and
u3 be the vertices of C. Let w1 and w2 be the neighbors of u1 outside C,
let w′

1 and w′

2 be the neighbors of u2 outside C and let w′′

1 and w′′

2 be the
neighbors of u3 outside C.

Case 4: Firstly, suppose that u1, u2, w1 and w′

1 are in a 5-cycle and a neighbor
of u1, say w1, has a common neighbor with w′

1 (Figure 6.4.a). Secondly,
excluding the previous configuration, suppose that u1, u2, w1 and w′

1 are in
a 5-cycle; w′′

1 , v1, u1 and w1 are in another 5-cycle and w1 is in a triangle
(Figure 6.4.b). We suppose that w1 is not in a triangle (Figure 6.4.c).
Thirdly, excluding the previous configurations, we obtain a Grundy partial
5-coloring if two vertices of C are in a 5-cycle (Figure 6.4.d). Fourthly, we
suppose that two vertices of C cannot be in a 5-cycle (Figure 6.4.e).

In the following two lemmas, we consider a graph G of girth g = 5 and
possibly containing an induced Petersen graph. Let u1, u2, u3, u4 and u5 be

12
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Figure 6: Possible configurations when G an induced C3.

the vertices in an induced C5 (or in the the outer cycle of a Petersen graph, if
any). Let v1, v

′

1, v2, v
′

2, v3, v
′

3, v4, v
′

4, v5 and v′5 be the remaining neighbors of
respectively u1, u2, u3, u4 and u5 (all different as g = 5).

Lemma 5.4. Let G be a 4-regular graph with girth g = 5. If G contains the
Petersen graph as induced subgraph then Γ(G) = 5.

Proof. Suppose that v1, v2, v3, v4 and v5 form an induced C5 (the inner cycle of
the Petersen graph). Let u′

2 and u′

5 be the remaining neighbors of respectively
v2 and v5. Observe that v′1 can be adjacent with no more than three vertices
among v′3, v

′

4, u
′

2 and u′

5. Firstly, suppose that v′1 is not adjacent with v′3 (or v′4,
without loss of generality since the configuration is symmetric). The left part
of Figure 7 illustrates a Grundy partial 5-coloring of the graph G. Secondly,
assume that v′1 is not adjacent with u′

5 (or u′

2, without loss of generality). The
right part of Figure 7 illustrates a Grundy partial 5-coloring of the graph G.

In a graph G, let a neighbor-connected Cn be an n-cycle C such that the set

13



2

3

3

4

5

2

1

21

1

1

1
u3

u2

u4

u5

u1

v3 v4

v2 v5

v1

v′1

u′

2 u′

5

v′3 v′4

v′5

1

2

2

4

5

3

2

3

1

1

1

1

u3

u2

u4

u5

u1

v3 v4

v2 v5

v1

v′1

u′

2 u′

5

v′3 v′4

v′5

Figure 7: Two Grundy partial 5-colorings of a subgraph containing an induced
Petersen graph.

of vertices of G at distance 1 from C is not independent.

Lemma 5.5. Let G be a 4-regular graph with girth g = 5. If G contains a
neighbor-connected C5 as induced subgraph, then Γ(G) = 5.

Proof. Let C be a neighbor-connected C5 in G. By Lemma 5.4 we can suppose
that the neighbors of the vertices of C do not form an induced C5 (otherwise
a Petersen would be an induced subgraph). Hence, we can assume that the
neighbors of the vertices of C form a subgraph of a C10. If there are two edges
between the neighbors of the vertices of C, then Figure 8 illustrates Grundy
partial 5-colorings of the graph G. Suppose that two neighbors are adjacent,
say v1 and v′3 and the graph G does not contain the previous configuration.
Note that v′3 can be adjacent with v′1 and v′5. Let w1, w2 and w3 be the three
neighbors of v2 different from u2. We suppose that w1 can be possibly adjacent
with v′3 and w2 can be possibly adjacent with v′1. Figure 9 illustrates a Grundy
partial 5-coloring of G in this case. In this figure, the vertex w3 can be possibly
adjacent with v′5 or v4, but in this case we can switch the color 1 from v′5 to v5
or from v′4 to v4.

Proposition 5.6. If G is a 4-regular graph with girth g = 5, then Γ(G) = 5.

