
HAL Id: hal-00921398
https://hal.science/hal-00921398

Submitted on 3 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Compatibility of Timed Choreography.
Nawal Guermouche, Claude Godart

To cite this version:
Nawal Guermouche, Claude Godart. Characterizing Compatibility of Timed Choreography.. Interna-
tional Journal of Web Services Research, 2011, 8 (2), pp.1-28. �hal-00921398�

https://hal.science/hal-00921398
https://hal.archives-ouvertes.fr

 1

Characterizing Compatibility of Timed Choreography

Nawal Guermouche
1, 2, 3

 and Claude Godart
3

1

CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France
2
 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM, LAAS ; F-31077 Toulouse, France

3
LORIA-Nancy University, UMR 7503

BP 239, Vandoeuvre-les-Nancy, France

ABSTRACT:

Web services are the main pillar of the Service Oriented Computing (SOC) paradigm which

enables application integration within and across business organizations. One of the most

important features of Web services is the idea of choreography which allows to capture

collaborative processes involving multiple services. In this context, compatibility analysis of

choreography is a central point to investigate. We mean by compatibility of a choreography the

capability of a set of Web services of actually interacting by exchanging messages in a safe way.

Whether a set of services are compatible depends not only on their sequences of messages but

also on some quantitative properties such as timed properties. In this paper, we investigate a

model checking based approach that deals with checking the compatibility of a choreography in

which Web services support asynchronous timed communications.

KEY WORDS:
Asynchronous Web services, Choreography analysis, compatibility analysis, timed properties

INTRODUCTION

The evolution of computer science technologies has given life to many paradigms such as the

Service Oriented Computing (SOC) paradigm (Alonso and al. 2004, Benatallah and al. 2007,

Dijkman and al. 2004). In this latter, Web services are the main pillar. Based on standard

interfaces, Web services facilitate application-to-application interactions. This advantageous

property of Web services gives rise to several important concepts such as the notion of

choreography. Such a feature offers the possibility to capture collaborative processes involving

multiple services where the interactions between these services are seen from a global perspective.

In this context, one of the important elements is the compatibility analysis. By compatibility we

mean the capability of a set of services of actually fulfilling successful interactions by exchanging

messages.

In the last few years, some works have investigated the compatibility problem of two Web

services: a client and a provider service (Bordeaux and al. 2004, Benatallah and al. 2005-a,

Benatallah and al. 2005-b, Ponge and al. 2007, Guermouche and al. 2008-a). In all these works,

the authors deal with services that support synchronous communications. In that case, to

characterize the compatibility class of two services, the authors check if each input (resp. output)

message of a service corresponds to an output (resp. input) message of the other service in the

same order (i.e., the services are synchronized over messages). However, the nature of distributed

systems and particularly of Web services can be asynchronous, hence the problem of the

applicability of these approaches which are very restrictive in real application scenarios is still

open. To overcome such a limitation, in this paper we tackle the problem of analyzing the

 2

compatibility of a choreography in which Web services support asynchronous communications.

In an asynchronous communication, when a message is sent, it is inserted into a bounded

message queue, and the receiver consumes (i.e. receives) the message while it is available in the

queue.

On the other side, it is commonly agreed that in general the interaction of Web services and in

particular the compatibility of Web services depends not only on the supported sequences of

messages but there are other crucial quantitative properties such as timed properties (Benatallah

and al. 2005-a, Benatallah and al. 2005-b, Kazhamiakin and al. 2006-a, Kazhamiakin and al.

2006-b, Ponge and al. 2007, Guermouche and al. 2008-a). We mean by timed properties the

required delays to exchange messages (e.g., in an e-government application, a prefecture can send

its final decision to grant an handicapped pension to a requester after 7 days and within 14 days).

When services are interacting, their timed properties can be conflicting. The existing works

cannot discover all the eventual timed conflicts since the authors rely on the principle of

synchronizing the services over messages (Bordeaux and al. 2004, Benatallah and al. 2005-a,

Benatallah and al. 2005-b, Ponge and al. 2007, Guermouche and al. 2008-a).

In this paper, we propose a framework for analyzing a choreography compatibility in the context

of asynchronous communicating services. In this framework we take into account data flow that

can be involved when exchanging messages. Furthermore, we consider constraints over data and

timed properties that specify delays concerning message exchanges. By studying the possible

impacts of timed properties on a choreography, we remarked that when Web services are

interacting together, implicit timed dependencies can be derived from different timed properties

of the different services. Such dependencies can give rise to implicit timed conflicts. To discover

deadlocks due to timed conflicts, we first study the possibility to apply the existing compatibility

approaches of synchronous services (Benatallah and al. 2005-a, Ponge and al. 2007, Guermouche

and al. 2008-a, Guermouche and al. 2008-d), but we concluded that the existing approaches are

inadequate to discover all the eventual timed deadlocks since the authors rely on synchronizing

the services over messages. In order to catch all the possible timed deadlocks, we propose a set of

model checking based primitives.

One of the important ingredients we need in a compatibility framework is the Web services

description behavior. The behavior of a Web service specifies the sequences of messages the

service supports, the involved data types, and the associated timed requirements. The timed

behavior of a Web service specifies the timed conversational protocol (for short we say

conversational protocol). For compatibility analysis, we have chosen to model a conversational

protocol as a finite state machine (FSM) specification. This kind of formal representation has

been already used in a series of work (Bultan and al. 2003, Benatallan and al. 2005-a, Berardi

and al. 2005, Ponge and al. 2007, Anca and al. 2007, Guermouche and al. 2008-a) and seems

adequate. In fact, a state machine based model is suitable to describe reactive behaviors

(Benatallah and al. 2005-b), it is fairly easy to understand, and at the same time it is expressive

enough to model the properties we consider. In addition, we rely on clocks as defined in standard

timed automata (Alur and al. 1994).

To summarize, in this paper we make the following contributions: (1) We propose an

asynchronous model of Web services that gathers messages, data types, data constraints, and

timed requirements. (2) We propose an abstraction process that allows to apply a model checking

to analyze asynchronous Web services. (3) Unlike the existing compatibility frameworks, we

propose primitives for analyzing and characterizing the compatibility class of a choreography in

which the Web services support asynchronous timed communications.

 3

The reminder of the paper is organized as follows. Next section presents an e-government case

study that we use to show the related issues of the proposed approach. Then, we present how we

model the timed behavior of Web services. For better understanding, we discuss informally and

intuitively the timed compatibility problem of a choreography. In order to be able to handle

asynchronous services by UPPAAL, we present a set of abstractions and transformations. After

that, we present our formal choreography compatibility investigations. Then, we discuss related

work. Before concluding, we describe experimentation step.

CASE STUDY: E-GOVERNMENT APPLICATION

Let us present a part of an e-government application inspired from (Mecella and al. 2001) to

illustrate our approach. The goal of the e-government application we consider is to manage

handicapped pension requests. Such a request involves three Web services: (1) prefecture service

(PS) (2) health authority service (HAS), and (3) town hall service (TH).

The high level choreography model of the process is depicted in Figure 1. A citizen can apply for

pension. To do so, the citizen asks the corresponding form from the prefecture. Once the form is

received, the citizen must return the form filled. The prefecture solicits the medical entity to

examine the requester. The health authority negotiates a date of an appointment to examine the

citizen. After the examination, the health authority service sends a medical report to the

prefecture. On the other side, the prefecture asks the town hall to deliver the domiciliation

attestation. After studying the received file, the medical report and the domiciliation attestation,

the prefecture sends the notification of the final decision to the citizen.

The interaction between these partners is constrained by timed requirements.

• Once the health authority service proposes meeting dates to the citizen, this latter must

send the filled form within 24 hours.

• The prefecture requires at least 48 hours and at most 96 hours from receiving the file

from the requester to notify the citizen by the final decision.

• The medical report can be sent to the prefecture after at least 120 hours and at most 168

hours from receiving the medical verification request.

