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ABSTRACT: 

 
Web services are the main pillar of the Service Oriented Computing (SOC) paradigm which 

enables application integration within and across business organizations. One of the most 

important features of Web services is the idea of choreography which allows to capture 

collaborative processes involving multiple services. In this context, compatibility analysis of 

choreography is a central point to investigate. We mean by compatibility of a choreography the 

capability of a set of Web services of actually interacting by exchanging messages in a safe way. 

Whether a set of services are compatible depends not only on their sequences of messages but 

also on some quantitative properties such as timed properties. In this paper, we investigate a 

model checking based approach that deals with checking the compatibility of a choreography in 

which Web services support asynchronous timed communications.  
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INTRODUCTION 

 
The evolution of computer science technologies has given life to many paradigms such as the 

Service Oriented Computing (SOC) paradigm (Alonso and al. 2004, Benatallah and al. 2007, 

Dijkman and al. 2004). In this latter, Web services are the main pillar. Based on standard 

interfaces, Web services facilitate application-to-application interactions. This advantageous 

property of Web services gives rise to several important concepts such as the notion of 

choreography.  Such a feature offers the possibility to capture collaborative processes involving 

multiple services where the interactions between these services are seen from a global perspective. 

In this context, one of the important elements is the compatibility analysis. By compatibility we 

mean the capability of a set of services of actually fulfilling successful interactions by exchanging 

messages.    

 

In the last few years, some works have investigated the compatibility problem of two Web 

services: a client and a provider service (Bordeaux and al. 2004, Benatallah and al. 2005-a, 

Benatallah and al. 2005-b, Ponge and al. 2007, Guermouche and al. 2008-a). In all these works, 

the authors deal with services that support synchronous communications. In that case, to 

characterize the compatibility class of two services, the authors check if each input (resp. output) 

message of a service corresponds to an output (resp. input) message of the other service in the 

same order (i.e., the services are synchronized over messages). However, the nature of distributed 

systems and particularly of Web services can be asynchronous, hence the problem of the 

applicability of these approaches which are very restrictive in real application scenarios is still 

open. To overcome such a limitation, in this paper we tackle the problem of analyzing the 
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compatibility of a choreography in which Web services support asynchronous communications. 

In an asynchronous communication, when a message is sent, it is inserted into a bounded 

message queue, and the receiver consumes (i.e. receives) the message while it is available in the 

queue. 

 

On the other side, it is commonly agreed that in general the interaction of Web services and in 

particular the compatibility of Web services depends not only on the supported sequences of 

messages but there are other crucial quantitative properties such as timed properties (Benatallah 

and al. 2005-a, Benatallah and al. 2005-b, Kazhamiakin and al. 2006-a, Kazhamiakin and al. 

2006-b, Ponge and al. 2007, Guermouche and al. 2008-a). We mean by timed properties the 

required delays to exchange messages (e.g., in an e-government application, a prefecture can send 

its final decision to grant an handicapped pension to a requester after 7 days and within 14 days). 

When services are interacting, their timed properties can be conflicting. The existing works 

cannot discover all the eventual timed conflicts since the authors rely on the principle of 

synchronizing the services over messages (Bordeaux and al. 2004, Benatallah and al. 2005-a, 

Benatallah and al. 2005-b, Ponge and al. 2007, Guermouche and al. 2008-a). 

 

In this paper, we propose a framework for analyzing a choreography compatibility in the context 

of asynchronous communicating services. In this framework we take into account data flow that 

can be involved when exchanging messages. Furthermore, we consider constraints over data and 

timed properties that specify delays concerning message exchanges. By studying the possible 

impacts of timed properties on a choreography, we remarked that when Web services are 

interacting together, implicit timed dependencies can be derived from different timed properties 

of the different services. Such dependencies can give rise to implicit timed conflicts. To discover 

deadlocks due to timed conflicts, we first study the possibility to apply the existing compatibility 

approaches of synchronous services (Benatallah and al. 2005-a, Ponge and al. 2007, Guermouche 

and al. 2008-a, Guermouche and al. 2008-d), but we concluded that the existing approaches are 

inadequate to discover all the eventual timed deadlocks since the authors rely on synchronizing 

the services over messages. In order to catch all the possible timed deadlocks, we propose a set of 

model checking based primitives. 

 

One of the important ingredients we need in a compatibility framework is the Web services 

description behavior. The behavior of a Web service specifies the sequences of messages the 

service supports, the involved data types, and the associated timed requirements. The timed 

behavior of a Web service specifies the timed conversational protocol (for short we say 

conversational protocol). For compatibility analysis, we have chosen to model a conversational 

protocol as a finite state machine (FSM) specification. This kind of formal representation has 

been already used in a series of work (Bultan and al. 2003, Benatallan and al. 2005-a, Berardi  

and al. 2005, Ponge and al. 2007, Anca and al. 2007, Guermouche and al. 2008-a) and seems 

adequate. In fact, a state machine based model is suitable to describe reactive behaviors 

(Benatallah and al. 2005-b), it is fairly easy to understand, and at the same time it is expressive 

enough to model the properties we consider. In addition, we rely on clocks as defined in standard 

timed automata (Alur and al. 1994). 

 

To summarize, in this paper we make the following contributions: (1) We propose an 

asynchronous model of Web services that gathers messages, data types, data constraints, and 

timed requirements. (2) We propose an abstraction process that allows to apply a model checking 

to analyze asynchronous Web services. (3) Unlike the existing compatibility frameworks, we 

propose primitives for analyzing and characterizing the compatibility class of a choreography in 

which the Web services support asynchronous timed communications. 
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The reminder of the paper is organized as follows. Next section presents an e-government case 

study that we use to show the related issues of the proposed approach. Then, we present how we 

model the timed behavior of Web services. For better understanding, we discuss informally and 

intuitively the timed compatibility problem of a choreography. In order to be able to handle 

asynchronous services by UPPAAL, we present a set of abstractions and transformations. After 

that, we present our formal choreography compatibility investigations. Then, we discuss related 

work. Before concluding, we describe experimentation step. 

 

CASE STUDY: E-GOVERNMENT APPLICATION 
 
Let us present a part of an e-government application inspired from (Mecella and al. 2001) to 

illustrate our approach. The goal of the e-government application we consider is to manage 

handicapped pension requests. Such a request involves three Web services: (1) prefecture service 

(PS) (2) health authority service (HAS), and (3) town hall service (TH).  

 

The high level choreography model of the process is depicted in Figure 1. A citizen can apply for 

pension. To do so, the citizen asks the corresponding form from the prefecture. Once the form is 

received, the citizen must return the form filled. The prefecture solicits the medical entity to 

examine the requester. The health authority negotiates a date of an appointment to examine the 

citizen. After the examination, the health authority service sends a medical report to the 

prefecture. On the other side, the prefecture asks the town hall to deliver the domiciliation 

attestation. After studying the received file, the medical report and the domiciliation attestation, 

the prefecture sends the notification of the final decision to the citizen.  

