On the family of r-regular graphs with Grundy number $r + 1$

Nicolas Gastineau, Hamamache Kheddouci, Olivier Togni

To cite this version:
On the family of r-regular graphs with Grundy number $r + 1$

Nicolas Gastineau1,2, Hamamache Kheddouci2 and Olivier Togni1

1LE2I, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon cedex, France
2Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, France

May 19, 2014

Abstract

The Grundy number of a graph G, denoted by $\Gamma(G)$, is the largest k such that there exists a partition of $V(G)$, into k independent sets V_1, \ldots, V_k and every vertex of V_i is adjacent to at least one vertex in V_j, for every $j < i$. The objects which are studied in this article are families of r-regular graphs such that $\Gamma(G) = r + 1$. Using the notion of independent module, a characterization of this family is given for $r = 3$. Moreover, we determine classes of graphs in this family, in particular the class of r-regular graphs without induced C_4, for $r \leq 4$. Furthermore, our propositions imply results on partial Grundy number.

1 Introduction

We consider only undirected connected graphs in this paper. Given a graph $G = (V, E)$, a proper k-coloring of G is a surjective mapping $c : V \to \{1, \ldots, k\}$ such that $c(u) \neq c(v)$ for any $uv \in E$; the color class V_i is the set $\{u \in V | c(u) = i\}$ and a vertex v has color i if $v \in V_i$. A vertex v of color i is a Grundy vertex if v is adjacent to at least one vertex colored j, for every $j < i$. A Grundy k-coloring is a proper k-coloring such that every vertex is a Grundy vertex. A partial Grundy k-coloring is a proper k-coloring such that every color class contains a Grundy vertex. The Grundy number (partial Grundy number, respectively) of G denoted by $\Gamma(G)$ ($\partial\Gamma(G)$, respectively) is the largest k such that G admits a Grundy k-coloring (partial Grundy k-coloring, respectively).

Let $N(v) = \{u \in V(G) | uv \in E(G)\}$ be the neighborhood of v. A set X of vertices is an independent module if X is an independent set and all vertices

*Author partially supported by the Burgundy Council
in X have the same neighborhood. The vertices in an independent module of size 2 are called \textit{false twins}. Let P_n, C_n, K_n and I_n be respectively, the path, cycle complete and empty graph of order n. The concepts of Grundy k-coloring and domination are connected. In a Grundy coloring, V_1 is a dominating set. Given a graph G and an ordering ϕ on $V(G)$ with $\phi = v_1, \ldots, v_n$, the greedy algorithm assigns to v_i the minimum color that was not assigned in the set $\{v_1, \ldots, v_{i-1}\} \cap N(v_i)$. Let $\Gamma_{\phi}(G)$ be the number of colors used by the greedy algorithm with the ordering ϕ on G. We obtain the following result [7]:

$$\Gamma(G) = \max_{\phi \in S_n} \Gamma_{\phi}(G).$$

The Grundy coloring is a well studied problem. Zaker [15] proved that determining the Grundy number of a given graph, even for complements of bipartite graphs, is an NP-complete problem. However, for a fixed t, determining if a given graph has Grundy number at least t is decidable in polynomial time. This result follows from the existence of a finite list of graphs, called t-atoms, such that any graph with Grundy number at least t contains a t-atom as an induced subgraph. It has been proven that there exists a Nordhaus-Gaddum type inequality for the Grundy number [8, 15], that there exist upper bounds for d-degenerate, planar and outerplanar graphs [2, 5], and that there exist connections between the products of graphs and the Grundy number [6, 1, 4].

Recently, Havet and Sampaio [9] have proven that the dual of Grundy k-coloring problem is in FPT by finding an algorithm in $O(2^k 2^{k^2} |E| + 2^{2k} k^{3k+3/2})$ time. Note that a Grundy k-coloring is a partial Grundy k-coloring, hence $\Gamma(G) \leq \partial \Gamma(G)$. Given a graph G and a positive integer k, the problem of determining if a partial Grundy k-coloring exists, even for chordal graphs, is NP-complete but there exists a polynomial algorithm for trees [13].

Another coloring parameter with domination constraints on the colors is the b-chromatic number, denoted by $\varphi(G)$, which is the largest k such that there exists a proper k-coloring and for every color class V_i, there exists a vertex adjacent to at least one vertex colored j, for every j, with $j \neq i$. Note that a b-coloring is a partial Grundy k-coloring, hence $\varphi(G) \leq \partial \Gamma(G)$. The b-chromatic number of regular graphs has been investigated in a series of papers ([11, 10, 3, 12]). Our aim is to establish similar results for the Grundy coloring. We present two main results: A characterization of the Grundy number of every cubic graph and the following theorem: For $r \leq 4$, every r-regular graphs without induced C_4 has Grundy number $r + 1$. We conjecture that this assertion is also true for $r > 4$.

Conjecture 1. For any integer $r \geq 1$, every r-regular graph without induced C_4 has Grundy number $r + 1$.