Besides, Web services can be constrained by requirements on data. For example, the prefecture

that specifies the pension application can be considered if the applicant is at least 17 years old.

The Web services we consider can support asynchronous communications. The first issue we deal

with is how to analyze the compatibility of a choreography in which the Web services are

asynchronous? Moreover, the behavior of the Web services might be constrained by constraints

over data and timed requirements.

As in a choreography with several services possibly asynchronous, the timed properties are local

and are mutually independent, hence, when the services are interacting together, timed deadlocks

can arise. To assert the global interaction between the Web services (i.e., ensure that the

choreography is deadlock free), we need primitives that consider timed properties when analyzing

the compatibility of Web services. The second issue we need to handle is how to consider data

constraints and timed properties together when analyzing the compatibility of a choreography?

 4

The pension request
can be studied only if
the requester is at least

17 old

Send:
After 120 hours and

within 168 hours
from asking the
medical repport

Requester

THS

PSHAS
 (3) ask_examination

(1) pension_request (5) meeting_dates

 (2) residence_attestation
 (4) send_residence_attestation

Send:
After 48 hours and

within 96 hours from
receiving the pension

request

 (8) send_final_decision

Receive:
Within 24 hours

from sending
meeting date

(6) confirm_meeting

(7) medical_repport

Send:
After 168 hours and

within 216 hours from
asking the medical

repport

(9) hadicap_notification

Receive:
Within 120 hours from

sending the pension
request

Receive:
within 144 hours from

receiving the request of
the residence attestation

Figure 1. Global view of the e-government application

MODELING TIMED BEHAVIOR OF WEB SERVICES

One of the important ingredients in a compatibility framework is the timed conversational

protocol of Web services. In our framework, a timed conversational protocol specifies the

sequences of messages a service supports, the involved data flow and the associated timed

properties to exchange messages. A timed conversational protocol can be extracted from standard

specifications like for example OWL-S (Guermouche and al. 2008-e).

The model we consider is based on deterministic timed automata. In fact, this formalism is easy

to understand, and at the same time, it is expressive enough to model the aspects and properties

that we consider. In addition, several problems have been proven decidable for deterministic

timed automata such as complementarity, equivalence, and inclusion (Alur and al. 1994)

 5

Intuitively, the states represent the different phases a service may go through during its

interaction. Transitions enable sending or receiving a message. An output message is denoted

by !m, whilst an input one is denoted by ?m. A message involving a list of data types is denoted

by m(d1,…,dn), or m(d) for short. To capture timed properties when modeling Web services, we

propose to use the standard timed automata clocks (Alur and al. 1994). These automata are

equipped with a set of clocks. The values of these clocks increase with the passing of time.

Transitions are labeled by timed constraints, called guards, and resets of clocks. The former

represent simple conditions over clocks, and the latter are used to reset values of certain clocks to

zero. The guards specify that a transition can be fired if the corresponding guards are satisfied.

A timed constraint is a conjunction of atomic formula that compares the value of a clock x∈X, to

a positive real constant a∈
0≥

R .

Let X be a set of clocks. The set of constraints over X, denoted Ψ(X), is defined as follows:

true|x : a|ψ 1∧ψ 2, where : ∈ {≤ ,<,=,≠ ,>,≥ }, x∈X, ψ 1,ψ 2∈Ψ (X) and a is a constant.

We note that the constraints over data are also defined as conjunction of atomic formula that

compares the value of a data d∈D to a constant that can be an integer, a real, a string, or a

Boolean.

Definition 1 (Timed conversational protocol)

A timed conversational protocol of a Web service Q is a tuple (S,s0,F,M,C,X,T) such that:

• S is a set of states,

• s0 is the initial state (s0∈S),

• F is the set of final states (F⊆S),

• M is a set of messages,

• C is the set of constraints over data,

• X is the set of clocks,

• T is a set of transitions such that T⊆ S×M ×C× Ψ (X)×2
X
×S. A transition

 (s, α ,c, ψ ,Y,s’) specifies that, from a state s, the service exchanges a message that involves

data (α =?m(d): input message, α =!m(d): output message), so that the constraints over

data c and the temporal constraints ψ are verified. When the transition is fired, clocks Y can

be reset.

The conversational protocols we consider are deterministic. A conversational protocol is said to

be deterministic if for each two transitions (s,α 1,c1, ψ 1,Y1,s1’) and (s,α 2,c2, ψ 2,Y2,s2’), the

following conditions are satisfied :

• m1(d)≠m2(d), or

• c1∧ c2=false, or

• ψ 1∧ψ 2=false

The set of Web services are equipped with a bounded queue to store the incoming messages.

Example 1.

 6

Figure 2 shows the timed conversational protocols of the services introduced previously. On this

figure, the service PS has the set of states {p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16}.

The initial state is p0, and the final states are p8 and p16.

This service can send, for example, the message examination_request(sn, handicap), denoted

examination_request(sn,handicap). This message involves as data types, a security number (sn)

and the handicap of the citizen (handicap). Analogously, this service can receive messages, for

example the message pension_request(sn,age,handicap), denoted ?request-pension(sn,handicap).

PS terminates correctly its interaction when it is reaches its final state.

To specify that the prefecture sends its final decision after 48 hours and within 96 hours from

receiving the pension request, we associate a reset of a clock t1=0 to the transition that enables to

receive the request of the pension and we associate the constraint 48≤ t1≤96 to the transition that

enables to send the final decision.

In the following sections, we present the key elements to define the semantic of our model.

Clock valuation

 The semantic of timed conversational protocols is based on the notion of clock valuation v. It

associates to each clock x a real positive value
0≥

R . A clock can be reset, denoted as v(x) =0. We

say that a clock valuation v(x) satisfies a constraint ψ =x~a, denoted as v╞ψ , if v(x)~a (i.e.,

when we replace the clock x by its value, the constraint is satisfied).

Definition 2 (Clock valuation)

A valuation of the clocks of X is a function v: X
+

→R . Given a real ρ
+

∈R , we note v+ ρ the

valuation that associates to a clock x the value v(x) + ρ . If Y is a subset of X, [0Y ←]v

represents the valuation v' defined by: v'(x) =0 for each x∈Y. Analogously, the data valuation u

is a mapping u: D→
D

V from data to values. The initial valuation u0 denotes the initial data

valuation, such that ∀ d∈D, u0(d)=null. In addition, at the initial configuration, the queues of the

services are empty. We say that a data valuation u(d) satisfies a constraint c=d~b, denoted u╞c, if

u(d)~b (i.e., when the data d is replaced by its value, the constraint is satisfied). The value of data

changes via operations of services.

 Timed conversations

By using the clock (resp. data) valuation notion, we define the concept of timed conversations of

conversational protocols, inspired from the notion of timed words of timed automata (Alur and al.

1994).

Let Q=(S,s0,F,M,C,X,T) be a timed conversational protocol. An execution of Q is a sequence of

pairs s0.(0 ()m d ,t0).s1…sn-1(1()n
m d

−
,tn-1).sn such that s0 is the initial state and sn is a final state.

This execution is said to be correct if when the time increases, the constraints over data and timed

constraints are satisfied.

 7

Figure 2. Web services of the e-government scenario

 8

A conversation is the set of observable messages that can be exchanged between services (Ponge.

2008).

Definition 3 (Correct timed execution)

 Let Q=(S,s0,F,M,C,X,T) be a timed conversational protocol. An execution which is a sequence

s0.(0 ()m d ,t0).s1…sn-1(1()n
m d

−
,tn-1).sn is said to be correct if:

•
0 1

...
n

t t t≤ ≤ ≤

• s0 is the initial state and sn is the final state

• i∀ ∈[1,n], (si-1,mi-1,ci-1, ψ i-1,Yi-1,si), vi-1╞ψ i-1 and ui-1╞ ci-1

A correct conversation is defined by the sequence (
0 ()m d ,t0)…(

1()n
m d

−
,tn)

For example, a correct conversation of the service THS is (?attestation_request(firstName,

familyName,sn),0).(!send_attestation(residenceAttestation),10). Such a sequence is called a timed

conversation. The set of timed conversations constitutes a timed conversational protocol.

