
HAL Id: hal-00921673
https://hal.science/hal-00921673

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model2Roo: A Model Driven Approach for Web
Application Development based on the Eclipse Modeling

Framework and Spring Roo
Juan-Carlos Castrejon-Castillo, Rosa López-Landa, Rafael Lozano

To cite this version:
Juan-Carlos Castrejon-Castillo, Rosa López-Landa, Rafael Lozano. Model2Roo: A Model Driven Ap-
proach for Web Application Development based on the Eclipse Modeling Framework and Spring Roo.
CONIELECOMP 2011 - International Conference on Electrical Communications and Computers, Feb
2011, Cholula, Puebla, Mexico. pp.82-87, �10.1109/CONIELECOMP.2011.5749344�. �hal-00921673�

https://hal.science/hal-00921673
https://hal.archives-ouvertes.fr

Model2Roo: A Model Driven Approach for Web Application Development based
on the Eclipse Modeling Framework and Spring Roo

Juan Carlos Castrejón, Rosa López-Landa, Rafael Lozano
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Ciudad de México
{A00970883, atzimba.lopez, ralozano}@itesm.mx

Abstract
Inherent complexity in web application development is

continually increasing due to changes in both functional
and non-functional requirements, as well as to
technological changes like new programming languages,
tools, frameworks and development processes. An
adequate management of this complexity is required in
order to generate high quality software systems. In this
paper, an approach based on model-driven techniques is
proposed to guide the development of web applications,
by focusing on model abstractions rather than
implementation details. In order to do so, we propose a
set of model extensions, such as profiles and annotations,
to describe both the static structure and a subset of
functional and non-functional requirements usually
associated to web applications.

1. Introduction
Web application development has been one of the most

evolving industries in recent software engineering [1].
This evolution has also been associated with an increased
complexity in the set of both functional and non-
functional requirements that these systems are expected to
fulfill [1]. In addition to this added complexity, the
emergence of new programming languages, tools,
frameworks and methodologies for web application
development represent additional concerns that software
developers must address. The administration of software
complexity and the adequate selection of development
tools, becomes vital for the change management process
associated to web software development. This is because
a defective process can lead to productivity and
maintainability problems [2].

These kind of problems are very common not only in
web application development, but in software engineering
in general. As stated by Kleppe et al [3], one of the
reasons for the high recurrence of these issues lies in the
way the traditional software development process is
usually conducted. As shown in Figure 1, this process is
composed by six general stages, that range from the
requirements of the system to the deployment of an
application. We can appreciate that early stages deal
primarily with design documents, while later ones deal

with code artifacts. In theory, when a change has to be
performed to the system, all of the corresponding
documents and artifacts have to be updated accordingly to
reflect this change. However, software developers tend to
consider programming stages more important than their
design counterparts, and, as a result, changes are usually
applied only to code artifacts. This generates a lack of
c o m p l i a n c e b e t w e e n d e s i g n d o c u m e n t s a n d
implementation artifacts, which can cause a detriment in
the overall quality of the software system [2].

Figure 1. Traditional software development process [3]

A relatively recent approach to cope with the
aforementioned problems is represented by the Model-
Driven Software Development (MDSD) discipline [5].
MDSD heavily relies on model abstractions rather than
implementation details, with the intent of avoiding a lack
of compliance between design documents and
implementation artifacts. This effectively enhances the
overall maintainability of software systems and promotes
a better manageability of the technological changes they
may go through [5]. Taking this into account, we propose
a MDSD approach to model the domain knowledge of
web applications in platform independent models.

The remaining of this paper is organized as follows.
Section 2 introduces the Model Driven Architecture
(MDA) initiative, along with the Eclipse Modeling
Framework (EMF), the ATL Transformation Language
(ATL) and the Spring Roo project. In section 3 we
describe related work. Section 4 contains the definition of
the Model2Roo approach. Finally, in section 5 we
describe an example application of our approach, and
present our conclusions and future work in section 6.

2. Model-driven technologies

2.1 MDA
MDA [3] is a MDSD initiative proposed by the Object

Management Group [4]. It relies on a layered architecture
of models that specify system functionality, independently
of its implementation in any given platform. In order to
achieve this separation, the use of models that contain
either platform dependent (PSM) or independent
information (PIM), as well as transformation procedures
between them, is proposed.