Section 2 gives characterizations of some classes of graphs with Grundy number at most k, $2 \leq k \leq \Delta(G)$, using the notion of independent module. Section 3 contains the first main theorem: A description of the cubic graphs with Grundy number at most 3 that also allows us to prove that every cubic graph except
$K_{3,3}$ has partial Grundy number 4. This theorem implies the existence of a linear algorithm to determine the Grundy number of cubic graphs. In Section 4, we present examples of infinite families of regular graphs with Grundy number exactly or at most k, $3 \leq k \leq r$. To determine these families we use recursive definitions. The last section contains the second main theorem of this article: 4-regular graphs without induced C_4 have Grundy number 5.

2 General results

The reader has to be aware of the resemblance of name between the following notion and that of partial Grundy k-coloring.

Definition 2.1. Let G be a graph. A Grundy partial k-coloring is a Grundy k-coloring of a subset S of $V(G)$.

Observation 2.2 ([1],[6]). If G admits a Grundy partial k-coloring, then $\Gamma(G) \geq k$.

This property has an important consequence: For a graph G, with $\Gamma(G) \geq t$ and any Grundy partial t-coloring, there exist smallest subgraphs H of G such that $\Gamma(H) = t$. The family of t-atoms corresponds to these subgraphs. This concept was introduced by Zaker [15]. The family of t-atoms is finite and the presence of a t-atom can be determined in polynomial time for a fixed t. The following definition is slightly different from Zaker’s one, insisting more on the construction of every t-atom.

Definition 2.3 ([15]). For any integer t, we define the family of t-atoms, denoted by A_t, $t = 1, \ldots$ by induction. Let the family A_1 contain only K_1. A graph G is in A_{t+1} if there exists a graph G' in A_t and an integer m, $m \leq |V(G')|$, such that G is composed of G' and an independent set I_m of order m, adding edges between G' and I_m such that every vertex in G' is connected to at least one vertex in I_m. Moreover a t-atom A is minimal, if there is no t-atom included in A other than itself.

Theorem 1 ([15]). For a given graph G, $\Gamma(G) \geq t$ if and only if G contains an induced minimal t-atom.

We now present conditions related to the presence of modules that allows us to upper-bound the Grundy number.

Proposition 2.4 ([1]). Let G be a graph and X be an independent module. In every Grundy coloring of G, the vertices in X must have the same color.

Definition 2.5. Let G be an r-regular graph. A vertex v is a $(0, \ell)$-twin-vertex if there exists an independent module of cardinality $r + 2 - \ell$ that contains v.

Proposition 2.6. Let G be an r-regular graph. The color of an $(0, \ell)$-twin-vertex is at most ℓ in every Grundy coloring of G.
Proof. Let \(v \) be a \((0, \ell)\)-twin-vertex colored \(\ell + 1 \) in \(G \). By Definition, \(v \) is in an independent module \(X \) of cardinality \(r + 2 - \ell \) and by Proposition 2.4, every other vertex of \(X \) should be colored \(\ell + 1 \). Let \(u \) be a neighbor of \(v \). There are at most \(\ell - 2 \) neighbors of \(u \) in \(V(G - X) \). Therefore, \(u \) cannot be colored \(\ell \). \(\square \\

Definition 2.7. A vertex \(v \) of a graph \(G \) is a \((1, \ell)\)-twin-vertex if \(N(v) \) can be partitioned into at least \(\ell - 1 \) independent modules.

Proposition 2.8. Let \(G \) be a graph. The color of an \((1, \ell)\)-twin-vertex is at most \(\ell \) in every Grundy coloring of \(G \).

*Proof. By Proposition 2.4, vertices of the neighborhood of \(v \) can only have \(\ell - 1 \) different colors. Therefore, the color of \(v \) is at most \(\ell \). \(\square \\

Definition 2.9. A vertex \(v \) of a graph \(G \) is a \((2, \ell)\)-twin-vertex if \(N(v) \) is independent and every vertex in \(N(v) \) is a \((1, \ell)\)-twin-vertex.

Proposition 2.10. Let \(G \) be a graph. The color of an \((2, \ell)\)-twin-vertex is at most \(\ell \) in every Grundy coloring of \(G \).

*Proof. Let \(v \) be a \((2, \ell)\)-twin-vertex in \(G \). Every vertex in \(N(v) \) is a \((1, \ell)\)-twin-vertex. If a vertex in \(N(v) \) is colored \(\ell \), then \(v \) could only have a color at most \(\ell - 1 \). If the vertices in the neighborhood of \(v \) have colors at most \(\ell - 1 \), then in every Grundy coloring of \(G \), \(v \) has a color at most \(\ell \). \(\square \\

Corollary 2.11. Let \(G \) be a graph. If every vertex is a \((1, \ell)\)-twin-vertex or a \((2, \ell)\)-twin-vertex, then \(\Gamma(G) \leq \ell \).