 
The interaction between these partners is constrained by timed requirements. 

• Once the health authority service proposes meeting dates to the citizen, this latter must 

send the filled form within 24 hours. 

• The prefecture requires at least 48 hours and at most 96 hours from receiving the file 

from the requester to notify the citizen by the final decision. 

• The medical report can be sent to the prefecture after at least 120 hours and at most 168 

hours from receiving the medical verification request. 

 
Besides, Web services can be constrained by requirements on data. For example, the prefecture 

that specifies the pension application can be considered if the applicant is at least 17 years old.  

 

The Web services we consider can support asynchronous communications. The first issue we deal 

with is how to analyze the compatibility of a choreography in which the Web services are 

asynchronous?  Moreover, the behavior of the Web services might be constrained by constraints 

over data and timed requirements.  

 

As in a choreography with several services possibly asynchronous, the timed properties are local 

and are mutually independent, hence, when the services are interacting together, timed deadlocks 

can arise. To assert the global interaction between the Web services (i.e., ensure that the 

choreography is deadlock free), we need primitives that consider timed properties when analyzing 

the compatibility of Web services. The second issue we need to handle is how to consider data 

constraints and timed properties together when analyzing the compatibility of a choreography? 
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Figure 1. Global view of the e-government application 

 

 

MODELING TIMED BEHAVIOR OF WEB SERVICES 
 
One of the important ingredients in a compatibility framework is the timed conversational 

protocol of Web services. In our framework, a timed conversational protocol specifies the 

sequences of messages a service supports, the involved data flow and the associated timed 

properties to exchange messages. A timed conversational protocol can be extracted from standard 

specifications like for example OWL-S (Guermouche and al. 2008-e).  

 

The model we consider is based on deterministic timed automata. In fact, this formalism is easy 

to understand, and at the same time, it is expressive enough to model the aspects and properties 

that we consider. In addition, several problems have been proven decidable for deterministic 

timed automata such as complementarity, equivalence, and inclusion (Alur and al. 1994) 



 5 

 

Intuitively, the states represent the different phases a service may go through during its 

interaction. Transitions enable sending or receiving a message. An output message is denoted 

by !m, whilst an input one is denoted by ?m. A message involving a list of data types is denoted 

by m(d1,…,dn), or m( d ) for short. To capture timed properties when modeling Web services, we 

propose to use the standard timed automata clocks (Alur and al. 1994). These automata are 

equipped with a set of clocks. The values of these clocks increase with the passing of time. 

Transitions are labeled by timed constraints, called guards, and resets of clocks. The former 

represent simple conditions over clocks, and the latter are used to reset values of certain clocks to 

zero. The guards specify that a transition can be fired if the corresponding guards are satisfied.  

 
A timed constraint is a conjunction of atomic formula that compares the value of a clock x∈X, to 

a positive real constant a∈
0≥

R . 

 

Let X be a set of clocks. The set of constraints over X, denoted Ψ(X), is defined as follows: 

 

true|x : a|ψ 1∧ψ 2, where : ∈ {≤ ,<,=,≠ ,>,≥ },  x∈X, ψ 1,ψ 2∈Ψ (X) and a is a constant. 

 

We note that the constraints over data are also defined as conjunction of atomic formula that 

compares the value of a data d∈D to a constant that can be an integer, a real, a string, or a 

Boolean. 

 

Definition 1 (Timed conversational protocol) 

 

A timed conversational protocol of a Web service Q is a tuple (S,s0,F,M,C,X,T) such that: 

• S is a set of states,  

• s0 is the initial state (s0∈S), 

• F is the set of final states (F⊆S), 

• M is a set of messages,  

• C is the set of constraints over data, 

• X is the set of clocks,  

• T is a set of transitions such that T⊆ S×M ×C× Ψ (X)×2
X
×S. A transition 

 (s, α ,c, ψ ,Y,s’) specifies that, from a state s, the service exchanges a message that involves 

data (α =?m(d ): input message, α =!m( d ): output message), so that the constraints over 

data c and the temporal constraints ψ  are verified. When the transition is fired, clocks Y can 

be reset.  

 
The conversational protocols we consider are deterministic. A conversational protocol is said to 

be deterministic if for each two transitions (s,α 1,c1, ψ 1,Y1,s1’) and (s,α 2,c2, ψ 2,Y2,s2’), the 

following conditions  are satisfied : 

• m1(d )≠m2( d ), or 

• c1∧ c2=false, or 

• ψ 1∧ψ 2=false 

 

The set of Web services are equipped with a bounded queue to store the incoming messages. 

 

Example 1.  
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Figure 2 shows the timed conversational protocols of the services introduced previously.  On this 

figure, the service PS has the set of states {p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16}. 

The initial state is p0, and the final states are p8 and p16.  

This service can send, for example, the message examination_request(sn, handicap), denoted  

examination_request(sn,handicap). This message involves as data types, a security number (sn) 

and the handicap of the citizen (handicap). Analogously, this service can receive messages, for 

example the message pension_request(sn,age,handicap), denoted ?request-pension(sn,handicap). 

PS terminates correctly its interaction when it is reaches its final state.  

 

To specify that the prefecture sends its final decision after 48 hours and within 96 hours from 

receiving the pension request,  we associate a reset of a clock t1=0 to the transition that enables to 

receive the request of the pension and we associate the constraint 48≤ t1≤96 to the transition that 

enables to send the final decision. 

 

In the following sections, we present the key elements to define the semantic of our model. 

 

Clock valuation 

 
 The semantic of timed conversational protocols is based on the notion of clock valuation v. It 

associates to each clock x a real positive value
0≥

R . A clock can be reset, denoted as v(x) =0. We 

say that a clock valuation v(x) satisfies a constraint ψ =x~a, denoted as v╞ψ , if v(x)~a (i.e., 

when we replace the clock x by its value, the constraint is satisfied).  

 

Definition 2 (Clock valuation) 

 

A valuation of the clocks of X is a function v: X
+

→R . Given a real ρ
+

∈R , we note v+ ρ  the 

valuation that associates to a clock x the value v(x) + ρ . If Y is a subset of X, [ 0Y ← ]v 

represents the valuation v' defined by: v'(x) =0 for each x∈Y. Analogously, the data valuation u 

is a mapping u: D→
D

V  from data to values. The initial valuation u0 denotes the initial data 

valuation, such that ∀ d∈D, u0(d)=null. In addition, at the initial configuration, the queues of the 

services are empty. We say that a data valuation u(d) satisfies a constraint c=d~b, denoted u╞c, if 

u(d)~b (i.e., when the data d is replaced by its value, the constraint is satisfied). The value of data 

changes via operations of services.  