Semantic of timed conversational protocols

The semantic of timed conversational protocols is defined using a transition relation over

configurations made of a state, a clock and data valuation. A service remains in the same state s

without triggering a transition when the time increments, if there is no transition (s, α ,c,ψ X,Y,s')

such that the constraints over data c and the timed constraints ψ X are satisfied, where ψ X

⊆ Ψ (X) and α is either an output message !m(d) or an input message ?m(d) which is

available in the queue. In an asynchronous communication, when a message is sent, it is inserted

in a message queue, and the receiver consumes (i.e. receives) the message while it is available in

the queue.

Definition 4 (Semantic of timed conversational protocol of an asynchronous service)

Let P = (S,s0,F,M,C,X,T) be a conversational protocol and Que the associated empty queue. The

semantic is defined as a labeled transition (Γ ,γ 0,→), where Γ ⊆ S ×VT×UD is the set of

configurations, such that VT is a set of timed valuations, UD is the set of data valuation, γ 0 =

(s0,u0,v0) is the initial configuration, and → is defined as follows:

• Elapse of time: (s,u,v)
tick

→ (s,u,v+ ρ)

• Location switch: (s,u,v)
α

→ (s',u',v'), if ∃ t = (s, α ,c,
X

ψ ,Y,s') such that u╞ c and v╞

ψ and ∀ y ∈Y, v'(y)=0, ∀ x∈X\Y, v'(x) = v(x), where Y⊆X, and

o If α =!m(d) then Que:=Que+m(d)

o If α =?m(d) and m(d)∈Que then Que:=Que-m(d)

Example 2.

When the PS service, shown in Figure 2, reaches its state p7 and the value of the clock t1 is equal

to 30, i.e., less than 48 hours, then the service remains on the state p7 while the time increases.

When the value of the clock t1 is equal or bigger than 48 and less or equal to 96 hours, then the

transition (p7,!notification(pension_decision,48),48≤ t1≤ 96,p8) is fired. When this happens, some

 9

calculation can be fulfilled and some data are updated. As the transition allows to send the

message notification(pension_decision), then it will be added into the queue of the receiver

service.

Next, we will present the intuition behind the choreography compatibility problem.

TIMED COMPATIBILITY PROBLEM

In this section, we discuss informally and intuitively by using examples the timed choreography

compatibility problem and the related issues. Since the communication time is very small, we

neglect it in our framework.

Example 3.

Let us first consider the two untimed conversational protocols respectively of Q and Q' services

depicted in Figure 3. In spite that both services do not produce and consume their messages in the

same order, the two asynchronous services are fully compatible. The service Q starts by sending

the message m0(d0,d1) which becomes available in the queue of Q'. On the other side, Q' sends the

message m2(d3). After that, Q' consumes the message m0(d0,d1) and then it sends the message

m1(d2) which is added to the queue of Q. Therefore, Q can consume the message m1(d2) and then

the message m2(d3). Using the existing work, these two services will be considered as

incompatible although they can succeed an interleaved execution.

Figure 3. Untimed compatible asynchronous Web services

Augmenting the conversational protocols of asynchronous services by timed properties lays

important challenges. Particularly, the clocks used to define timed properties are local and are

mutually independent. At the same time, in our work, we do not assume that timed properties are

synchronized over messages, i.e., the timed constraints of the different services are not defined

over clocks which are necessarily reset at the same time. Consequently, when the services interact

together, implicit timed conflicts can arise. To illustrate this issue, let us consider the following

example.

With the two timed conversational protocols of the Q and Q' services depicted in Figure 4. The

service Q starts by sending the message m0(d0,d1). So this latter becomes available in the queue of

Q'. On the other hand, Q' can send the message m2(d3) that can be stored in the queue of Q. The

service Q remains blocked, since the message m1(d2) is not yet available. But Q' can consume the

message m0(d0,d1) which has been already sent by Q. Once consumed, Q' sends the message

m1(d2) after 20 and within 40 units of time from consuming the message m0(d0,d1). Consequently,

 10

the message m1(d2) becomes available in the queue of Q after 20 units of time from consuming

the message m0(d0,d1). In that case, Q will be able to consume the message m1(d2) after 20 units

of time. Finally, Q must consume the message m2(d3) within 10 units of time. However, this

message can be consumed after consuming the message m1(d2), i.e., after 20 units of time. In fact,

the message m1(d2) can be sent (becomes available) by Q' after 20 units of time. So, the message

m2(d3) must be consumed within 10 units of timed but it is possible to consume it only after 20

units of time: these two constraints are conflicting.

Figure 4. Incompatible timed asynchronous services

We present now another example in which we show another kind of timed conflict.

Example 4

Let us consider the two conversational protocols of the two services P and S depicted in Figure 5.

The service P starts by sending the message m0(d0) to the service S. Then, the service S sends the

message m1(d1) the service P must receive within 10 units of time. When the service S sends the

message m1(d1), the clock x is reset and the clock value of y must be at most 10 units of time. So,

the difference between the two clocks x and y must be at most 10 units of time (we suppose that

the time of communication is negligible). After that, the service P sends the message m2(d1,d0)

after 20 units of time from sending the message m0(d0). The service S must receive the message

m2(d1,d0) within 5 units of time from sending the message m1. As said previously, the difference

between the two clocks x and y must be at most 10 units of time. However, when the two services

exchange the message m2(d1,d0), the value of the clock x must be at most 5 units of time (5x ≤)

and the value of the clock y must be at least 20 units of time (20y ≥). According to these values,

the difference between the two clocks x and y can never be at most 10 units of time.

Figure 5. Timed incompatibility due to the difference between the clocks values

 11

This kind timed incompatibility, such as the incompatibility due to the difference between the

clocks, cannot be detected by existing works on the compatibility of Web services.

Compatibility classes

In choreography, heterogeneity of services can have a partial or a total impact on their

collaboration. Based on the kind of the impact of the heterogeneity, we consider three general

classes: (1) full compatibility, (2) partial compatibility, and (3) full incompatibility. The full and

partial compatibility classes gather two sub-classes: (a) perfect compatibility and (b) non-perfect

compatibility.

Full compatibility

This first class is assigned to a set of Web services that can collaborate without an eventual

deadlock. For example, the two services illustrated in Figure. 6 are fully compatible. In fact, the

two services can exchange the two following conversations in which no deadlock arises:

• ((!m0(d1), t1=0) .!m3(d0) . (!m2(d2,d1), t2=0) . (?m2(d2,d1), 168 ≤ t1 ≤ 336). (?m0(d1), t2≤

336) . ?m3(d0))

• ((!m3(d1), t2=0) . !m4(d1) . (!m5(d1), t2≤ 24) . ?m5(d1).(?m4(d1), t2=0) . (?m3, t2 ≤ 48))

Figure 6. Full compatibility

Since we deal with asynchronous communicating services, the messages can be sent without

synchronization, i.e., during an interaction, output messages can be not consumed. For this reason,

we distinguish two subclasses: (1) full and perfect compatibility and (2) full but non-perfect

compatibility.

1. Perfect and full compatibility: A set of Web services is said to be perfectly and fully

compatible, if all their interactions do not contain deadlocks and at the same time, all the

produced messages are consumed. For example, the two services illustrated in Figure. 6

are perfectly and fully compatible.

2. Full but non-perfect compatibility: The full but non-perfect compatibility concerns

services that can interact correctly without deadlocks but at the same time, during their

interactions, there are messages that are produced but not consumed, i.e., there are extra

messages. For example, the two services illustrated in Figure. 7 are fully but not-perfectly

 12

compatible. In fact, the service Q can send the extra message m3(d4) that will not be

consumed by Q’. So when the services are interacting together, there are no deadlocks

but there is at least one extra (unuseful) message. This case is called full but non-perfect

compatibility.