Corollary 2.12. Let \(G \) be a regular graph. If every vertex is an \((i, \ell)\)-twin-vertex, for some \(i \), \(0 \leq i \leq 2 \), then \(\Gamma(G) \leq \ell \).

Proposition 2.13 ([1],[15]). Let \(G \) be a graph. We have \(\Gamma(G) \leq 2 \) if and only if \(G = K_{n,m} \) for some integers \(n > 0 \) and \(m > 0 \).

3 Grundy numbers of cubic graphs

In the following sections, the figures describe Grundy partial \(k \)-colorings. By a dashed edge we denote a possible edge. The vertices not connected by edges in the figures cannot be adjacent as it would contradict the hypothesis.

Proposition 3.1 ([6]). Let \(G \) be a connected 2-regular graph. \(\partial \Gamma(G) = \Gamma(G) = 2 \) if and only if \(G = C_4 \).

The following definition gives a construction of the cubic graphs in which every vertex is an \((i,3)\)-twin-vertex, for some \(i \), \(0 \leq i \leq 2 \). Figure 2 gives the list of every graph of order at most 16 in this family.

Definition 3.2. Let \(K_{2,3} \) and \(K^*_3 \) be the graphs from Figure 1. We define recursively the family of graphs \(\mathcal{F}^*_3 \) as follows:
Figure 1: The graphs $K_{2,3}$ (on the left) and $K^*_{3,3}$ (on the right).

Figure 2: The cubic graphs G such that $|V(G)| < 18$ and $\Gamma(G) < 4$.

1. $K_{2,3} \in \mathcal{F}_3$ and $K^*_{3,3} \in \mathcal{F}_3^*$;
2. the disjoint union of two elements of \mathcal{F}_3^* is in \mathcal{F}_3^*;
3. if G is a graph in \mathcal{F}_3^*, then the graph H obtained from G by adding an edge between two vertices of degree at most 2 is also in \mathcal{F}_3^*;
4. if G is a graph in \mathcal{F}_3^*, then the graph H obtained from G by adding a new vertex adjacent to three vertices of degree at most 2 is in \mathcal{F}_3^*.

The family \mathcal{F}_3 is the subfamily of cubic graphs in \mathcal{F}_3^*.

Proposition 3.3. Let G be a cubic graph. Every vertex of $V(G)$ is an $(i, 3)$-twin vertex, for some i, $0 \leq i \leq 2$, if and only if $G \in \mathcal{F}_3$.

Proof. Every graph G in \mathcal{F}_3 has three kind of vertices: $(0, 3)$-twin-vertices (called also false twins), vertices where an edge is added by Point 3 and vertices
added by Point 4. Vertices where an edge is added by Point 3 are (1,3)-twin-vertex and vice versa. Vertices added by Point 4 are (2,3)-twin-vertices and vice versa.

Theorem 2. Let G be a cubic graph. $\Gamma(G) \leq 3$ if and only if every vertex is an $(i,3)$-twin-vertex, for some i, $0 \leq i \leq 2$.

Proof. By Corollary 2.12, the "if" part is proven. Assume that G contains a vertex v which is not an $(i,3)$-twin-vertex, for some i, $0 \leq i \leq 2$ and $\Gamma(G) < 4$. In every configuration we want to either find a Grundy partial 4-coloring, contradicting $\Gamma(G) < 4$ or proving that v is an $(i,3)$-twin-vertex, for some i, with $0 \leq i \leq 2$. We will refer to a given Grundy partial 4-coloring by its reference in Figure 3. We consider three cases: v or a neighbor of v is in a C_3, v is in an induced C_4 and v or a neighbor of v are not in a C_3 and v is not in an induced C_4. Let C be an induced cycle of order 3 or 4 which contains v or a neighbor of v and let $D_1 = \{x \in V(G) | d(x, C) = 1\}$, where $d(x, C)$ is the distance from x to C in the graph G. To simplify notation, D_1 will also denote the subgraph of G induced by D_1.

Case 1: Assume that v or a neighbor of v is in C and $C = C_3$. If $|D_1| = 1$, then $G = K_4$ and $\Gamma(K_4) = 4$. If $|D_1| = 2$ and $D_1 = P_2$, then v is a (0,3)-twin-vertex or a (1,3)-twin-vertex. If $D_1 = I_2$ then Figure 3.1.a yields a Grundy partial 4-coloring of G. If $|D_1| = 3$, then we have four subcases: D_1 is C_3 or P_3 (Figure 3.1.b), $P_2 \cup I_1$ (Figure 3.1.c) or I_3 (Figure 3.1.d). In every case G admits a Grundy partial 4-coloring.