 

 Timed conversations 
 

By using the clock (resp. data) valuation notion, we define the concept of timed conversations of 

conversational protocols, inspired from the notion of timed words of timed automata (Alur and al. 

1994).  

 

Let Q=(S,s0,F,M,C,X,T) be a timed conversational protocol. An execution of Q is a sequence of 

pairs s0.( 0 ( )m d ,t0).s1…sn-1( 1( )n
m d

−
,tn-1).sn  such that s0 is the initial state and sn is a final state. 

This execution is said to be correct if when the time increases, the constraints over data and timed 

constraints are satisfied.  
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Figure 2. Web services of the e-government scenario 
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A conversation is the set of observable messages that can be exchanged between services (Ponge. 

2008).  

 

Definition 3 (Correct timed execution) 

 
 Let Q=(S,s0,F,M,C,X,T) be a timed conversational protocol. An execution which is a sequence 

s0.( 0 ( )m d ,t0).s1…sn-1( 1( )n
m d

−
,tn-1).sn is said to be correct if: 

• 
0 1

...
n

t t t≤ ≤ ≤  

• s0 is the initial state and sn is the final state 

• i∀ ∈[1,n], (si-1,mi-1,ci-1, ψ i-1,Yi-1,si), vi-1╞ψ i-1 and ui-1╞ ci-1 

A correct conversation is defined by the sequence (
0 ( )m d ,t0)…(

1( )n
m d

−
,tn) 

 

For example, a correct conversation of the service THS is (?attestation_request(firstName, 

familyName,sn),0).(!send_attestation(residenceAttestation),10). Such a sequence is called a timed 

conversation. The set of timed conversations constitutes a timed conversational protocol. 

 

Semantic of timed conversational protocols 
 

The semantic of timed conversational protocols is defined using a transition relation over 

configurations made of a state, a clock and data valuation.  A service remains in the same state s 

without triggering a transition when the time increments, if there is no transition (s, α ,c,ψ X,Y,s') 

such that the constraints over data c and the timed constraints ψ X are satisfied, where ψ X 

⊆ Ψ (X) and α is either an output message !m( d ) or an input message ?m( d ) which is 

available in the queue. In an asynchronous communication, when a message is sent, it is inserted 

in a message queue, and the receiver consumes (i.e. receives) the message while it is available in 

the queue. 

 

Definition 4 (Semantic of timed conversational protocol of an asynchronous service) 

 
Let P = (S,s0,F,M,C,X,T) be a conversational protocol and Que the associated empty queue. The 

semantic is defined as a labeled transition (Γ ,γ 0,→ ), where  Γ ⊆ S ×VT×UD is the set of  

configurations, such that VT  is a set of timed valuations, UD is the set of data valuation, γ 0 = 

(s0,u0,v0) is the  initial configuration, and → is defined as follows: 

• Elapse of time: (s,u,v) 
tick

→ (s,u,v+ ρ ) 

• Location switch: (s,u,v) 
α

→  (s',u',v'), if ∃ t = (s, α ,c,
X

ψ ,Y,s') such that u╞ c and v╞ 

ψ  and ∀ y ∈Y,   v'(y)=0, ∀ x∈X\Y, v'(x) = v(x), where  Y⊆X, and 

o If α =!m( d ) then Que:=Que+m( d ) 

o If α =?m( d ) and m( d )∈Que then Que:=Que-m( d ) 

 

Example 2. 

 
When the PS service, shown in Figure 2, reaches its state p7 and the value of the clock t1 is equal 

to 30, i.e., less than 48 hours, then the service remains on the state p7 while the time increases. 

When the value of the clock t1 is equal or bigger than 48 and less or equal to 96 hours, then the 

transition (p7,!notification(pension_decision,48),48≤ t1≤ 96,p8) is fired. When this happens, some 
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calculation can be fulfilled and some data are updated. As the transition allows to send the 

message notification(pension_decision), then it will be added into the queue of the receiver 

service.  

 

Next, we will present the intuition behind the choreography compatibility problem.  

 

TIMED COMPATIBILITY PROBLEM   

 
In this section, we discuss informally and intuitively by using examples the timed choreography 

compatibility problem and the related issues.  Since the communication time is very small, we 

neglect it in our framework.  

 

Example 3. 
 

Let us first consider the two untimed conversational protocols respectively of Q and Q' services 

depicted in Figure 3. In spite that both services do not produce and consume their messages in the 

same order, the two asynchronous services are fully compatible.  The service Q starts by sending 

the message m0(d0,d1) which becomes available in the queue of Q'. On the other side, Q' sends the 

message m2(d3). After that, Q' consumes the message m0(d0,d1) and then it sends the message 

m1(d2) which is added to the queue of Q. Therefore, Q can consume the message m1(d2) and then 

the message m2(d3).  Using the existing work, these two services will be considered as 

incompatible although they can succeed an interleaved execution. 

 

 

 
 

Figure 3. Untimed compatible asynchronous Web services 

 

Augmenting the conversational protocols of asynchronous services by timed properties lays 

important challenges. Particularly, the clocks used to define timed properties are local and are 

mutually independent. At the same time, in our work, we do not assume that timed properties are 

synchronized over messages, i.e., the timed constraints of the different services are not defined 

over clocks which are necessarily reset at the same time. Consequently, when the services interact 

together, implicit timed conflicts can arise. To illustrate this issue, let us consider the following 

example.  
 

With the two timed conversational protocols of the Q and Q' services depicted in Figure 4. The 

service Q starts by sending the message m0(d0,d1). So this latter becomes available in the queue of  

Q'. On the other hand, Q' can send the message m2(d3) that can be stored in the queue of Q. The 

service Q remains blocked, since the message m1(d2) is not yet available. But Q' can consume the 

message m0(d0,d1) which has been already sent by Q. Once consumed, Q' sends the message 

m1(d2) after 20 and within 40 units of time from consuming the message m0(d0,d1). Consequently, 
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the message m1(d2) becomes available in the queue of Q after 20 units of time from consuming 

the message m0(d0,d1). In that case, Q will be able to consume the message m1(d2) after 20 units 

of time. Finally, Q must consume the message m2(d3) within 10 units of time. However, this 

message can be consumed after consuming the message m1(d2), i.e., after 20 units of time. In fact, 

the message m1(d2) can be sent (becomes available) by Q' after 20 units of time. So, the message 

m2(d3) must be consumed within 10 units of timed but it is possible to consume  it only after 20 

units of time: these two constraints are conflicting. 

 

 
 

Figure 4. Incompatible timed asynchronous services 
 

 

We present now another example in which we show another kind of timed conflict. 

 

Example 4 

 
Let us consider the two conversational protocols of the two services P and S depicted in Figure 5. 