The base of the MDA initiative is the MetaObject
Facility (MOF), an specification provided by the OMG to
describe meta-meta models. By using an implementation
of MOF, such as the Unified Modeling Language (UML),
we can develop a PIM meta-model that may later be
transformed into a particular PSM model. Finally,
instances of these platform dependent models can be
generated. In order to do so, the definition of model
transformation procedures between models of different
layers is required. Table 1 depicts the four layered
architecture of the MDA initiative.

Table 1. MDA layered architecture

Name Layer Example
M3 Meta-metamodel MOF
M2 Metamodel UML
M1 Model UML model
M0 Instance data Instance data

2.2 EMF
EMF is a modeling framework built on top of the

Eclipse platform [6]. Its core component is the Ecore meta
model. Ecore is based on Essential MOF (EMOF), which
is a subset of MOF that is used for the definition of simple
meta models. By using Ecore we can in turn define
additional models or meta models, using a set of
integrated Eclipse editors [6]. Another key MOF based
meta model, within the EMF framework, is the UML2
project [6]. This metamodel is an implementation of the
UML 2.x specification.

Finally, EMF is considered by many researches as one
of the main environments for model-driven development,
specially considering the size of its community and the
number of experimental tools developed around it [5].

2.3 ATL
ATL is a model transformation engine integrated as

part of the Eclipse platform that is aimed to produce target
models from a set of source models [7]. It provides two
main units of operation: ATL modules and ATL queries.
The former specify a set of operations required to
transform from one model to another, while the latter
compute a single primitive value, such as a number or a
String, from a set of source models. These transformation
procedures are aligned with MDA definitions regarding
model transformations.

2.4 Spring Roo
The Spring Roo project [8] provides a Java

productivity tool for building enterprise applications. It
does so by providing a command-line shell where special
commands can be issued to create high quality web
applications. The importance of this project lies in its
ability to specify not only the static structure of an
application, but also comprehensive support for the
functionality provided by the Spring framework [8], as
well as integration to other relevant technologies. One of
its key advantages is the ability to generate code and test
artifacts from the same domain model [8].

It should also be noted that web applications generated
by Spring Roo are automatically built with a set of
architecture patterns and best practices, in order to favor
the maintainability of the system [8]. It is particularly
helpful for this study that the Spring Roo commands can
be saved into a script file, and then be executed at any
given time.

3. Related work
In recent years there has been a lot of supporting work

for models to source code transformations [9-12].
Regarding web application development, we can mention
the work of Hou et al [13], where a modeling approach
for web applications PIMs, based on UML extensions, is
proposed. These PIMs are later transformed into PSMs
using an abstract algebra method. Zhuang et al [14]
describe a method for the development of e-commerce
web applications, based on the WebML language and the
transformation facilities provided by the WebRatio
environment [14].

We can also highlight the work described by Abdella
[15], where an approach based on the extension of UML
class diagrams, and the use of the EMF framework, is
proposed to build Java web applications. Closer to our
approach is the work of Jeanneteau [16], an extension to
an UML case tool that allows the generation of Spring
Roo scripts that represent the static structure and the
persistence layer of a software system. However, the
generated scripts only contain the most basic Roo
commands, without taking full advantage of the potential
of the Spring Roo project.

4. Model2Roo
As stated in the previous section, the focus on software

development in a MDA environment should be on models
and model transformations, rather than specific programs
or programming languages details. Taking this into
consideration, we propose Model2Roo, an approach for
web application development that is integrated within the
EMF framework and that relies on MOF based meta
models. Our intention is to develop web applications by
transforming models built using these meta models into
Spring Roo scripts, using tools associated to the EMF
framework. By doing so, software developers will not
need to worry about implementation details, but only on
modeling the domain characteristics of the required
application. A set of extensions to the source meta models
is also proposed in order to take advantage of the full
potential of the Spring Roo project.

The two main EMF meta models, Ecore and UML2,
will be used as the meta models of the Model2Roo
approach. Nonetheless, considering that Ecore is the main
building block of the EMF framework, it will also be the
key component of our approach. This is, we propose
Ecore to be the source meta model for the transformation
procedures to Spring Roo scripts. Figure 2 depicts the
Model2Roo approach, along with its associated models
and model transformations.