Case 2: Assume that v is in C and $C = C_4$. Note that for two non adjacent vertices of C who have a common neighbor in D_1, the vertex v is a (0,3)-twin-vertex or a (1,3)-twin-vertex. Hence, we will not consider these cases. If $|D_1| = 2$, then $D_1 = P_2$ or $D_1 = I_2$ (Figure 3.2.a) and in both cases, G admits a Grundy partial 4-coloring. If $|D_1| = 3$, Figure 3.2.b yields a Grundy partial 4-coloring of G. In the case $|D_1| = 4$, we first assume that two adjacent vertices of C have their neighbors in D_1 adjacent (Figure 3.2.c). Afterwards, we suppose that the previous case does not happen and that two non adjacent vertices of C have their neighbors in D_1 adjacent (Figure 3.2.d). In the case $D_1 = I_4$, we first suppose that two vertices of D_1 which have two adjacent vertices of C as neighbor, are not adjacent to two common vertices (Figure 3.2.e) and after consider they are (Figure 3.2.f).

Case 3: Assume that v or a neighbor of v is not in a C_3 and v is not in an induced C_4. Firstly, suppose that a neighbor u of v is in an induced C_4. Using the coloring from the previous case, G admits a Grundy partial 4-coloring in every cases except in the case where two neighbors of v in the C_4 have a common neighbor outside the C_4. However, this case cannot happen for every neighbor of v, otherwise v would be a (2,3)-twin-vertex. Assume that u is the neighbor of v not in the previous configuration. If u is in an induced C_4, then using the coloring from the previous case, G
admits a Grundy partial 4-coloring. If \(u \) is not in an induced \(C_4 \), then Figure 3.3.a yields a Grundy partial 4-coloring of \(G \). In this figure, the color 2 is given to a neighbor of \(u \) not adjacent to both \(f_1 \) and \(f_2 \). Secondly, suppose that \(v \) is in an induced \(C_5 \). Figure 3.3.b yields a Grundy partial 4-coloring of \(G \). Thirdly, if \(v \) is not in an induced \(C_5 \), then Figure 3.3.c yields a Grundy partial 4-coloring of \(G \).

Therefore, if \(\Gamma(G) \leq 3 \), then every vertex is an \((i,3)\)-twin-vertex, for some \(i, 0 \leq i \leq 2 \).

Observe that if an edge is added between the two vertices of degree 2 in \(K^*_3,3 \), then we obtain \(K_3,3 \) which has Grundy number 2. By Proposition 3.3, in all the remaining cases, the cubic graphs which have Grundy number at most 3 are different from complete bipartite graphs. Therefore, they have Grundy number 3.

Corollary 3.4. A cubic graph \(G \) does not contain any induced minimal subcubic 4-atom if and only if every vertex is an \((i,3)\)-twin-vertex, for some \(i, 0 \leq i \leq 2 \).

Corollary 3.5. Let \(G \) be a cubic graph. If \(G \) is without induced \(C_4 \), then \(\Gamma(G) = 4 \).

Proof. As every graph \(G \) with \(\Gamma(G) < 4 \) is composed of copies of \(K_{2,3} \) or \(K^*_3,3 \), the graph \(G \) always contains a square if \(\Gamma(G) < 4 \).

For a fixed integer \(t \), the largest \((t+1)\)-atom has order \(2^t \). Thus, for a graph \(G \) of maximum degree \(t \), there exists an \(O(n^2) \)-time algorithm to determine if \(\Gamma(G) < t+1 \) (which verifies if the graph contains an induced \((t+1)\)-atom). For a cubic graph, we obtain an \(O(n^8) \)-time algorithm, whereas our characterization yields a linear-time algorithm.

Observation 3.6. Let \(G \) be a cubic graph of order \(n \). There exists an \(O(n) \)-time algorithm\(^1\) to determine the Grundy number of \(G \).

Proof. Suppose we have a cubic graph \(G \) with its adjacency list. Verifying if \(G \) is \(K^*_3,3 \) can be done in constant time. We suppose now that \(G \) is not \(K^*_3,3 \). For each vertex \(v \), the algorithm verifies that \(v \) is an \((i,3)\)-twin-vertex, for some \(i, 0 \leq i \leq 2 \). If the condition is true for all vertices, then \(\Gamma(G) = 3 \), else \(\Gamma(G) = 4 \). To determine if a vertex \(v \) is a \((0,3)\)-twin-vertex, it suffices to verify that there is a common vertex other than \(v \) in the adjacency lists of the neighbors of \(v \). To determine if a vertex \(v \) is a \((1,3)\)-twin-vertex, it suffices to verify that there are two neighbors of \(v \) which have the same adjacency list. To determine if a vertex \(v \) is a \((2,3)\)-twin-vertex, it suffices to verify that the neighborhood of \(v \) is independent and that every neighbor is a \((1,3)\)-twin-vertex. Hence, checking if a vertex is an \((i,3)\)-twin vertex can be done in constant time, so the algorithms runs in linear time.\(^{\text{\textdagger}}\)

\(^{\text{\textdagger}}\)Independently of our work, Yahiaoui et al. [14] have established a different algorithm to determine if the Grundy number of a cubic graph is 4.
Figure 3: Possible configurations in a cubic graph (bold vertices: Uncolored vertices, vertices with number i: Vertices of color i).
Proposition 3.7. If G is a connected cubic graph and $G \neq K_{3,3}$, then $\partial \Gamma(G) = 4$.