The service P starts by sending the message m0(d0) to the service S. Then, the service S sends the 

message m1(d1) the service P must receive within 10 units of time. When the service S sends the 

message m1(d1), the clock x is reset and the clock value of y must be at most 10 units of time. So, 

the difference between the two clocks x and y must be at most 10 units of time (we suppose that 

the time of communication is negligible). After that, the service P sends the message m2(d1,d0) 

after 20 units of time from sending the message m0(d0). The service S must receive the message 

m2(d1,d0) within 5 units of time from sending the message m1. As said previously, the difference 

between the two clocks x and y must be at most 10 units of time. However, when the two services 

exchange the message m2(d1,d0), the value of the clock x must be at most 5 units of time ( 5x ≤ ) 

and the value of the clock y must be at least 20 units of time ( 20y ≥ ). According to these values, 

the difference between the two clocks x and y can never be at most 10 units of time.  

 

 
 

Figure 5. Timed incompatibility due to the difference between the clocks values 
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This kind timed incompatibility, such as the incompatibility due to the difference between the 

clocks, cannot be detected by existing works on the compatibility of Web services. 

 

Compatibility classes 

 
In choreography, heterogeneity of services can have a partial or a total impact on their 

collaboration. Based on the kind of the impact of the heterogeneity, we consider three general 

classes: (1) full compatibility, (2) partial compatibility, and (3) full incompatibility.  The full and  

partial compatibility classes gather two sub-classes: (a) perfect compatibility and (b) non-perfect 

compatibility. 

 

Full compatibility 

 
This first class is assigned to a set of Web services that can collaborate without an eventual 

deadlock. For example, the two services illustrated in Figure. 6 are fully compatible. In fact, the 

two services can exchange the two following conversations in which no deadlock arises: 

 
• ( ( !m0(d1), t1=0) .!m3(d0) . (!m2(d2,d1), t2=0) . (?m2(d2,d1), 168 ≤  t1 ≤  336 ). (?m0(d1), t2≤  

336 ) . ?m3(d0) ) 

 
• ( (!m3(d1), t2=0) . !m4(d1) . (!m5(d1), t2≤ 24) . ?m5(d1).(?m4(d1), t2=0 ) . (?m3, t2 ≤ 48) ) 

 

 

 
 

Figure 6. Full compatibility 

 

 

Since we deal with asynchronous communicating services, the messages can be sent without 

synchronization, i.e., during an interaction, output messages can be not consumed. For this reason, 

we distinguish two subclasses: (1) full and perfect compatibility and (2) full but non-perfect 

compatibility. 
 

1. Perfect and full compatibility: A set of Web services is said to be perfectly and fully 

compatible, if all their interactions do not contain deadlocks and at the same time, all the 

produced messages are consumed.  For example, the two services illustrated in Figure. 6 

are perfectly and fully compatible.  

 

2. Full but non-perfect compatibility: The full but non-perfect compatibility concerns 

services that can interact correctly without deadlocks but at the same time, during their 

interactions, there are messages that are produced but  not consumed, i.e., there are extra 

messages. For example, the two services illustrated in Figure. 7 are fully but not-perfectly 
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compatible. In fact, the service Q can send the extra message m3(d4) that will not be 

consumed by Q’. So when the services are interacting together, there are no deadlocks 

but there is at least one extra (unuseful) message. This case is called full but non-perfect 

compatibility. 

 

 
 

Figure 7. Full but non-perfect compatibility 
 

Partial compatibility 

 

This second class is assigned to a set of services that can partially collaborate correctly. Some 

interactions of services can be incompatible while other interactions can be correct.  As we can 

see in Figure. 8, the two services can perform correctly the conversation: 

 

((!m0(d1),t1=0),!m3(d0),(!m2(d2,d1),t2=0),(?m0(d1),t2≤ 336),(?m2(d2,d1),168≤ t1≤ 336),?m3(d0)) 

 

However, the conversation 

 

((!m5(d1),(!m3(d5),t1=0),(?m3(d5),t2=0),(!m4(d2),t2≥ 48),?m4(d2),(?m5(d1),t1≤ 24)) 

 
is not correct, since the message m5(d1) must be consumed within 24 units of time from sending 

the message m3(d5) and at the same time m5(d1) must be consumed after consuming m4(d2), i.e., 

after 48 units of time. That means that the message m5(d1) must be consumed so that 48≤ t1≤ 24, 

which represents a timed deadlock. Since the two services can achieve correctly at least one 

interaction, and fail at least one interaction, we say that the two services are partially compatible.  

 

 

   
 

Figure 8. Partial compatibility 
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Like the class of full compatibility, we distinguish two subclasses of partial compatibility: (1) 

perfect partial compatibility and (2) not-perfect partial compatibility. 

 

1. Perfect partial compatibility: A set of Web services is said to be perfectly and partially 

compatible, if they fail at least one conversation and at the same time, during all the 

correct conversations, all the produced messages are consumed.   

 

2. Not-perfect partial compatibility:  When a set of Web services are partially compatible 

and at the same time, there exists at least one correct interaction during which there is at 

least one extra message, we say that the services are partially but non-perfectly 

compatible. For example, the two services depicted in Figure 9, fail the conversation  
 

(!m5(d1),(!m3(d5),t1=0),(?m3(d5),t2=0),(!m4(d2),t2≥48),?m4(d2),(?m5(d1),t1≤ 24)) 

 
but at the same time, they succeed the conversation 

 

((!m0(d1),t1=0),!m3(d0),(!m2(d2,d1),t2=0),(?m0(d1),t2 ≤ 336),(?m2(d2,d1),168 ≤ t1 ≤ 336),!m5(d0), 

?m3(d0))  

 

But, in this conversation, the message m5(d0) is a message that will not be consumed, i.e., it is 

an extra message. 

 

s0

s1!m0(d1) s2
!m3(d0)

?m2(d2,d1)

s4 s5!m3(d5) ?m4(d2) ?m5(d1)

168≤t1≤336
t1=0

t1≤24
t1=0

s'0

s'1
?m0(d1)

s'2
?m3(d0)!m2(d2,d1)

s'4 s'5
?m3(d5)

!m5(d1) !m4(d2)

t2≤336t2=0

48≤t2t2=0

s3

s6

s'4

s'6

s'3
!m5(d0)

 
 

Figure 9. Partial but non-perfect compatibility 
 

 

Full incompatibility 

 
This class of compatibility is attributed to a set of Web services for which a deadlock arises in all 

their interactions. For example, the services illustrated in Figure. 10 fail all their interactions. In 

fact, Q’ sends the message m1(d2,d1) and Q consumes it. Then, the two services remain blocked 

while waiting respectively the messages m2(d0) and m3(d1).  

 

In the second conversation, the same problem described in the previous section arises.  As the two 

services fail all their conversations, so we say that they are fully incompatible.  
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Figure 10. Full incompatibility 

 
 

In order to handle the eventual timed conflicts, we propose an UPPAAL model checker based 

approach. To do so, we first propose some transformation to handle timed asynchronous services.  