Figure 7. Full but non-perfect compatibility

Partial compatibility

This second class is assigned to a set of services that can partially collaborate correctly. Some

interactions of services can be incompatible while other interactions can be correct. As we can

see in Figure. 8, the two services can perform correctly the conversation:

((!m0(d1),t1=0),!m3(d0),(!m2(d2,d1),t2=0),(?m0(d1),t2≤ 336),(?m2(d2,d1),168≤ t1≤ 336),?m3(d0))

However, the conversation

((!m5(d1),(!m3(d5),t1=0),(?m3(d5),t2=0),(!m4(d2),t2≥ 48),?m4(d2),(?m5(d1),t1≤ 24))

is not correct, since the message m5(d1) must be consumed within 24 units of time from sending

the message m3(d5) and at the same time m5(d1) must be consumed after consuming m4(d2), i.e.,

after 48 units of time. That means that the message m5(d1) must be consumed so that 48≤ t1≤ 24,

which represents a timed deadlock. Since the two services can achieve correctly at least one

interaction, and fail at least one interaction, we say that the two services are partially compatible.

Figure 8. Partial compatibility

 13

Like the class of full compatibility, we distinguish two subclasses of partial compatibility: (1)

perfect partial compatibility and (2) not-perfect partial compatibility.

1. Perfect partial compatibility: A set of Web services is said to be perfectly and partially

compatible, if they fail at least one conversation and at the same time, during all the

correct conversations, all the produced messages are consumed.

2. Not-perfect partial compatibility: When a set of Web services are partially compatible

and at the same time, there exists at least one correct interaction during which there is at

least one extra message, we say that the services are partially but non-perfectly

compatible. For example, the two services depicted in Figure 9, fail the conversation

(!m5(d1),(!m3(d5),t1=0),(?m3(d5),t2=0),(!m4(d2),t2≥48),?m4(d2),(?m5(d1),t1≤ 24))

but at the same time, they succeed the conversation

((!m0(d1),t1=0),!m3(d0),(!m2(d2,d1),t2=0),(?m0(d1),t2 ≤ 336),(?m2(d2,d1),168 ≤ t1 ≤ 336),!m5(d0),

?m3(d0))

But, in this conversation, the message m5(d0) is a message that will not be consumed, i.e., it is

an extra message.

s0

s1!m0(d1) s2
!m3(d0)

?m2(d2,d1)

s4 s5!m3(d5) ?m4(d2) ?m5(d1)

168≤t1≤336
t1=0

t1≤24
t1=0

s'0

s'1
?m0(d1)

s'2
?m3(d0)!m2(d2,d1)

s'4 s'5
?m3(d5)

!m5(d1) !m4(d2)

t2≤336t2=0

48≤t2t2=0

s3

s6

s'4

s'6

s'3
!m5(d0)

Figure 9. Partial but non-perfect compatibility

Full incompatibility

This class of compatibility is attributed to a set of Web services for which a deadlock arises in all

their interactions. For example, the services illustrated in Figure. 10 fail all their interactions. In

fact, Q’ sends the message m1(d2,d1) and Q consumes it. Then, the two services remain blocked

while waiting respectively the messages m2(d0) and m3(d1).

In the second conversation, the same problem described in the previous section arises. As the two

services fail all their conversations, so we say that they are fully incompatible.

 14

Figure 10. Full incompatibility

In order to handle the eventual timed conflicts, we propose an UPPAAL model checker based

approach. To do so, we first propose some transformation to handle timed asynchronous services.

FROM CONVERSATIONAL PROTOCOLS TO UPPAAL

TIMED AUTOMATA

UPPAAL is a model checker for the verification and simulation of real time systems. An

UPPAAL model is a set of timed automata, clocks, channels for systems (automata)

synchronization, variables and additional elements (Larsen and al. 1997).

Each automaton has one initial state. Synchronization between different processes can take place

using channels. A channel can be written into (denoted as channel_name!), and can be read

(denoted as channel_name?). A channel can be defined as urgent to specify that the

corresponding transition must be fired as soon as possible, i.e. immediately and without a delay.

The conditions associated to transitions, called guards, specify that a transition can be fired if the

corresponding guards are satisfiable. The conditions associated to states, called invariants, specify

that the system can stay in the state while the invariant is satisfiable. Variables and clocks can be

associated to processes (automaton). Conditions on these clocks and variables can be associated

to transitions and states of the process.

The UPPAAL properties query language is a subset of Computation Tree Logic (CTL)

(Henzinger and al. 1994). The properties that can be analyzed by UPPAAL are:

• ∀ψ : for all the automata' paths, the property ψ is always satisfiable, i.e., for each

transition (or a state) of each path, the property ψ is satisfiable.

• ψ∀◊ : for all the automata' paths, the property ψ is eventually satisfiable, i.e., for each

path , there is at least one transition (or a state) in which the property ψ is satisfiable.

• ∃ψ : there is at least a path in the automata such that the property ψ is always

satisfiable, i.e., there is at least one path such that for each transition (or a state), the

property ψ is satisfiable.

• ψ∃◊ : there is at least a path in the automata such that the property ψ is eventually

satisfiable, i.e., there is at least one transition (or a state) of at least one path in which the

property ψ is satisfiable.

• ψ → ϕ : when ψ holds, ϕ must hold.

 15

In order to perform a model checking by using UPPAAL, we propose a set of transformation

steps, which are:

• Messages abstraction

• Data constraints abstraction

• Invariant association

• Urgent channel association

• Specifying final states

Abstraction of messages by variables

As mentioned above, UPPAAL holds the notion of channels to synchronize real systems. By

using such property, only synchronous services can be analyzed (Guermouche and al. 2008-d). As

our framework deals with asynchronous services, hence, the use of the notion of channels is

inadequate. To succeed the verification of choreography compatibility of asynchronous services,

we propose the idea of messages abstraction that correspond to the notion of channels in

UPPAAL.

To do so, we propose the mapping of messages to variables. The idea is to abstract each message

by a variable whose initial value is zero. We map the common messages (i.e., the same signature)

of the conversational protocols to the same variable. To do so, we first compute the common set

of messages of the timed conversational protocols. The purpose of the former is to abstract

(represent) all the messages that have the same signature, i.e., the same name and same data by

the same variable. For example, if one service can send (resp. receive) the message m1(d1,d2) and

the other service can receive (resp. send) these message m1(d1,d2), we abstract the messages by

using, for example, the variable m1.

Abstraction by incrementing and decrementing variables

The services are equipped with a queue to store the incoming message. When a message is sent

(resp. consumed), it will be inserted to (resp. removed from) the queue. So in this case the

occurrences number of the message is incremented (resp. decremented) by one. In order to

simulate the queue transactions, we propose to represent the notion of output (resp. input)

message by an incrementing operation (resp. decrementing) of the variables value associated to

messages.

When a message is sent, we increment the value of the associated variable by one. When this

message is received, we decrement the value of the associated variable by one. Note that, a

message can be consumed if it is available in the queue. This latter is equivalent to check if the

value of the corresponding variable is not equal to zero. So a transition that enables an input

message can be fired if the corresponding variable is bigger than zero. We associate to such

transitions the constraint that allows to check if the value of the associated variable is bigger than

zero.

