The stochastic porous media equation in $\R^d$

Abstract : Existence and uniqueness of solutions to the stochastic porous media equation $dX-\D\psi(X) dt=XdW$ in $\rr^d$ are studied. Here, $W$ is a Wiener process, $\psi$ is a maximal monotone graph in $\rr\times\rr$ such that $\psi(r)\le C|r|^m$, $\ff r\in\rr$, $W$ is a coloured Wiener process. In this general case the dimension is restricted to $d\ge 3$, the main reason being the absence of a convenient multiplier result in the space $\calh=\{\varphi\in\mathcal{S}'(\rr^d);\ |\xi|(\calf\varphi)(\xi)\in L^2(\rr^d)\}$, for $d\le2$. When $\psi$ is Lipschitz, the well-posedness, however, holds for all dimensions on the classical Sobolev space $H^{-1}(\rr^d)$. If $\psi(r)r\ge\rho|r|^{m+1}$ and $m=\frac{d-2}{d+2}$, we prove the finite time extinction with strictly positive probability.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00921597
Contributeur : Francesco Russo <>
Soumis le : mardi 9 septembre 2014 - 06:19:29
Dernière modification le : jeudi 5 janvier 2017 - 01:53:24
Document(s) archivé(s) le : mercredi 10 décembre 2014 - 11:05:33

Fichiers

BRR-JMPA2014August.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00921597, version 2
  • ARXIV : 1312.6234

Collections

Citation

Viorel Barbu, Michael Röckner, Francesco Russo. The stochastic porous media equation in $\R^d$. 2014. 〈hal-00921597v2〉

Partager

Métriques

Consultations de
la notice

227

Téléchargements du document

71