 

FROM CONVERSATIONAL PROTOCOLS TO UPPAAL 

TIMED AUTOMATA 

 

UPPAAL is a model checker for the verification and simulation of real time systems. An 

UPPAAL model is a set of timed automata, clocks, channels for systems (automata) 

synchronization, variables and additional elements (Larsen and al. 1997).  

 

Each automaton has one initial state. Synchronization between different processes can take place 

using channels. A channel can be written into (denoted as channel_name!), and can be read 

(denoted as channel_name?).  A channel can be defined as urgent to specify that the 

corresponding transition must be fired as soon as possible, i.e. immediately and without a delay.  

The conditions associated to transitions, called guards, specify that a transition can be fired if the 

corresponding guards are satisfiable. The conditions associated to states, called invariants, specify 

that the system can stay in the state while the invariant is satisfiable. Variables and clocks can be 

associated to processes (automaton). Conditions on these clocks and variables can be associated 

to transitions and states of the process. 
 
The UPPAAL properties query language is a subset of Computation Tree Logic (CTL) 

(Henzinger and al. 1994). The properties that can be analyzed by UPPAAL are: 

• ∀ψ : for all the automata' paths, the property ψ  is always satisfiable, i.e., for each 

transition (or a state) of each path, the property ψ  is satisfiable. 

• ψ∀◊ : for all the automata' paths, the property ψ  is eventually satisfiable, i.e., for each 

path , there is at least one transition (or a state) in which the property ψ  is satisfiable. 

• ∃ψ : there is at least a path in the automata such that  the property ψ  is always 

satisfiable, i.e., there is at least one path such that for each transition (or a state), the 

property ψ  is satisfiable. 

• ψ∃◊ : there is at least a path in the automata such that  the property ψ  is eventually 

satisfiable, i.e., there is at least one transition (or a state) of at least one  path in which the 

property ψ  is satisfiable. 

• ψ →  ϕ : when ψ  holds, ϕ  must hold. 

 



 15 

In order to perform a model checking by using UPPAAL, we propose a set of transformation 

steps, which are: 

 

• Messages abstraction 

• Data constraints abstraction 

• Invariant association 

• Urgent channel association 

• Specifying final states 
 

Abstraction of messages by variables 

 
As mentioned above, UPPAAL holds the notion of channels to synchronize real systems. By 

using such property, only synchronous services can be analyzed (Guermouche and al. 2008-d). As 

our framework deals with asynchronous services, hence, the use of the notion of channels is 

inadequate. To succeed the verification of choreography compatibility of asynchronous services, 

we propose the idea of messages abstraction that correspond to the notion of channels in 

UPPAAL. 

 
To do so, we propose the mapping of messages to variables. The idea is to abstract each message 

by a variable whose initial value is zero. We map the common messages (i.e., the same signature) 

of the conversational protocols to the same variable. To do so, we first compute the common set 

of messages of the timed conversational protocols. The purpose of the former is to abstract 

(represent) all the messages that have the same signature, i.e., the same name and same data by 

the same variable.  For example, if one service can send (resp. receive) the message m1(d1,d2) and 

the other service can receive (resp. send) these message m1(d1,d2), we abstract the messages by 

using, for example, the variable m1. 

 

Abstraction by incrementing and decrementing variables 

  
The services are equipped with a queue to store the incoming message. When a message is sent 

(resp. consumed), it will be inserted to (resp. removed from) the queue. So in this case the 

occurrences number of the message is incremented (resp. decremented) by one.  In order to 

simulate the queue transactions, we propose to represent the notion of output (resp. input) 

message by an incrementing operation (resp. decrementing) of the variables value associated to 

messages.  

When a message is sent, we increment the value of the associated variable by one. When this 

message is received, we decrement the value of the associated variable by one.  Note that, a  

message can be consumed if it is available in the queue. This latter is equivalent to check if the 

value of the corresponding variable is not equal to zero. So a transition that enables an input 

message can be fired if the corresponding variable is bigger than zero. We associate to such 

transitions the constraint that allows to check if the value of the associated variable is bigger than 

zero. 

 

Definition 5. (Messages abstraction) 

 
Let Q1=(S1,s01,M1,Cn,X1,T1), …, Qn=(Sn,s0n,Mn,Cn,Xn,Tn) be n conversational protocols and R be a 

set of variables that have zero as initial value. We define the abstraction function Abs: M→R 

that maps messages to variables. For each m( d )∈
1

n

i=
U Mi and r∈R, m( d )→ r  is defined as : 
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• (si,!m( d ),c,ψ ,Y, si') → (si,r++,c,ψ ,Y,si') 

• (si, ?m(d ),c,ψ ,Y,si') → (si,r--,r>0,c,ψ ,Y,si') 

 

Example 5 

 
As we can see in Figure 11, the set of message of the two services Q and Q’ is 

{m0(d1),m3(d0),m2(d2,d1),m1(d1),m2(d3)}. We abstract respectively each message by a variable {m0, 

m3, m21, m1, m22}. The transition (s0,!m0(d1),s1) of Q enables to send the message m0(d1). Once this 

message is sent, it will be added to the queue of Q’. So, we represent the sending operation of 

messages by incrementing operation of the corresponding variable. So the transition (s0,!m0(d1),s1) 

will be represented by the transition (s0,m0++,s1). We apply this step to all the transitions that 

enable output messages.   

 

s0 s1

!m0(d1)

s2 p0 p1

!m1(d1)
!m3(d0)

?m2(d2,d1)

!m2(d3)

s0 s1 s2 p0 p1

m1++

m3++

m21--

m21>0

m0++

   Messages      

     

        m0(d1)          

                      m3(d0)                       

         m2(d2,d1)     

m1(d1)

                                m2(d3)                                 

   Variables   

     

   m0        

                  m3                       

                    m21                         

m1    

                      m22                           

   Output/Input messages   

     

        !m0(d1)          

                      !m3(d0)                       

         ?m2(d2,d1)     

!m1(d1)

                                !m2(d3)                                 

  Incrementation/decrementation 

     

   m0++        

                  m3++                       

                    m21--/ si m 21>0                         

m1++    

                        m22++                           

Abstraction of messages by 

variables 

Abstraction of output/input messages by 

incrementation/decrementation operations 

Q'Q

Q Q'

s3

p2

s3

p2

m22++

 
Figure 11. Abstraction of messages 

 

When a transition enables an input message, we propose to represent it by decrementing the 

corresponding variable. For example, when the transition (s2,?m2(d2,d1),s3) is fired, the message 

m2(d2,d1) will be consumed. So, we abstract the message ?m2(d2,d1) by m2--. On other side, this 

transition can be fired if the message is available in the queue. This condition is equivalent to 

check that the value of the corresponding variable is bigger than zero. By applying this step, the 

transition (s2,?m2(d2,d1),s3) will be represented by the transition (s2,m2--,m2>0,s3). 
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Abstraction of data constraints 

 
As said previously, our model considers constraints over data.  These constraints can be specified 

as constraints over non-timed variable. To analyze these constraints by UPPAAL, the values of 

the variables must be known.  However, as the compatibility analysis we propose is done at 

design time, the values of the variables cannot be known in advance. Consequently, the 

constraints over data cannot be correctly considered. To consider constraints over data, we 

propose to abstract again the variables of messages resulting from the process of abstraction of 

messages described above following the constraints of data. The idea is to compute the set of 

transitions that hold the same variable. If the set of solutions of the data constraints associated to 

these transitions is disjoined, then we abstract differently the variables. Whilst, if the set of 

solution is not disjoined, then we remove only the data constraints without changing the variables.  