Definition 5. (Messages abstraction)

Let Q1=(S1,s01,M1,Cn,X1,T1), …, Qn=(Sn,s0n,Mn,Cn,Xn,Tn) be n conversational protocols and R be a

set of variables that have zero as initial value. We define the abstraction function Abs: M→R

that maps messages to variables. For each m(d)∈
1

n

i=
U Mi and r∈R, m(d)→ r is defined as :

 16

• (si,!m(d),c,ψ ,Y, si') → (si,r++,c,ψ ,Y,si')

• (si, ?m(d),c,ψ ,Y,si') → (si,r--,r>0,c,ψ ,Y,si')

Example 5

As we can see in Figure 11, the set of message of the two services Q and Q’ is

{m0(d1),m3(d0),m2(d2,d1),m1(d1),m2(d3)}. We abstract respectively each message by a variable {m0,

m3, m21, m1, m22}. The transition (s0,!m0(d1),s1) of Q enables to send the message m0(d1). Once this

message is sent, it will be added to the queue of Q’. So, we represent the sending operation of

messages by incrementing operation of the corresponding variable. So the transition (s0,!m0(d1),s1)

will be represented by the transition (s0,m0++,s1). We apply this step to all the transitions that

enable output messages.

s0 s1

!m0(d1)

s2 p0 p1

!m1(d1)
!m3(d0)

?m2(d2,d1)

!m2(d3)

s0 s1 s2 p0 p1

m1++

m3++

m21--

m21>0

m0++

 Messages

 m0(d1)

 m3(d0)

 m2(d2,d1)

m1(d1)

 m2(d3)

 Variables

 m0

 m3

 m21

m1

 m22

 Output/Input messages

 !m0(d1)

 !m3(d0)

 ?m2(d2,d1)

!m1(d1)

 !m2(d3)

 Incrementation/decrementation

 m0++

 m3++

 m21--/ si m 21>0

m1++

 m22++

Abstraction of messages by

variables

Abstraction of output/input messages by

incrementation/decrementation operations

Q'Q

Q Q'

s3

p2

s3

p2

m22++

Figure 11. Abstraction of messages

When a transition enables an input message, we propose to represent it by decrementing the

corresponding variable. For example, when the transition (s2,?m2(d2,d1),s3) is fired, the message

m2(d2,d1) will be consumed. So, we abstract the message ?m2(d2,d1) by m2--. On other side, this

transition can be fired if the message is available in the queue. This condition is equivalent to

check that the value of the corresponding variable is bigger than zero. By applying this step, the

transition (s2,?m2(d2,d1),s3) will be represented by the transition (s2,m2--,m2>0,s3).

 17

Abstraction of data constraints

As said previously, our model considers constraints over data. These constraints can be specified

as constraints over non-timed variable. To analyze these constraints by UPPAAL, the values of

the variables must be known. However, as the compatibility analysis we propose is done at

design time, the values of the variables cannot be known in advance. Consequently, the

constraints over data cannot be correctly considered. To consider constraints over data, we

propose to abstract again the variables of messages resulting from the process of abstraction of

messages described above following the constraints of data. The idea is to compute the set of

transitions that hold the same variable. If the set of solutions of the data constraints associated to

these transitions is disjoined, then we abstract differently the variables. Whilst, if the set of

solution is not disjoined, then we remove only the data constraints without changing the variables.

To explain this issue, let us present the following example.

Example 6

Via this example, we will show how we apply the data constraints abstraction process. As we can

see, the two services, illustrated in Figure 12, have three common transitions (i.e., transitions that

hold the same variable):

• (s0,m0++,d0<100,s1) and (p1,m0++,d0>120,p2)

• (s1,m3++,d3>10,s2) and (p2,m3--, m3>0,d2<10,p3)

• (s2,m21--, m21>0,d1<50,s3) and (p0,m21++,d1<80,p1)

Let us start by the first pair of transitions (s0,m0++,d0<100,s1) and (p1m0++,d0>120,p2). We can

remark that the set of solutions of the constraints d0<100 and d0>120 is disjoint, i.e., Sol(d0<100)

∩ Sol(d0>120)= ∅ . Hence, by applying the data constraints abstraction process, we substitute

m0++ of the transition (p1,m0++,d0>120,p2) by another variable m0’. So the transition becomes

(p1,m0’++,p2)

Figure 12. Abstraction of data constraints

 18

Now, we check the second pair of transitions (s1,m3++,d3>10,s2) and (p2,m3--, m3>0,d2<10,p3).

The first transition can be fired if the value of the data d3 is bigger than 10. The second transition

can be fired if the value of the variable d2 is less than 10. Since the data constraints are specified

over different data, then when abstracting data constraints, we do not substitute the variable m3 of

the two transitions.

Finally, we verify the last pair of transitions (s2,m21--, m21>0,d1<50,s3) and (p0,m21++,d1<80,p1).

We can see that the set of solutions of data constraints d1<50 and d1<80 is not disjoint. The two

constraints have a common set of solutions, i.e., Sol(d1<50) ∩ Sol(d1<80) ≠ ∅ . Consequently,

when abstracting data constraints, we do not substitute the variable m21.

Invariant association

UPPAAL timed automata holds the notion of invariant. This latter specifies that the system can

stay in the state while the associated invariant is satisfiable. Whilst, in our model, we do not

consider invariant. The semantic we define allows to a transition to be fired as soon as possible

(once the associated guard is satisfiable). In UPPAAL timed automata semantic, when a transition

has a guard of the form x≥ v (resp. x>v) and at the same time the source state of this transition

does not have an invariant, the process can stay infinitely in this state. Consequently, such

property gives rise to a deadlock. To prevent such setting, we associate for each state source of a

transition having a guard of the form x≥v
1
 (resp. x>v) an invariant of the form x≤ v (resp. x<v)

to constrain the service to stay a limited time in the state.

Example 7

Figure 13 shows a timed conversational protocol to which we associate an invariant.

s0

s1
m0++ s2

m3++ m2--

s4 s5m4++ m5++ m6--

168≤t1≤336
t1=0

t2≤24
t2=0

s0

s1 s2

s4 s5

168≤t1≤336
t1=0

t2≤24
t2=0

t1≤168

Invariant

s3

s6

s3

s6

m2>0

m6>0

m0++
m3++ m2--

m2>0

m4++

m5++

m6>0

m6--

Figure 13. Invariant association

1
 The value used to define the invariant can be any value v’ such that v’≥ v

 19

When analyzing this protocol with UPPAAL, a deadlock arises at the transition (s2,m2--,m2>0,

168≤ t1≤ 336, s3) . In fact, this transition holds the constraint 168≤ t1 and according to the

semantic used in UPPAAL, the service can stay infinitely in the state s2. To constrain the service

to leave the state s2, we associate the invariant t1≤ 168.

Association of urgent broadcast empty channel to transitions

In the previous section, we have shown how we map the states which are a source state of a

transition having a constraint of the form x≥v (resp. x>v). As in the model we have defined, the

transitions of the services must be fired as soon as possible (i.e., when the guards are satisfiable),

we associate to the transitions that do not have guards an urgent broadcast output channel. This

later aims to simulate the fact that transitions must be fired as soon as possible.

In UPPAAL, a channel cv can be defined as urgent as follows:

urgent chan cv;

As the UPPAAL model is based on messages synchronization concept (i.e., a message can be sent

only if there is the input counterpart), so to be able to send message without synchronization with

an input counterpart, we define the urgent channel as a broadcast channel.

urgent broadcast chan cv;

Example 8

In Figure 14, we associate to the transitions that do not hold timed constraints the output urgent

channel cv. The aim of this is to constrain transitions to be fired as soon as possible.

Figure 14. Association of urgent output channel

Defining final states

 20

A correct interaction of a service is the interaction that terminates in a final state. In the standard

timed automata handled by UPPAAL, there is no final state notion. As shown in Figure 15, to

simulate the final states by UPPAAL timed automata, we define a particular state called final that

represents the correct termination of the services.

The result of the transformation steps we described above is a set of UPPAAL timed automata.