Figure 2. Model2Roo approach

In our approach, the model transformation from UML2
to Ecore is done through the UML importer application
[6], built-in the UML2 project. The transformation from
Ecore models into Spring Roo scripts is achieved by
means of an ATL query, described in section 4.2. Finally,
the transformation from Spring Roo scripts into Java Web
applications is conducted from within the Spring Roo
command-line shell [8], using its integrated scripting
facilities.

By restricting the transformation to Spring Roo scripts
only from Ecore models, we can centralize the associated
transformation logic and details. Also, since Ecore is the
meta model of the EMF framework, any EMF based meta
model may define a transformation to Ecore, and thus
benefit from the transformation to Spring Roo scripts. For
instance, this is the case of the UML2 meta model.

4.1 Model extensions
For each of the transformation processes defined in the

previous section there is risk of loss of information from
the source to the target model. For instance, during the
model transformation from UML2 to Ecore, all of the
UML profile details are lost. We also need to consider that
the commands associated to the Spring Roo project
provide a set of options that cannot be specified in the
base constructs of the Model2Roo meta models. For
example, we could require the generation of integrated
tests for all of the entities defined in a particular model.
However, since neither Ecore nor UML2 base constructs
provide a property to describe such requirement, we have
no standard way to specify this option.

In Table 2 we describe the extensions that we propose
to implement in the Model2Roo source metamodels, in
order to overcome the aforementioned limitations:

Table 2. Meta models extensions

Limitation Extension
Loss of UML profiles data

during UML to Ecore
transformation

Extension to the UML
Importer application

Inability to specify full set
of Roo command options

Development of Ecore
Annotations and UML

Profiles

The main building block for these meta models
extensions is a set of Ecore annotations [6]. These
annotations will describe details that allow the
exploitation of the full potential of Spring Roo, while also
taking advantage of modeling in MOF meta models.
Taking into consideration that one of the main extension
mechanisms in UML based models is the use of UML
profiles [5], we propose to align the set of Ecore
Annotations to the corresponding set of UML profiles. In
doing so, we will be providing means to specify Spring
Roo details both in Ecore and UML2 models, the two
source meta models of our approach.

The set of Model2Roo annotations are first modeled as
UML profiles using facilities of the UML2 project,. These
profiles can then be used when the starting metamodel is
UML, by using stereotypes applications. However, they
cannot be used directly when the source metamodel is
Ecore, since it lacks the concept of profile constructs. This
is why we propose a set of aligned Ecore annotations,
generated from the UML2 profiles, that can be used to
extend Ecore base constructs.

Considering that the transformation process to Spring
Roo relies on Ecore, we also define a transformation
process from UML2 to Ecore models. This is conducted
by an extension of the UML2 importer application. Our
extension analyzes the UML stereotypes applied to a
model, and associates corresponding Ecore annotations to
the resulting Ecore model. Figure 3 depicts the process for
the generation of the Model2Roo annotations, as well the
association between UML and Ecore models.

Figure 3. Spring Roo details as Ecore Annotations

Having explained the definition process of the
Model2Roo annotations, we will now discuss their
details. We have decided to make a distinction between
Spring Roo commands that affect the static structure of
web applications, from those commands that allow
integration with other technologies, or that provide
additional functionality to the base structure of the
system. When either the Ecore annotations or the UML
profiles are applied, this first group of commands is
identified with the prefix rooStructure, while the second
group uses the rooCommand prefix.

As stated before, the rooStructure annotations are used
to create the static structure of the system. This includes,
the system definition, along with the model entities,
enumerations, properties, and references between them.
Nonetheless, in order to generate a more comprehensive

web application we need more than the static structure of
the system, which is why the rooCommand annotations
include support for the definition of system logging
configuration, web MVC controllers, along with their
associated web and integration tests, data on demand and
finder methods for the model entities. Tables 3 and 4
depict the details of the rooStructure and rooCommand
annotations, along with their associated Ecore and UML
elements. Also shown are the Spring Roo commands that
will be issued during the transformation from Ecore
models to Spring Roo scripts.