To explain this issue, let us present the following example. 

 

Example 6 

 
Via this example, we will show how we apply the data constraints abstraction process. As we can 

see, the two services, illustrated in Figure 12, have three common transitions (i.e., transitions that  

hold the same variable): 

 

•  (s0,m0++,d0<100,s1) and (p1,m0++,d0>120,p2) 

• (s1,m3++,d3>10,s2) and (p2,m3--, m3>0,d2<10,p3) 

• (s2,m21--, m21>0,d1<50,s3) and (p0,m21++,d1<80,p1) 

 

Let us start by the first pair of transitions (s0,m0++,d0<100,s1) and (p1m0++,d0>120,p2). We can 

remark that the set of solutions of the constraints d0<100 and d0>120 is disjoint, i.e., Sol(d0<100) 

∩ Sol(d0>120)= ∅ . Hence, by applying the data constraints abstraction process, we substitute 

m0++ of the transition (p1,m0++,d0>120,p2) by another variable m0’. So the transition becomes 

(p1,m0’++,p2) 

 

 
 

Figure 12. Abstraction of data constraints 
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Now, we check the second pair of transitions (s1,m3++,d3>10,s2) and (p2,m3--, m3>0,d2<10,p3). 

The first transition can be fired if the value of the data d3 is bigger than 10. The second transition 

can be fired if the value of the variable d2 is less than 10. Since the data constraints are specified 

over different data, then when abstracting data constraints, we do not substitute the variable m3 of 

the two transitions.  

 

Finally, we verify the last pair of transitions (s2,m21--, m21>0,d1<50,s3) and (p0,m21++,d1<80,p1). 

We can see that the set of solutions of data constraints d1<50 and d1<80 is not disjoint.  The two 

constraints have a common set of solutions, i.e., Sol(d1<50) ∩ Sol(d1<80) ≠ ∅ . Consequently, 

when abstracting data constraints, we do not substitute the variable m21. 

 

Invariant association 

 
UPPAAL timed automata holds the notion of invariant. This latter specifies that the system can 

stay in the state while the associated invariant is satisfiable. Whilst, in our model, we do not 

consider invariant. The semantic we define allows to a transition to be fired as soon as possible 

(once the associated guard is satisfiable). In UPPAAL timed automata semantic, when a transition 

has a guard of the form x≥ v (resp. x>v) and at the same time the source state of this transition 

does not have an invariant, the process can stay infinitely in this state. Consequently, such 

property gives rise to a deadlock. To prevent such setting, we associate for each state source of a 

transition having a guard of the form x≥v
1
 (resp. x>v) an invariant of the form x≤ v (resp. x<v) 

to constrain the service to stay a limited time in the state. 

 

Example 7 

 
Figure 13 shows a timed conversational protocol to which we associate an invariant.  

 

s0

s1
m0++ s2

m3++ m2--

s4 s5m4++ m5++ m6--

168≤t1≤336
t1=0

t2≤24
t2=0

s0

s1 s2

s4 s5

168≤t1≤336
t1=0

t2≤24
t2=0

t1≤168

Invariant

s3

s6

s3

s6

m2>0

m6>0

m0++
m3++ m2--

m2>0

m4++

m5++

m6>0

m6--

 
Figure 13. Invariant association 

 

                                                
1
 The value used to define the invariant can be any value v’ such that v’≥ v 
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When analyzing this protocol with UPPAAL, a deadlock arises at the transition (s2,m2--,m2>0, 

168≤ t1≤ 336, s3) . In fact, this transition holds the constraint 168≤ t1 and according to the 

semantic used in UPPAAL, the service can stay infinitely in the state s2. To constrain the service 

to leave the state s2, we associate the invariant t1≤ 168. 

 

Association of urgent broadcast empty channel to transitions 
 

In the previous section, we have shown how we map the states which are a source state of a 

transition having a constraint of the form x≥v (resp. x>v). As in the model we have defined, the 

transitions of the services must be fired as soon as possible (i.e., when the guards are satisfiable), 

we associate to the transitions that do not have guards an urgent broadcast output channel. This 

later aims to simulate the fact that transitions must be fired as soon as possible. 

 

In UPPAAL, a channel cv can be defined as urgent as follows: 

 

urgent chan cv; 

 
As the UPPAAL model is based on messages synchronization concept (i.e., a message can be sent 

only if there is the input counterpart), so to be able to send message without synchronization with 

an input counterpart, we define the urgent channel as a broadcast channel.  

 
urgent broadcast chan cv; 

 

Example 8 

 
In Figure 14, we associate to the transitions that do not hold timed constraints the output urgent 

channel cv. The aim of this is to constrain transitions to be fired as soon as possible. 

 

 
 

Figure 14. Association of urgent output channel 

 

 

 

 

 

 

Defining final states 
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A correct interaction of a service is the interaction that terminates in a final state. In the standard 

timed automata handled by UPPAAL, there is no final state notion. As shown in Figure 15, to 

simulate the final states by UPPAAL timed automata, we define a particular state called final that 

represents the correct termination of the services. 

 

The result of the transformation steps we described above is a set of UPPAAL timed automata. 

These automata preserve the semantic we consider in timed conversational protocol of 

asynchronous services. 

 

s1

m1++

s2

m2--

m2>0
m3++

ε

ε
m4++

s3 s4

s1

m1++

m2--

m2>0 m3++

m4++

s3 s4

s2 final

 
 

 

Figure 15. Defining final states in timed automata handled by UPPAAL 

 

Definition 6. (Transformed timed conversational protocol) 

 
UPPAAL supported timed automata Q resulting from the transformation process is defined by the 

tuple (S,s0,sf,cu,R,X,VM,T,Inv) such that: 

 

• S is the set of states 

• s0 is the initial state 

• sf is the final state 

• cu is the urgent channel 

• R is the set of variables used to abstract messages 

• X is the set of clocks 

• VM is the set of constraints over variables of R 

• T is the set of transitions such that: T⊆S×OP(R)×VM× Ψ (X)×2
X×S which specifies 

that when a transition is fired, we perform an operation OP (we increment the variable 

r++: corresponds to an output message, decrement the variable r--: corresponds to an 

input message), a constraint over the variables VM (if OP(R)=r--, VM=r>0, else 

VM=∅ ), a timed constraint, and the set of clocks to reset). 