Proof. Let G be a cubic connected graph. Note that if $\Gamma(G) = 4$ then $\partial \Gamma(G) = 4$. Every graph G with $\Gamma(G) < 4$ is composed of copies of $K_{2,3}$ or $K_{3,3}$. If G contains more than two copies (so it is different from $K_{3,3}$), then a vertex can be colored 4 in the first copy and a vertex can be colored 3 in the second copy. Hence, $\partial \Gamma(G) = 4$.

Only $K_{3,3}$ and three other cubic graphs have b-chromatic number at most 3 [10]. Thus, our result is coherent with the results on the b-chromatic number. Shi et al. [13] proved that there exists a smallest integer N_r such that every r-regular graph G with more than N_r vertices has $\partial \Gamma(G) = r + 1$. Observe that we have $N_2 = 4$ and $N_3 = 6$. It is an open question to determine N_r for $r \geq 4$. However, using results on b-chromatic number [3], we have $N_r \leq 2r^3 - r^2 + r$.

4 Properties on the Grundy number of r-regular graphs

Definition 4.1. Let $r \geq 2$ be an integer. We define recursively the family of graphs \mathcal{G}_r^* as follows:

1. $K_{r-k,k+2} \in \mathcal{G}_r^*$, for any k, $0 \leq k \leq (r-2)/2$;
2. the disjoint union of two elements of \mathcal{G}_r^* is in \mathcal{G}_r^*;
3. if G is a graph in \mathcal{G}_r^*, then the graph H obtained from G by adding an edge between two vertices of degree at most $r - 1$ is also in \mathcal{G}_r^*;
4. if G is a graph in \mathcal{G}_r^*, then the graph H obtained from G by adding a new vertex adjacent to r vertices of degree at most $r - 1$ is in \mathcal{G}_r^*.

The family \mathcal{G}_r is the subfamily of r-regular graphs in \mathcal{G}_r^*.

Proposition 4.2. Let G be an r-regular graph. If $G \in \mathcal{G}_r$, then $\Gamma(G) < r + 1$.

Proof. By I_{r-k} and I_{k+2}, with $|I_{r-k}| = r - k$ and $|I_{k+2}| = k + 2$, we denote the two sets of vertices in the bipartition of an induced subgraph $K_{r-k,k+2}$ in G. Firstly, suppose there exists a vertex u in an induced subgraph $K_{r-k,k+2}$ colored $r + 1$. Without loss of generality, suppose u is in I_{r-k}. The r neighbors of u should have colors from 1 to r. Among the neighbors of u, $k + 2$ neighbors are in I_{k+2}. Let v be the neighbor of u in I_{k+2} with the largest color in I_{k+2}. The vertex v has color at least $k + 2$. Hence, there exists an integer $s \geq 0$ such that the color of v is $k + 2 + s$. Note that there are s vertices in $N(u) \setminus I_{k+2}$ which have colors at most $k + 2 + s$. The colors of the s vertices are the only one possible remaining colors at most $k + 2 + s$ in I_{r-k}. Hence, as there are k vertices in $N(v) \setminus I_{r-k}$, the neighbors of v can only have at most $k + s$ different colors at most $k + 2 + s$. Therefore, we have a contradiction and u cannot have
color \(r + 1 \). Secondly, suppose there exists a vertex \(u \) added by Point 4 which has color \(r + 1 \). As a neighbor of \(u \) in an induced \(K_{r-k,k+2} \) should be colored \(r \), the argument is completely similar to the previous one.

Corollary 4.3. Let \(G \) be a 4-regular graph. If \(G \in \mathcal{G}_4 \), then \(\Gamma(G) < 5 \).

The reader can believe that the family of 4-regular graphs with \(\Gamma(G) < 5 \) contains only the family \(\mathcal{G}_4 \). However, there exist graphs with Grundy number \(r \) which are not inside this family. For example, the power graph (the graph where every pair of vertices at pairwise distance 2 become adjacent) of the 7-cycle \(C_7^2 \) satisfies \(\Gamma(C_7^2) < 5 \) and is not in \(\mathcal{G}_4 \).

The next proposition shows that unlike the \(b \)-chromatic number, \(r \)-regular graphs of order arbitrarily large with Grundy number \(k \) can be constructed for any \(r \) and any \(k \), \(3 \leq k \leq r + 1 \).

Proposition 4.4. Let \(r \geq 4 \) and \(3 \leq k \leq r + 1 \) be integers. There exists an infinite family \(\mathcal{H} \) of connected \(r \)-regular graphs such that for all \(G \) in \(\mathcal{H} \), \(\Gamma(G) = k \).