Table 3. rooStructure annotations

Ecore
element

Uml
element Annotations Roo

commands
EPackage Model RooModel project

EClass Class RooEntity entity

EAttribute,
EReference Property

RooField
{Boolean, Date,
Enum, Number,
Reference, Set,

String}

field,
set,

reference

EEnum Enumeration RooEnumType enum

eLiterals Enumeration
Literal RooEnumConstant enum

Table 4. rooCoomand annotations

Ecore
element

Uml
element Annotations Roo

commands
EPackage Model RooModelCommand web, controller,

persistence

EClass Class RooEntityCommand

dod, test,
finders,
logging,

selenium,
controller

4.2 Ecore2Roo ATL query
In order to transform from Ecore models to Spring Roo

scripts we propose the use of an ATL query. This query
traverses the elements of Ecore source models, analyzes
them and generates the corresponding Spring Roo
commands. This set of commands can then be saved into
a Spring Roo script file, that can in turn be used to
generate the target web application. The Ecore2Roo ATL
query has been designed to generate Spring Roo
commands both from Ecore models annotated with the set
of Model2Ecore annotations, as well as with unannotated
models. The fact that the Ecore2Roo query does not
depend on Spring Roo details allows for a seamless
integration of the Model2Roo approach with existing
Ecore models. In this regard, our approach can be seen as
an alternative to the current code generation facilities
provided by the EMF framework [6]. Finally, it should
also be noted that the only requirements to execute the
Ecore2Roo query are an ATL environment, the Ecore
meta model definition, and an Ecore source model.

4.3 Model2Roo eclipse plugin
We have developed an Eclipse plugin that allows the

integration of the Model2Roo operations as part of the
EMF framework. It provides all of the functionality
described in the previous sections, for Ecore and UML2
models, easily accessible from within the Eclipse
environment. This is, by selecting an ECore EPackage
element within an Eclipse editor, we may associate the set
of Model2Roo annotations. We can also generate Spring
Roo scripts by selecting either ECore EPackage or UML
Package elements.

Figure 5 depicts the menu of the Model2Roo plugin
that is added to Eclipse’s menu bar. As we can appreciate,
it provides three menu items that allow the execution of
the operations proposed by our approach.

Figure 4. Model2Roo Eclipse plugin

5. Model2Roo example: PetClinic
In order to demonstrate the use of the Model2Roo

approach we will develop a Pet Clinic application, a
classic example designed to show the strengths of Spring
application frameworks [17]. Considering that a sample
script of this application is also provided along with the
Spring Roo distribution, our intention is to compare the
script file generated with the Model2Roo approach,
against the script provided by the Spring Roo distribution,
so as to verify if the corresponding web applications can
be considered equivalent or not.

The Pet Clinic application is an information system
that requires web browser access. It is intended to be used
by employees of the clinic in order to manage information
regarding veterinarians, clients and their pets. The use
cases for this system include managing veterinarians and
their specialities, managing clinic clients, their pets and
their visits to the clinic [17]. As explained in the previous
section, we can decide to model this application either
with Ecore or with UML2. In this case, we have decided
to directly use the Ecore support. It should be noticed that
at this stage no special Model2Roo annotation is required
to model the application. Figure 5 depicts the Pet Clinic
Ecore model, developed within the Ecore Diagram Editor
[6], an application that is part of the EMF framework.

Figure 5. Unannotated Pet Clinic application

By executing the Transform Ecore to Spring Roo
operation, from the Model2Roo plugin, we could generate
a Spring Roo script from this model. However, it would
only reflect the static structure of the system. In order to
generate a more comprehensive application, we can apply
the annotations provided by the Model2Roo approach. To
do this, we execute the Add Roo Annotations to Ecore
Model operation, from the Model2Roo plugin, and then
specify values for the relevant annotations. Figure 6
depicts this annotated Pet Clinic Ecore model.

Figure 6. Pet Clinic with Model2Roo annotations

The Spring Roo script generated from this model will
describe the web application with a greater level of detail,
taking full advantage of the Spring Roo constructs. Figure
7 depicts representative fragments of this generated script.

project
--topLevelPackage com.springsource.petclinic

persistence setup --provider HIBERNATE
--database HYPERSONIC_IN_MEMORY

entity --class ˜.domain.Pet
--testAutomatically
field string --fieldName name --notNull
--sizeMin 1
field number --fieldName weight
--type java.lang.Float --notNull --min 0
field reference --fieldName owner
--type ˜.domain.Owner
field enum --fieldName type --notNull
--type ˜.domain.reference.PetType

enum type --class ˜.reference.PetType
enum constant --name Dog
enum constant --name Cat
enum constant --name Bird
controller all --package ˜.web

Figure 7. Fragments of the Spring Roo script

Through the application of our approach we have
successfully generated a Spring Roo script that is
functionally equivalent to the one provided by the Spring
Roo distribution. It should be noted that the associated
web applications will provide the same set of functional
and non-functional requirements.