• Inv: S→ Ψ (X) associates an invariant to states 
 

Figure 16 depicts the timed automata specification of the motivating example depicted in Figure 2 

resulting from the abstraction process. 

 

Next, we present the formal primitives we propose to characterize the compatibility class of a set 

of timed asynchronous Web services.  
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Figure 16. UPPAAL automata resulting from the abstraction process of the e-

government scenario services 

 

FORMAL ASYNCHRONOUS COMPATIBILITY CHECKING 
 

In this section, we present compatibility checking with the model checker UPPAAL. We define 

five compatibility classes: (1) full and perfect compatibility, (2) full but non-perfect compatibility, 

(3) perfect partial compatibility, (4) partial but non-perfect compatibility, and (5) full 

incompatibility. 
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Perfect full compatibility 

 
In general, a set of Web services constitute a full compatible choreography if they can interact 

without an eventual blocking. As we deal with asynchronous services, the output messages are 

sent without synchronization with the corresponding input. As introduced above, it is not 

sufficient to check only if there is no a deadlock when the services interact together, but, it is 

important to check that all the sent messages are consumed.  So, a set of services constitutes a full 

and perfect compatible choreography if: (1) they collaborate together without any eventual 

blocking and (2) at the same time, all the generated messages are consumed. 

 

 Formally, checking that a set of Web services can interact without an eventual blocking is 

equivalent to check that the services reach their final states in all interactions. At the same time, 

when the services reach their final states, the fact that all the sent messages must be consumed is 

formally equivalent to check that, when the services reach their final states, all the variable values 

are equal to zero. Remember that, the value of the variables represents the number of the 

occurrences of the corresponding sent message.  

 

Let P1,…,Pn be n (asynchronous) services and R1,…,Rn be the corresponding set of variables. The 

set of fully and perfect compatible Web services is specified by the following CTL formulas: 

 

 

 

                                                                                                                                            (1) 
 

 

Example 9.  

 
According to the motivating example, PS, HAS, and THS services constitute a full and perfect 

compatible choreography iff:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-perfect full compatibility 

 
When a set of Web services can collaborate together without an eventual blocking but at the same 

time, during their interaction, there are messages that cannot be consumed, i.e., extra messages, 

we say that the services are fully but non-perfectly compatible.  

 

∀ ◊ PS.final ∧  HAS.final ∧THS.final ∧  

PS.final ∧  HAS.final ∧ THS.final →  disponibility_notification == 0 ∧  

driving_control == 0 ∧  handicapped_card==0 ∧  handicapped_card_request==0 ∧  

licenceForm==0 ∧  driving_licence_reques==0 ∧ driving_licence_request==0 ∧  

notification2==0 ∧  notification1==0  ∧  notification3==0 ∧  examination==0 ∧  

form==0 ∧  residence_attestation==0 ∧  examination_request==0 ∧  attestation==0 ∧  

form_to_fill==0 ∧ pension_request==0 ∧  send_attestation==0 ∧  

civil_statut_request==0 ∧  attestation_request== ∧   sendRepport==0 
∧ notification6==0 ∧  notification5==0 ∧  notification4==0 ∧  notification==0 ∧  

sendResult==0 ∧  cancel==0 ∧  meetingConfirmation==0 ∧  meetingProposition==0 
∧  medical_examination==0 

∀ ◊ P1.final ∧… Pn.final ∧  

P1.final ∧ … ∧  Pn.final → r1==0 

∧…∧ rm==0, 

Where ri {R1,…,Rn} 
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Formally, a set of Web services are said to be fully and non-perfectly compatible if via all the 

paths, the services reach their final state and at the same time, there exists at least one variable 

whose value is bigger than zero. This latter can be specified by the following CTL formulas: 

 

                                                                                                                             

 

                                                                                                                                            (2) 

 

 

 

Example 10.  

 
The three services PS, HAS, and THS are said to be fully but non-perfectly compatible iff: 

 

 

 

 

Partial but non-perfect compatibility 
 

As services are heterogeneous they can fulfill incorrect conversations. A conversation during 

which a service remains blocked is called incorrect. A set of Web services are not fully 

compatible when the set of possible conversations of the services hold at least one incorrect 

conversation.  

 

Formally, a set of Web services are not fully compatible if there exists at least a path of their 

automata that cannot reach the final state. This later can be specified as the following formula: 

 

 

                                                                                                                                            (3) 
 

 

When a set of Web services can achieve correctly a set of conversations and at the same time they 

fail other conversations, we say that the services are partially compatible. In this section, we 

define particularly the partial but non-perfect compatibility class. This class is assigned to a set of 

Web services that are partially compatible and at the same time, there is at least one correct 

conversation during which there is at least one extra message.  This is formally specified by the 

following CTL formulas: 

∀ ◊ PS.final ∧  HAS.final ∧THS.final ∧  
∃◊ (PS.final ∧  HAS.final ∧ THS.final →  disponibility_notification>0 ∨  

driving_control >0 ∨  handicapped_card>0 ∨  handicapped_card_request>0 ∨  

licenceForm>0  ∨  driving_licence_reques>0 ∨ driving_licence_request>0 ∨  

notification2>0 ∨ notification1>0  ∨  notification3>0∨  examination>0 ∨  form>0 ∨  

residence_attestation>0 ∨  examination_request>0 ∨  attestation>0 ∨ form_to_fill>0 

∨ pension_request>0 ∨  send_attestation>0 ∨  civil_statut_request>0 ∨  

attestation_request>0 ∨   sendRepport>0 ∨ notification6>0 ∨  notification5>0 ∨  

notification4>0 ∨  notification>0 ∨  sendResult>0 ∨  cancel>0 ∨  

meetingConfirmation>0 ∨  meetingProposition>0 ∨  medical_examination>0) 

∃¬P1.final∨…∨ ∃¬Pn.final 

∀ ◊ P1.final ∧… ∧  Pn.final ∧  

∃◊ (P1.final ∧… ∧  Pn.final imply r1>0 ∨  …  
∨ rm>0) Where ri∈{R1,…,Rn} 
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        (4) 

 

 
Formally, a set of Web services is said to be partially but non-perfectly compatible if the formulas 

(3) and (4) are satisfied. 

 

Example 11.  

 
The three services PS, HAS, and THS are said to be partially but non-perfectly compatible iff: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Partial and perfect compatibility 

 

The partial and perfect compatibility class characterizes the fact that services are not fully 

compatible but at the same time, they can fulfill correctly conversations during which all the 

produced messages are consumed.  