Proof. Let \(i \geq 2 \) be a positive integer and \(r_1, \ldots, r_{k-1} \) be a sequence of positive integers such that \(r = r_1 + \ldots + r_{k-1} \). We construct a graph \(G_{r,k,i} \) as follows: Take \(2i \) copies of \(K_{r_1, \ldots, r_{k-1}} \). Let \(H_{j-1} \) be the copy number \(j \) of \(K_{r_1, \ldots, r_{k-1}} \) and \(H_{j,r_l} \) be the independent \(r_l \)-set in \(H_j \). If \(j \equiv 1 \pmod{2} \), do the graph join of \(H_{j-1} (+r_1, r_1) \) and \(H_{j-1} (+r_1, r_1) \) and for an integer \(l, 1 < l < k \), do the graph join of \(H_{j} (+2i, r_l) \) and \(H_{j-1} (+2i, r_l) \). The \(r \)-regular graph obtained is the graph \(G_{r,k,i} \). Figure 4 gives \(G_{r,k,i} \) for \(k = 4 \) and \(i \geq 2 \). Note that \(H_{j,r_l} \) is an independent module. Thus, every vertex is a \((0,k)\)-twin-vertex. By Proposition 2.6, \(\Gamma(G_{r,k,i}) < k \).

For an integer \(l, 1 < l < k \), color one vertex \(l-1 \) in \(H_{1,r_1} \) and \(H_{2,r_1} \). Afterwards, color one vertex \(k-1 \) in \(H_{1,r_1} \) and one vertex \(k \) in \(H_{2,r_1} \). The given coloring is a Grundy partial \(k \)-coloring of \(G_{r,k,i} \) for \(i \geq 2 \). Therefore, \(\Gamma(G_{r,k,i}) = k \), for \(i \geq 2 \).
5 Grundy number of 4-regular graphs without induced C_4

The following lemmas will be useful to prove the second main theorem of this paper: The family of 4-regular graphs without induced C_4 contains only graphs with Grundy number 5.

Lemma 5.1. Let G be a 4-regular graph without induced C_4. If G contains (an induced) K_4 then $\Gamma(G) = 5$.

Proof. Note that if $G = K_5$, we have $\Gamma(G) = 5$. If G is not K_5 then every pair of neighbors of vertices of K_4 cannot be adjacent (G would contain a C_4). Giving the color 1 to each neighbor of the vertices of K_4 and colors 2, 3, 4, 5 to the vertices of K_4, we obtain a Grundy partial 5-coloring of G.

Lemma 5.2. Let G be a 4-regular graph without induced C_4 and let W be the graph from Figure 5. If G contains an induced W then $\Gamma(G) = 5$.

Proof. The names of the vertices of W come from Figure 5. Depending on the different cases that could happen, Grundy partial 5-colorings of G will be given using their references on Figure 5. Let D_1 be the set of vertices at distance 1 from vertices of W in $G - W$. Suppose that two vertices of W have a common neighbor in D_1. This two vertices could only be u_4 and u_5 or u_3 and u_5 (or u_1 and u_4, by symmetry). In the case that u_4 and u_5 have a common neighbor in D_1, colors will be given to neighbors of u_3 in D_1, depending if they are adjacent (Figure 5.1.a) or not (Figure 5.1.b). In the case that u_3 and u_5 have a common neighbor w in D_1, w can be adjacent with a neighbor of u_3 in D_1 (Figure 5.2.a) or not (Figure 5.2.b). Suppose now that no vertices in W have a common neighbor in D_1. Let w_1 and w_2 be the neighbors of u_3 in D_1. We first consider that w_1 and w_2 are adjacent (Figure 5.3.a). Secondly, we consider that w_1 and w_2 are not adjacent and that u_5, u_3 and w_1 are in an induced C_5 (Figure 5.3.b). Finally, we consider that the previous configurations are impossible (Figure 5.3.c).

Proposition 5.3. Let G be a 4-regular graph without induced C_4. If G contains C_3 then $\Gamma(G) = 5$.

Proof. Depending on the different cases that could happen, a reference to the Grundy partial 5-coloring of G in Figure 6 will be given. Let M_i, $i = 2$ or 3, be the graph of order $2 + i$ containing two adjacent vertices u_1 and u_2 which have exactly i common neighbors, $\{v_1, \ldots, v_i\}$, that form an independent set. Let D_1 be the set of vertices at distance 1 from an induced M_i in $G - M_i$, for $2 \leq i \leq 3$.

Case 1: Firstly, assume that G contains an induced M_3 and a vertex of M_3 has its two neighbors in D_1 adjacent (Figure 6.1.a). Secondly, assume that G contains an induced M_2 and a vertex of M_2 has its two neighbors in D_1.
The graph \(W \).

Figure 5: Possible configurations when \(G \) contains an induced \(W \).

adjacent (Figure 6.1.b). Note that these Grundy partial 5-colorings use the fact that \(G \) cannot contain a \(K_4 \) by Lemma 5.1.