These automata preserve the semantic we consider in timed conversational protocol of

asynchronous services.

s1

m1++

s2

m2--

m2>0
m3++

ε

ε
m4++

s3 s4

s1

m1++

m2--

m2>0 m3++

m4++

s3 s4

s2 final

Figure 15. Defining final states in timed automata handled by UPPAAL

Definition 6. (Transformed timed conversational protocol)

UPPAAL supported timed automata Q resulting from the transformation process is defined by the

tuple (S,s0,sf,cu,R,X,VM,T,Inv) such that:

• S is the set of states

• s0 is the initial state

• sf is the final state

• cu is the urgent channel

• R is the set of variables used to abstract messages

• X is the set of clocks

• VM is the set of constraints over variables of R

• T is the set of transitions such that: T⊆S×OP(R)×VM× Ψ (X)×2
X×S which specifies

that when a transition is fired, we perform an operation OP (we increment the variable

r++: corresponds to an output message, decrement the variable r--: corresponds to an

input message), a constraint over the variables VM (if OP(R)=r--, VM=r>0, else

VM=∅), a timed constraint, and the set of clocks to reset).

• Inv: S→ Ψ (X) associates an invariant to states

Figure 16 depicts the timed automata specification of the motivating example depicted in Figure 2

resulting from the abstraction process.

Next, we present the formal primitives we propose to characterize the compatibility class of a set

of timed asynchronous Web services.

 21

Figure 16. UPPAAL automata resulting from the abstraction process of the e-

government scenario services

FORMAL ASYNCHRONOUS COMPATIBILITY CHECKING

In this section, we present compatibility checking with the model checker UPPAAL. We define

five compatibility classes: (1) full and perfect compatibility, (2) full but non-perfect compatibility,

(3) perfect partial compatibility, (4) partial but non-perfect compatibility, and (5) full

incompatibility.

 22

Perfect full compatibility

In general, a set of Web services constitute a full compatible choreography if they can interact

without an eventual blocking. As we deal with asynchronous services, the output messages are

sent without synchronization with the corresponding input. As introduced above, it is not

sufficient to check only if there is no a deadlock when the services interact together, but, it is

important to check that all the sent messages are consumed. So, a set of services constitutes a full

and perfect compatible choreography if: (1) they collaborate together without any eventual

blocking and (2) at the same time, all the generated messages are consumed.

 Formally, checking that a set of Web services can interact without an eventual blocking is

equivalent to check that the services reach their final states in all interactions. At the same time,

when the services reach their final states, the fact that all the sent messages must be consumed is

formally equivalent to check that, when the services reach their final states, all the variable values

are equal to zero. Remember that, the value of the variables represents the number of the

occurrences of the corresponding sent message.

Let P1,…,Pn be n (asynchronous) services and R1,…,Rn be the corresponding set of variables. The

set of fully and perfect compatible Web services is specified by the following CTL formulas:

 (1)

Example 9.

According to the motivating example, PS, HAS, and THS services constitute a full and perfect

compatible choreography iff:

Non-perfect full compatibility

When a set of Web services can collaborate together without an eventual blocking but at the same

time, during their interaction, there are messages that cannot be consumed, i.e., extra messages,

we say that the services are fully but non-perfectly compatible.

∀ ◊ PS.final ∧ HAS.final ∧THS.final ∧

PS.final ∧ HAS.final ∧ THS.final → disponibility_notification == 0 ∧

driving_control == 0 ∧ handicapped_card==0 ∧ handicapped_card_request==0 ∧

licenceForm==0 ∧ driving_licence_reques==0 ∧ driving_licence_request==0 ∧

notification2==0 ∧ notification1==0 ∧ notification3==0 ∧ examination==0 ∧

form==0 ∧ residence_attestation==0 ∧ examination_request==0 ∧ attestation==0 ∧

form_to_fill==0 ∧ pension_request==0 ∧ send_attestation==0 ∧

civil_statut_request==0 ∧ attestation_request== ∧ sendRepport==0
∧ notification6==0 ∧ notification5==0 ∧ notification4==0 ∧ notification==0 ∧

sendResult==0 ∧ cancel==0 ∧ meetingConfirmation==0 ∧ meetingProposition==0
∧ medical_examination==0

∀ ◊ P1.final ∧… Pn.final ∧

P1.final ∧ … ∧ Pn.final → r1==0

∧…∧ rm==0,

Where ri {R1,…,Rn}

 23

Formally, a set of Web services are said to be fully and non-perfectly compatible if via all the

paths, the services reach their final state and at the same time, there exists at least one variable

whose value is bigger than zero. This latter can be specified by the following CTL formulas:

 (2)

Example 10.

The three services PS, HAS, and THS are said to be fully but non-perfectly compatible iff:

Partial but non-perfect compatibility

As services are heterogeneous they can fulfill incorrect conversations. A conversation during

which a service remains blocked is called incorrect. A set of Web services are not fully

compatible when the set of possible conversations of the services hold at least one incorrect

conversation.

Formally, a set of Web services are not fully compatible if there exists at least a path of their

automata that cannot reach the final state. This later can be specified as the following formula:

 (3)

When a set of Web services can achieve correctly a set of conversations and at the same time they

fail other conversations, we say that the services are partially compatible. In this section, we

define particularly the partial but non-perfect compatibility class. This class is assigned to a set of

Web services that are partially compatible and at the same time, there is at least one correct

conversation during which there is at least one extra message. This is formally specified by the

following CTL formulas:

∀ ◊ PS.final ∧ HAS.final ∧THS.final ∧
∃◊ (PS.final ∧ HAS.final ∧ THS.final → disponibility_notification>0 ∨

driving_control >0 ∨ handicapped_card>0 ∨ handicapped_card_request>0 ∨

licenceForm>0 ∨ driving_licence_reques>0 ∨ driving_licence_request>0 ∨

notification2>0 ∨ notification1>0 ∨ notification3>0∨ examination>0 ∨ form>0 ∨

residence_attestation>0 ∨ examination_request>0 ∨ attestation>0 ∨ form_to_fill>0

∨ pension_request>0 ∨ send_attestation>0 ∨ civil_statut_request>0 ∨

attestation_request>0 ∨ sendRepport>0 ∨ notification6>0 ∨ notification5>0 ∨

notification4>0 ∨ notification>0 ∨ sendResult>0 ∨ cancel>0 ∨

meetingConfirmation>0 ∨ meetingProposition>0 ∨ medical_examination>0)

∃¬P1.final∨…∨ ∃¬Pn.final

∀ ◊ P1.final ∧… ∧ Pn.final ∧

∃◊ (P1.final ∧… ∧ Pn.final imply r1>0 ∨ …
∨ rm>0) Where ri∈{R1,…,Rn}

 24

 (4)

Formally, a set of Web services is said to be partially but non-perfectly compatible if the formulas

(3) and (4) are satisfied.

Example 11.

The three services PS, HAS, and THS are said to be partially but non-perfectly compatible iff:

Partial and perfect compatibility

The partial and perfect compatibility class characterizes the fact that services are not fully

compatible but at the same time, they can fulfill correctly conversations during which all the

produced messages are consumed.

Formally, a set of Web services can achieve correctly at least one conversation so that all

produced message are consumed is equivalent to check that there exists at least one path so that

all the services reach their final state and at the same time, when the final state is reached, the

value of all variables is equal to zero. This is specified by the following CTL formula:

 (5)

A set of Web services whose conversational protocols do not verify the formula (4) (i.e., the

partial but non-perfect compatibility is not verified) and at the same time, verify the formulas (3)

and (5) is said to be partially and perfectly compatible.