6. Conclusions and Future Work
In this paper, we have proposed Model2Roo, an MDA

approach for the development of high quality web
applications. This approach is integrated within the EMF
framework and relies on extended MOF meta models for
the generation of Spring Roo scripts, that describe both
the static structure of the system, as well as associated
functional and non-functional requirements, such as the
generation of web controllers, integration tests, and the
definition of a persistence layer.

The meta model extension mechanism is based on
Ecore annotations and UML profiles. However, its use is
not mandatory and our approach can be applied both to
annotated and unannotated models, though in order to
take full advantage of the Spring Roo project, the use of
the Model2Roo annotations is encouraged.

The main contribution of our approach lies in the
change management process associated to web
applications. This is, changes need not be applied directly
over the implementation artifacts of the system. Instead,
the system model is updated using the EMF framework
and the generated Spring Roo script will in turn contain
the appropriate implementation changes. In this way, we
avoid the lack of compliance between design documents
and implementation artifacts.

For our future work, we would like to develop a Spring
Roo add-on, in order to be able to provide the Model2Roo
functionality outside the Eclipse platform. Support for
additional MOF based meta models and their associated
tools is also intended.

7. References
[1] M. Jazayeri, “Some Trends in Web Application
Development”, Future of Software Engineering FOSE '07, IEEE
Computer Society, Minneapolis, MN, 2007, pp. 199-213
[2] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, Second Edition, Addison-Wesley Professional, 2003
[3] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The
Model Driven Architecture: Practice and Promise: Addison-
Wesley Professional, 2003.
[4] OMG. (2010, October). Unified Modeling Language.
Available: http://www.uml.org/
[5] T. Stahl, M. Völter, Model-Driven Software Development,
Wiley, 2006
[6] D. Steinberg, F. Budinsky, and M. Paternostro, EMF: Eclipse
Modeling Framework, Second ed.: Addison-Wesley
Professional, 2008.
[7] F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev, “ATL: A
model transformation tool”, Science of Computer Programming,
Volume 72, Issues 1-2, Special Issue on Second issue of
experimental software and toolkits (EST), 2008, pp. 31-39
[8] SpringSource. (2010, October). SpringRoo. Available: http://
www.springsource.org/roo
[9] Y . Liu and Y . Ma, “An Approach f o r M D A M o d e l
Transformation Based on JEE Platform," Wireless
Communications, Networking and Mobile Computing, 2008.
WiCOM '08. 4th International Conference on, 2008, pp. 1-4.
[10] K. Ma and B. Yang, "A Hybrid Model Transformation
Approach Based on J2EE Platform," Education Technology and
Computer Science (ETCS), 2010 Second International Workshop
on, 2010, pp. 161- 164.
[11] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, "Automatic
Performance Model Transformation from UML to C++"
Parallel Processing - Workshops, 2008. ICPP-W '08.
International Conference on, 2008, pp. 228-235.
[12] A. M. Reina-Quintero, J. Torres-Valderrama, and M. Toro-
Bonilla, "Improving the adaptation of web applications to
different versions of software with MDA", 7th International
Conference on Web Engineering. Workshop Proceedings.
Workshop on Adaptation and Evolution in Web Systems
Engineering (Aewse'07) (2), 2007, pp. 101-107
[13] J. Hou, J. Wan, X. Yang, "MDA-based Modeling and
Transformation Approach for WEB Applications”, Sixth
International Conference on Intelligent Systems Design and
Applications ISDA'06, 2006, pp. 867-874
[14] G. Zhuang, and J. Du, “MDA-Based Modeling and
Implementation of E-Commerce Web Applications in WebML”,
Computer Science and Engineering, 2009. WCSE '09. Second
International Workshop on, vol.2, 2009, pp. 507-510
[15] D. Abdellah, “Applying the MDA approach for the
automatic generation of an MVC2 web application”, Research
Challenges in Information Science (RCIS), 2010 Fourth
International Conference on, 2010, pp. 681-688
[16] D. Jeanneteau. (2010, October). RooPlugout. Available:
http://gna.org/projects/roo-plugout/
[17] SpringSource. (2010, October). The Spring PetClinic
Application. Available: http://static.springsource.org/docs/
petclinic.html