Case 2: Assume that \(G \) contains an induced \(M_3 \) excluding the previous configuration. There are three cases: \(u_1, v_2 \) and \(v_3 \) are in an induced \(C_5 \) (Figure 6.2.a), \(u_1, v_2 \) and \(v_3 \) are in an induced \(C_6 \) and not in an induced \(C_5 \) (Figure 6.2.b) and \(u_1, v_2 \) and \(v_3 \) are neither in an induced \(C_5 \) nor \(C_6 \) (Figure 6.2.c).

Case 3: Suppose that \(G \) contains an induced \(M_2 \) excluding the previous configurations. Firstly, we suppose that \(u_1, v_1 \) and \(v_2 \) are in an induced \(C_5 \) (Figure 6.3.a). Secondly, we suppose that \(u_1, v_1 \) are in an induced \(C_5 \) excluding the previous case (Figure 6.3.b). Thirdly, we suppose that \(u_1, v_1 \) and \(v_2 \) are in an induced \(C_6 \) and not in an induced \(C_5 \) (Figure 6.3.c) and finally neither in an induced \(C_5 \) nor \(C_6 \) (Figure 6.3.d).

Suppose that \(G \) contains a 3-cycle \(C \) and no induced \(M_2 \). Let \(u_1, u_2 \) and \(u_3 \) be the vertices of \(C \). Let \(w_1 \) and \(w_2 \) be the neighbors of \(u_1 \) outside \(C \), let \(w'_1 \) and \(w'_2 \) be the neighbors of \(u_2 \) outside \(C \) and let \(w''_1 \) and \(w''_2 \) be the neighbors of \(u_3 \) outside \(C \).

Case 4: Firstly, suppose that \(u_1, u_2, w_1 \) and \(w'_1 \) are in a 5-cycle and a neighbor of \(u_1 \), say \(w_1 \), has a common neighbor with \(w'_1 \) (Figure 6.4.a). Secondly, excluding the previous configuration, suppose that \(u_1, u_2, w_1 \) and \(w'_1 \) are in a 5-cycle; \(w''_1, v_1, u_1 \) and \(w_1 \) are in another 5-cycle and \(w_1 \) is in a triangle (Figure 6.4.b). We suppose that \(w_1 \) is not in a triangle (Figure 6.4.c). Thirdly, excluding the previous configurations, we obtain a Grundy partial 5-coloring if two vertices of \(C \) are in a 5-cycle (Figure 6.4.d). Fourthly, we suppose that two vertices of \(C \) cannot be in a 5-cycle (Figure 6.4.e).

In the following two lemmas, we consider a graph \(G \) of girth \(g = 5 \) and possibly containing an induced Petersen graph. Let \(u_1, u_2, u_3, u_4 \) and \(u_5 \) be
the vertices in an induced C_5 (or in the the outer cycle of a Petersen graph, if any). Let $v_1, v_1', v_2, v_2', v_3, v_3', v_4, v_4', v_5$ and v_5' be the remaining neighbors of respectively u_1, u_2, u_3, u_4 and u_5 (all different as $g = 5$).

Lemma 5.4. Let G be a 4-regular graph with girth $g = 5$. If G contains the Petersen graph as induced subgraph then $\Gamma(G) = 5$.

Proof. Suppose that v_1, v_2, v_3, v_4 and v_5 form an induced C_5 (the inner cycle of the Petersen graph). Let u_2' and u_5' be the remaining neighbors of respectively v_2 and v_5. Observe that v_1' can be adjacent with no more than three vertices among v_3', v_4', u_2' and u_5'. Firstly, suppose that v_1' is not adjacent with v_4' (or v_4', without loss of generality since the configuration is symmetric). The left part of Figure 7 illustrates a Grundy partial 5-coloring of the graph G. Secondly, assume that v_1' is not adjacent with u_5' (or u_5', without loss of generality). The right part of Figure 7 illustrates a Grundy partial 5-coloring of the graph G.

In a graph G, let a **neighbor-connected C_n** be an n-cycle C such that the set
of vertices of G at distance 1 from C is not independent.

Lemma 5.5. Let G be a 4-regular graph with girth $g = 5$. If G contains a neighbor-connected C_5 as induced subgraph, then $\Gamma(G) = 5$.

Proof. Let C be a neighbor-connected C_5 in G. By Lemma 5.4 we can suppose that the neighbors of the vertices of C do not form an induced C_5 (otherwise a Petersen would be an induced subgraph). Hence, we can assume that the neighbors of the vertices of C form a subgraph of a C_{10}. If there are two edges between the neighbors of the vertices of C, then Figure 8 illustrates Grundy partial 5-colorings of the graph G. Suppose that two neighbors are adjacent, say v_1 and v'_3 and the graph G does not contain the previous configuration. Note that v'_3 can be adjacent with v'_1 and v'_5. Let w_1, w_2 and w_3 be the three neighbors of v_3 different from u_2. We suppose that w_1 can be possibly adjacent with v'_1 and w_2 can be possibly adjacent with v'_5. Figure 9 illustrates a Grundy partial 5-coloring of G in this case. In this figure, the vertex w_3 can be possibly adjacent with v'_5 or v_4, but in this case we can switch the color 1 from v'_5 to v_5 or from v'_4 to v_4.