∃¬PS.final ∨ ∃¬HAS.final ∨ ∃¬THS.final ∧
∃◊PS.final ∧ HAS.final ∧THS.final ∧

∃◊ (PS.final ∧ HAS.final ∧ THS.final → disponibility_notification>0 ∨

driving_control >0 ∨ handicapped_card>0 ∨ handicapped_card_request>0 ∨

licenceForm>0 ∨ driving_licence_reques>0 ∨ driving_licence_request>0 ∨

notification2>0 ∨ notification1>0 ∨ notification3>0∨ examination>0 ∨ form>0 ∨

residence_attestation>0 ∨ examination_request>0 ∨ attestation>0 ∨ form_to_fill>0
∨ pension_request>0 ∨ send_attestation>0 ∨ civil_statut_request>0 ∨

attestation_request>0 ∨ sendRepport>0 ∨ notification6>0 ∨ notification5>0 ∨

notification4>0 ∨ notification>0 ∨ sendResult>0 ∨ cancel>0 ∨

meetingConfirmation>0 ∨ meetingProposition>0 ∨ medical_examination>0)

∃◊P1.final∧…∧Pn.final ∧

∃◊ (P1.final ∧ … ∧ Pn.final → r1>0 ∨ … ∨

rm>0) where ri∈{R1,…,Ri,…,Rn}

∃◊P1.final∧…∧Pn.final ∧

∃◊ (P1.final ∧ … ∧ Pn.final → r1==0 ∧ … ∧

rm==0) where ri∈{R1,…,Ri,…,Rn}

 25

Example 12.

The three services PS, HAS, and THS are said to be partially and perfectly compatible if:

Full incompatibility

When a set of n Web services do not even constitute a partial compatible choreography, we say

that the services build a fully incompatible choreography. Full incompatibility characterizes the

fact that the set of services cannot, absolutely, collaborate together. Formally, a set of services are

fully incompatible, if for all the paths, all the services cannot reach the state 'final'. This property

is specified as the following CTL formulas:

Example 13.

The PS, HAS, THS services are said to be fully incompatible if:

Exprimentation

In order to validate the proposed approach, a prototype of the framework depicted in Figure 17

has been implemented in Java. CTP2UTA (Conversational Timed Protocol to UPPAAL Timed

Automata) component is a parser that transforms a given timed conversational protocol into

UPPAAL timed automata, according to the mapping rules described above.

Since the UPPAAL supported timed automata are described as XML document, the CTP2UTA

has been implemented as a XML parser. This later was developed using the application

programming interface JDOM (Java Document Object Model).

∀¬PS.final∧ ∀¬HAS.final∧ ∀¬THS.final

∃¬PS.final ∨ ∃¬HAS.final ∨ ∃¬THS.final ∧
∃◊PS.final ∧ HAS.final ∧THS.final ∧

∃◊ (PS.final ∧ HAS.final ∧ THS.final → disponibility_notification==0 ∧

driving_control ==0 ∧ handicapped_card==0 ∧ handicapped_card_request==0 ∧

licenceForm==0 ∧ driving_licence_reques==0 ∧ driving_licence_request==0 ∧

notification2==0 ∧ notification1==0 ∧ notification3==0 ∧ examination==0 ∧

form==0 ∧ residence_attestation==0 ∧ examination_request==0 ∧ attestation==0

∧ form_to_fill==0 ∧ pension_request==0 ∧ send_attestation==0 ∧

civil_statut_request==0 ∧ attestation_request==0 ∧ sendRepport==0

∧ notification6==0 ∧ notification5==0 ∧ notification4==0 ∧ notification==0 ∧

sendResult==0 ∧ cancel==0 ∧ meetingConfirmation==0 ∧ meetingProposition==0

∧ medical_examination==0)

∀¬P1.final∧…∧ ∀¬Pn.final

 26

Timed conversational
protocols

CTP2UTA

UPPAAL timed
 automata

UTA2CTL

CTL formulas

UPPAAL checker

Choreography
compatibility class

Figure 17. The underlying architecture of the compatibility framework

According to the generated UPPAAL timed automata, UTA2CTL (UPPAAL Timed Automata to

CTL formulas) component generates the CTL formulas that characterize the choreography

compatibility classes. These formulas associated to the generated UPPAAL timed automata of the

services are then checked by the UPPAAL model checker. Figure 18 shows a snapshot of the

CTP2UTA tool.

RELATED WORK

Checking and analyzing in general Web services features is an important investigation (Bordeaux

and al. 2004, Benatallah-a and al. 2004-a, Benatallah-a and al. 2004-b, Benatallah and al. 2005-a,

Diaz and al. 2005, Diaz and al. 2006, Ponge 2008, Kazhamiakin and al. 2006-a, Kazhamiakin and

al. 2006-b, Berardi and al. 2005, Benatallah and al. 2006, Guermouche and al. 2008-a,

Guermouche and al. 2008-b, Guermouche and al. 2009-a, Guermouche and al. 2009-b,

Guermouche and al. 2010, Massimo and al. 2001). Particularly, in this paper we are interested in

the compatibility analysis of a choreography in which services support timed asynchronous

communicating services.

In (Bordeaux and al. 2004, Benatallah and al. 2004-a, Benatallah and al. 2004-b), authors

consider the sequence of messages that can be exchanged between two synchronous Web services.

Considering only the message exchange sequences is not sufficient. To succeed a conversation,

other metrics can have an impact such as timed properties. The latter are not considered in

(Bordeaux and al. 2004). Another important remark is that in (Bordeaux and al. 2004), authors

consider synchronous Web services. Such assumption is very restrictive since two services can

succeed a conversation in spite that they do not support the same branching structure.

The compatibility framework presented in (Ponge 2006, Ponge and al. 2007), is an extension of

the framework presented in (Benatallah and al. 2005-b). It considers a more expressive timed

 27

constraints model. Although powerful, in some cases, the compatibility framework cannot detect

some timed conflicts due to non-cancellation
2
 constraints.

Figure 18. Screenshot of CTP2UTA tool

In fact, the authors deal only with synchronous communicating services and discovering the

timed conflicts based on synchronizing the corresponding timed properties over messages.

However, in case of asynchronous Web services, this framework cannot be applied to discover

the eventual timed conflicts. Like the work presented in (Ponge 2006, Ponge and al. 2007),

(Guermouche and al. 2008-a), handles only synchronous services.

In (Eder and al 2008), the authors handle the timed conformance problem. The timed

conformance problem consists in checking if a given timed orchestration satisfies a global timed

choreography. In this framework, the authors deal with timed cost (i.e., the delay) of operations.

According to our work, our aim is to detect deadlocks that can arise when a set of Web services

are interacting altogether. Whilst in (Eder and al. 2008), the authors are not interested in

analyzing the compatibility of a choreography but only in checking if a given orchestration is

conform with a choreography. So, one of the assumption on which the work presented in (Eder

and al. 2008), is that the choreography does not hold timed conflicts.

Regarding our previous work, in (Guermouche and al. 2009-a, Guermouche and al. 2009-b,

Guermouche and al. 2010) we present a framework for analyzing the compatibility of Web

2
 In (Ponge and al. 2007) the non-cancellation constraints are called C-Invoke. They specify a time window

within which a given message can be fired. Outside the window, the transition is disabled (exchanging the

message results in an error).

 28

services. (Guermouche and al. 2009-b), presents an algorithm to analyze a compatibility of Web

services based on the clock ordering process proposed in (Guermouche and al. 2008-e). This

work is limited to discover only some kind of timed conflicts that do not consider other eventual

timed conflicts that can arise when Web services interact together. In (Guermouche and al. 2009-

a), we propose a model checking approach for analyzing the compatibility of Web services. This

work considers only three general compatibility classes. Moreover, (Guermouche and al. 2009-a)

do not consider data flow and data constraints when analyzing the choreography compatibility.

CONCLUSION

In this paper, we presented a formal framework for analyzing the compatibility of a choreography.

Unlike the existing approaches, this framework caters for timed properties of asynchronous Web

services. We presented how to model the timed behavior of Web services. To model timed

properties, we propose to use the standard clocks of standard timed automata. In a choreography,

when the services are interacting together, timed conflicts can arise. In order to handle timed

deadlocks, we proposed an approach based on the model checker UPPAAL.