Proof. Let C be a 5-cycle in G. Assume that two neighbors of consecutive
vertices of C, for example v1 and v5, have a common neighbor w1. The left part
of Figure 10 illustrates a Grundy partial 5-coloring of the graph G. In this figure
the vertex w1 can be possibly adjacent with v′2, v

′

3 or v4, but in this case we can
switch the color 1 from v′2 to v2, from v′3 to v3 or from v4 to v′4. Hence, we can
suppose that no neighbors of consecutive vertices of C are adjacent. Among the
neighbors of v1, there exists one vertex w1 not adjacent with both v4 and v′4
(otherwise G would contain a C4). Among the neighbor of v′5, there exists one
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Figure 9: A Grundy partial 5-coloring of a subgraph containing an induced
neighbor-connected C5.

vertex, say w2, not adjacent with w1. The right part of Figure 10 illustrates a
Grundy partial 5-coloring of the graph G. In this figure the vertex w1 can be
possibly adjacent with v4 and the vertex w2 can be possibly adjacent with v′2
or v4, but in these cases we can switch the color 1 from v′2 to v2 or from v4 to
v′4.

In the following lemma and proposition, we consider a graph G of girth
g = 6. Let u1, u2, u3, u4, u5 and u6 be the vertices in an induced C6. Let
v1, v′1, v2, v′2, v3, v′3, v4, v′4, v5, v′5, v6 and v′6 be the remaining neighbors of
respectively u1, u2, u3, u4, u5 and u6 (all different as g = 6).

Lemma 5.7. If G is a 4-regular graph with girth g = 6 which contains a
neighbor-connected C6 as induced subgraph, then Γ(G) = 5.

Proof. Firstly, suppose that there are two edges which connect the neighbors
in the same way than in the left part of Figure 11. Let w1 be a neighbor of v′1
not adjacent with v4. The graph G admits a Grundy partial 5-coloring as the
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Figure 11: Two Grundy partial 5-colorings of a subgraph containing an induced
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left part of Figure 11 illustrates it. Secondly, suppose that there is one edge (or
more) which connect the neighbors without the configuration from the previous
case. Let w1 be a neighbor of v3 not adjacent with v2 and let w2 be a neighbor
of v′1 not adjacent with w1. The graph G admits a Grundy partial 5-coloring as
the right part of Figure 11 illustrates it.

Proposition 5.8. If G is a 4-regular graph with girth g = 6, then Γ(G) = 5.

Proof. By Lemma 5.7, assume that no neighbors of the vertices of the induced
C6 are adjacent. Firstly, suppose that there are two neighbors at distance 4
along the cycle C6, for example v′1 and v5, which have a common neighbor w1.
Let w2 be a neighbor of v3 not adjacent with w1. G admits a Grundy partial 5-
coloring as the left part of Figure 12 illustrates it. Secondly, suppose that there
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Figure 12: Two Grundy partial 5-colorings of a subgraph containing an induced
C6.

are no two neighbors at distance 4 along the cycle C6 which have a common
neighbor. Let w1 be a neighbor of v′1 not adjacent with a neighbor of v5 or a
neighbor of v3, let w2 be a neighbor of v3 not adjacent with a neighbor of v5,
and let w3 be a neighbor of v5. The graph G admits a Grundy partial 5-coloring
as the right part of Figure 12 illustrates it.

Proposition 5.9. If G is a 4-regular graph with girth g ≥ 7, then Γ(G) = 5.

Proof. Suppose that G contains a 7-cycle. We denote the 5-atom which is a tree
by T5 (the binomial tree with maximum degree 4). It can be easily verified that
G contains T5 where two leaves are merged (which is a 5-atom). Moreover, if G
does not contain a 7-cycle, then it contains T5 as induced subgraph.

Theorem 3. Let G be a 4-regular graph. If G does not contain an induced C4,
then Γ(G) = 5.

Proof. Suppose that G does not contain an induced C4. Using Proposition 5.9
for the case g ≥ 7, Propositions 5.6 and 5.8 for the case g = 5, 6, and Proposi-
tion 5.3 when G contains a C3 yields the desired result.

By Proposition 3.1, Corollary 3.5 and Theorem 3, any r-regular graph with
r ≤ 4 and without induced C4 has Grundy number r+1. Therefore, it is natural
to propose Conjecture 1.
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