Proposition 5.6. If G is a 4-regular graph with girth $g = 5$, then $\Gamma(G) = 5$.

Proof. Let C be a 5-cycle in G. Assume that two neighbors of consecutive vertices of C, for example v_1 and v_5, have a common neighbor w_1. The left part of Figure 10 illustrates a Grundy partial 5-coloring of the graph G. In this figure the vertex w_1 can be possibly adjacent with v'_2, v'_3 or v_4, but in this case we can switch the color 1 from v'_2 to v_2, from v'_3 to v_3 or from v_4 to v'_4. Hence, we can suppose that no neighbors of consecutive vertices of C are adjacent. Among the neighbors of v_1, there exists one vertex w_1 not adjacent with both v_4 and v'_4 (otherwise G would contain a C_4). Among the neighbor of v'_5, there exists one
Figure 8: Two Grundy partial 5-colorings of a subgraph containing an induced neighbor-connected C_5.

Figure 9: A Grundy partial 5-coloring of a subgraph containing an induced neighbor-connected C_5.

vertex, say w_2, not adjacent with w_1. The right part of Figure 10 illustrates a Grundy partial 5-coloring of the graph G. In this figure the vertex w_1 can be possibly adjacent with v_4 and the vertex w_2 can be possibly adjacent with v_4' or v_4, but in these cases we can switch the color 1 from v_4' to v_2 or from v_4 to v_4'.

In the following lemma and proposition, we consider a graph G of girth $g = 6$. Let u_1, u_2, u_3, u_4, u_5 and u_6 be the vertices in an induced C_6. Let $v_1, v_1', v_2, v_2', v_3, v_3', v_4, v_4', v_5, v_5', v_6$ and v_6' be the remaining neighbors of respectively u_1, u_2, u_3, u_4, u_5 and u_6 (all different as $g = 6$).

Lemma 5.7. If G is a 4-regular graph with girth $g = 6$ which contains a neighbor-connected C_6 as induced subgraph, then $\Gamma(G) = 5$.

Proof. Firstly, suppose that there are two edges which connect the neighbors in the same way than in the left part of Figure 11. Let w_1 be a neighbor of v_1' not adjacent with v_4. The graph G admits a Grundy partial 5-coloring as the
Figure 10: Two Grundy partial 5-colorings of a subgraph containing an induced C_5.

Figure 11: Two Grundy partial 5-colorings of a subgraph containing an induced neighbor-connected C_6.

left part of Figure 11 illustrates it. Secondly, suppose that there is one edge (or more) which connect the neighbors without the configuration from the previous case. Let w_1 be a neighbor of v_3 not adjacent with v_2 and let w_2 be a neighbor of v'_1 not adjacent with w_1. The graph G admits a Grundy partial 5-coloring as the right part of Figure 11 illustrates it.

Proposition 5.8. If G is a 4-regular graph with girth $g = 6$, then $\Gamma(G) = 5$.

Proof. By Lemma 5.7, assume that no neighbors of the vertices of the induced C_6 are adjacent. Firstly, suppose that there are two neighbors at distance 4 along the cycle C_6, for example v'_1 and v_5, which have a common neighbor w_1. Let w_2 be a neighbor of v_3 not adjacent with w_1. G admits a Grundy partial 5-coloring as the left part of Figure 12 illustrates it. Secondly, suppose that there
Figure 12: Two Grundy partial 5-colorings of a subgraph containing an induced C_6.

are no two neighbors at distance 4 along the cycle C_6 which have a common neighbor. Let w_1 be a neighbor of v'_1 not adjacent with a neighbor of v_5 or a neighbor of v_3, let w_2 be a neighbor of v_3 not adjacent with a neighbor of v_5, and let w_3 be a neighbor of v_5. The graph G admits a Grundy partial 5-coloring as the right part of Figure 12 illustrates it.

Proposition 5.9. If G is a 4-regular graph with girth $g \geq 7$, then $\Gamma(G) = 5$.

Proof. Suppose that G contains a 7-cycle. We denote the 5-atom which is a tree by T_5 (the binomial tree with maximum degree 4). It can be easily verified that G contains T_5 where two leaves are merged (which is a 5-atom). Moreover, if G does not contain a 7-cycle, then it contains T_5 as induced subgraph.

Theorem 3. Let G be a 4-regular graph. If G does not contain an induced C_4, then $\Gamma(G) = 5$.

Proof. Suppose that G does not contain an induced C_4. Using Proposition 5.9 for the case $g \geq 7$, Propositions 5.6 and 5.8 for the case $g = 5, 6$, and Proposition 5.3 when G contains a C_3 yields the desired result.

By Proposition 3.1, Corollary 3.5 and Theorem 3, any r-regular graph with $r \leq 4$ and without induced C_4 has Grundy number $r + 1$. Therefore, it is natural to propose Conjecture 1.

References