Since we deal with timed asynchronous services, the use of the channel notion is inadequate. This

notion of channels allows to analyze only synchronous services. Moreover, UPPAAL does not

take into account constraints over data semantics. In order to handle asynchronous services

augmented with data flow and data constraints, we proposed a set of abstractions. By using the

result of these abstractions, we presented a set of CTL formulas that characterize the different

choreography compatibility classes we have defined.

In our ongoing work, we are interested in analyzing the compatibility of a choreography in which

the instances of the involved services is not known in advance. Our aim is to provide primitives

for defining dynamically the required instances for a successful choreography. Moreover, we plan

to extend the proposed approach to support more complex timed properties when analyzing Web

services.

REFERENCES

Alur, R and Dill, D. L (1994), A theory of timed automata. Theoretical Computer Science, 126(2):183–235.

Alonso, G., Casati, F., Kuno, H.A., and Machiraju, V., (2004). Web services - concepts, architectures and

applications. Springer Verlag, Heidelberg.

Anca, M., and Igor, W., (2007). A lower bound on web services composition. In Proceedings of the 10th

International Conference on Foundations of Software Science and Computation Structures (FOSSACS'07),

volume 4423, pages 274-287, March 24-April 1, Braga, Portugal.

Benatallah, B., Casati, F., and Toumani, F., (2004-a). Web service conversation modeling : A cornerstone

for e-business automation. IEEE Internet Computing, 8(1) :46-54.

Benatallah, B., Casati, F., and Toumani, F., (2004-b). Analysis and management of web service protocols.

23rd International Conference on Conceptual Modeling.

Benatallah, B., Casati, F., Ponge, J., and Toumani, F., (2005-a). On temporal abstractions of web service

protocols. In The 17
th

 Conference on Advanced Information Systems Engineering (CAiSE ’05). Short

Paper Proceedings.

 29

Benatallah, B., Casati, F., Toumani, F., and Ponge, J., (2005-b). Compatibility and replaceability analysis

for timed Web service protocols. In 21èmes journées Bases de données Avancées (BDA’05), October 17-

20, Saint malo.

Benatallah, B., Casati, F., and Toumani, F., (2006). Representing, analysing and managing web service

protocols. Data Knowedge Engineering, 58(3) :46-54.

Benatallah, B., Hamid, R., and Nezhad, M., (2007). Service oriented architecture : Overview and

directions. In Lipari Summer School, pages 116-130, July 8-21, Lipari Island, Italy.

Berardi, D., (2005). Automatic Service Composition. Models, techniques and tools. PhD thesis, La

Sapienza University, Roma.

Bordeaux, L., Salaûn, G., Berardi, D., and Mecella, M., (2004). When are two web services compatible? In

Technologies for EServices, 5th International Workshop (TES), pages 15–28.

Bultan, T., Fu, X., Hull, R., and Su, J., (2003). Conversation specification: a new approach to design and

analysis of e-service composition. In Proceedings of the international conference on World Wide Web,

WWW 2003, pages 403–410.

Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., and Cuartero, F., (2005). Verification of web

services with timed automata. In Proceedings of the International Workshop on Automated Specification

and Verification ofWeb Sites (WWV’05), volume 157 of ENTCS, pages 19–34.

Diaz, G., Cambronero, M.-E., Pardo, J.-J., Valero, V., and Cuartero, F., (2006). Automatic generation of

correct web services choreographies and orchestrations with model checking techniques. In Advanced

International Conference on Telecommunications and International Conference on Internet and Web

Applications and Services (AICT/ICIW’06), page 186, 19-25 February, Guadeloupe, French Caribbean.

Dijkman., R., and Dumas, M., (2004). Service-oriented design : A multi-viewpoint approach. Technical

Report CTIT Technical Report Series No. 04-09, Centre for Telematics and Information Technology,

University of Twente, The Netherlands.

Eder., J., and Tahamtan, A.,. (2008). Temporal conformance of federated choreographies. In Proceedings of

the 19th International Conference on Database and Expert Systems Applications (DEXA’08), Turin,

Italy,September 1-5.

Guermouche, N., Perrin, O., and Ringeissen, C., (2008-a). Timed specification for web services

compatibility analysis. Electr. Notes Theor. Comput. Sci., 200(3):155-170.

Guermouche, N., and Godart, C., (2008-b). Toward data flow oriented services composition. In

Proceedings of the 12th International IEEE Enterprise Distributed Object Computing Conference

(EDOC'08), pages 379-385, September 15-19, Munich, Germany.

Guermouche, N., Godart, C and Benatallah, B., (2008-c). Data messaging based approach for web service

composition. In Proceedings of the IEEE International Conference on e-Business Engineering (ICEBE'08),

pages 449-454, October 22-24, Xi'an, China.

Guermouche., N., and Godart, C., (2008-d). Uppaal based approach for compatibility analysis of

synchronous web services. INRIA, Research report, 2008.

Guermouche.a., N., and Godart. C., (2008-e). Timed properties-aware asynchronous web service

composition. Proceedings of the 16th International Conference on COOPERATIVE INFORMATION

SYSTEMS (CoopIS’08), pages 44–61, Monterrey, Mexico, November 9-14.

 30

Guermouche., N., and Godart., C., (2009-a). Timed model checking based approach for we bservices

analysis. In Proceedings of the IEEE International Conference on Web Service (ICWS’09), July 6-10, Los

Angeles, CA, USA.

Guermouche., N and Godart, C., (2009-b). Asynchronous timed web service-aware choreography analysis.

In Proceedings of the 21
th

International Conference on Advanced Information Systems (CAiSE’09), June

8-12, Amsterdam, The Netherlands.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S., (1994). Symbolic model checking for real-time

systems. Information and Computation, 111(2):193–244.

Kazhamiakin, R., Pandya, P. K., and Pistore, M., (2006-a). Representation, verification, and computation

of timed properties in web service compositions. In Proceedings of the IEEE International Conference

onWeb Services (ICWS), pages 497–504.

Kazhamiakin, R., Pandya, P. K., and Pistore, M., (2006-b). Timed modelling and analysis in web service

compositions. In Proceedings of the The First International Conference on Availability, Reliability and

Security, ARES, pages 840–846. IEEE Computer Society.

Larsen, K. G., Pettersson, P., and Yi, W., (1997). Uppaal in a nutshell. In International Journal on Software

Tools for Technology Transfer.

Mecella, M., and Batini, C., (2001). Enabling italian e-government through a cooperative architecture.

IEEE Computer, 34 :200-1.

Muscholl, M., and Walukiewicz, I., (2007). A lower bound on web services composition. In Proceedings of

Foundations of Software Science and Computation Structures (FOSSACS), volume 4423 of LNCS, pages

274–287.

Ponge, J., (2006). A new model for web services timed business protocols. In Atelier (Conception des

systèmes d’information et services Web SIWS-Inforsid).

Ponge, J, Benatallah, B., Casati, F., and Toumani, F., (2007). Fine grained compatibility and replaceability

analysis of timed web service protocols. In the 26th International Conference on Conceptual Modeling

(ER).

Ponge, J., (2008). Model based Analysis of Time-aware Web Services Interaction. PhD thesis, Blaise

Pascal University, Clermont-Ferrand, 2008.

ABOUT THE AUTHOR

Dr. Nawal Guermouche, a postdoctoral researcher at LAAS-CNRS, Toulouse. She was a member of the

SCORE team of the LORIA-INRIA research laboratory and teaching assistant at the University Henri

Poincaré, of Nancy. Her research interests focus on Service Oriented Computing, particularly, timed Web

services analysis and composition.

Prof. Dr. Claude Godart, is full time Professor at Nancy University, France. His center of interest

concentrates on the consistency maintenance of the data mediating the cooperation between several

partners. This encompasses advanced transaction models, user centric workflow and Web services

composition models. He has been implicated in several transfer projects with industries (France, Europe,

and Japan) for a wide range of applications including workflow, e-commerce, software processes and e-

learning.