 

Formally, a set of Web services can achieve correctly at least one conversation so that all 

produced message are consumed is equivalent to check that there exists at least one path so that 

all the services reach their final state and at the same time, when the final state is reached, the 

value of all variables is equal to  zero. This is specified by the following CTL formula: 

 

 

 

        (5) 

 

 

 
A set of Web services whose conversational protocols do not verify the formula (4)  (i.e., the 

partial but non-perfect compatibility is not verified) and at the same time, verify the formulas (3) 

and (5) is said to be  partially and perfectly compatible.  

 

∃¬PS.final ∨ ∃¬HAS.final ∨ ∃¬THS.final ∧  
∃◊PS.final ∧  HAS.final ∧THS.final ∧  

∃◊ (PS.final ∧  HAS.final ∧ THS.final →  disponibility_notification>0 ∨  

driving_control >0 ∨  handicapped_card>0 ∨  handicapped_card_request>0 ∨  

licenceForm>0  ∨  driving_licence_reques>0 ∨ driving_licence_request>0 ∨  

notification2>0 ∨ notification1>0  ∨  notification3>0∨  examination>0 ∨  form>0 ∨  

residence_attestation>0 ∨  examination_request>0 ∨  attestation>0 ∨ form_to_fill>0 
∨ pension_request>0 ∨  send_attestation>0 ∨  civil_statut_request>0 ∨  

attestation_request>0 ∨   sendRepport>0 ∨ notification6>0 ∨  notification5>0 ∨  

notification4>0 ∨  notification>0 ∨  sendResult>0 ∨  cancel>0 ∨  

meetingConfirmation>0 ∨  meetingProposition>0 ∨  medical_examination>0) 

∃◊P1.final∧…∧Pn.final ∧  

∃◊ (P1.final ∧  … ∧ Pn.final → r1>0 ∨  … ∨  

rm>0 ) where ri∈{R1,…,Ri,…,Rn} 

 

∃◊P1.final∧…∧Pn.final ∧  

∃◊ (P1.final ∧  … ∧ Pn.final → r1==0 ∧  … ∧  

rm==0 ) where ri∈{R1,…,Ri,…,Rn} 
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Example 12.  

 
The three services PS, HAS, and THS are said to be partially and perfectly compatible if: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full incompatibility  

 
When a set of n Web services do not even constitute a partial compatible choreography, we say 

that the services build a fully incompatible choreography. Full incompatibility characterizes the 

fact that the set of services cannot, absolutely, collaborate together. Formally, a set of services are 

fully incompatible, if for all the paths, all the services cannot reach the state 'final'. This property 

is specified as the following CTL formulas: 

 

 

 

 

Example 13.  

The PS, HAS, THS services are said to be fully incompatible if: 

 

 

 

Exprimentation 
 
In order to validate the proposed approach, a prototype of the framework depicted in Figure 17 

has been implemented in Java. CTP2UTA (Conversational Timed Protocol to UPPAAL Timed 

Automata) component is a parser that transforms a given timed conversational protocol into 

UPPAAL timed automata, according to the mapping rules described above. 

 
Since the UPPAAL supported timed automata are described as XML document, the CTP2UTA 

has been implemented as a XML parser. This later was developed using the application 

programming interface JDOM (Java Document Object Model). 

 

∀¬PS.final∧ ∀¬HAS.final∧ ∀¬THS.final 

∃¬PS.final ∨ ∃¬HAS.final ∨ ∃¬THS.final ∧  
∃◊PS.final ∧  HAS.final ∧THS.final ∧  

∃◊ (PS.final ∧  HAS.final ∧ THS.final →  disponibility_notification==0 ∧  

driving_control ==0 ∧  handicapped_card==0 ∧  handicapped_card_request==0 ∧  

licenceForm==0  ∧  driving_licence_reques==0 ∧ driving_licence_request==0 ∧  

notification2==0 ∧ notification1==0  ∧  notification3==0 ∧  examination==0 ∧  

form==0 ∧  residence_attestation==0 ∧  examination_request==0 ∧  attestation==0 

∧ form_to_fill==0 ∧ pension_request==0 ∧  send_attestation==0 ∧  

civil_statut_request==0 ∧  attestation_request==0 ∧   sendRepport==0 

∧ notification6==0 ∧  notification5==0 ∧  notification4==0 ∧  notification==0 ∧  

sendResult==0 ∧  cancel==0 ∧  meetingConfirmation==0 ∧  meetingProposition==0 

∧  medical_examination==0) 

∀¬P1.final∧…∧ ∀¬Pn.final 
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Timed conversational
protocols

CTP2UTA

UPPAAL timed
 automata

UTA2CTL

CTL formulas

UPPAAL checker

Choreography 
compatibility class

 
 

Figure 17. The underlying architecture of the compatibility framework 

 
According to the generated UPPAAL timed automata, UTA2CTL (UPPAAL Timed Automata to 

CTL formulas) component generates the CTL formulas that characterize the choreography 

compatibility classes. These formulas associated to the generated UPPAAL timed automata of the 

services are then checked by the UPPAAL model checker. Figure 18 shows a snapshot of the 

CTP2UTA tool. 

RELATED WORK 
 
Checking and analyzing in general Web services features is an important investigation (Bordeaux 

and al. 2004, Benatallah-a and al. 2004-a, Benatallah-a and al. 2004-b, Benatallah and al. 2005-a, 

Diaz and al. 2005, Diaz and al. 2006, Ponge 2008, Kazhamiakin and al. 2006-a, Kazhamiakin and 

al. 2006-b, Berardi and al. 2005, Benatallah and al. 2006, Guermouche and al. 2008-a, 

Guermouche and al. 2008-b, Guermouche and al. 2009-a, Guermouche and al. 2009-b, 

Guermouche and al. 2010, Massimo and al. 2001). Particularly, in this paper we are interested in 

the compatibility analysis of a choreography in which services support timed asynchronous 

communicating services. 

 
In (Bordeaux and al. 2004, Benatallah and al. 2004-a, Benatallah and al. 2004-b), authors 

consider the sequence of messages that can be exchanged between two synchronous Web services. 

Considering only the message exchange sequences is not sufficient. To succeed a conversation, 

other metrics can have an impact such as timed properties. The latter are not considered in 

(Bordeaux and al. 2004). Another important remark is that in (Bordeaux and al. 2004),  authors 

consider synchronous Web services. Such assumption is very restrictive since two services can 

succeed a conversation in spite that they do not support the same branching  structure. 

 
The compatibility framework presented in (Ponge 2006, Ponge and al. 2007), is an extension of 

the framework presented in (Benatallah and al. 2005-b). It considers a more expressive timed 
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constraints model. Although powerful, in some cases, the compatibility framework cannot detect 

some timed conflicts due to non-cancellation
2
 constraints.  

 

 
 

Figure 18. Screenshot of CTP2UTA tool 
 

In fact, the authors deal only with synchronous communicating services and discovering the 

timed conflicts based on synchronizing the corresponding timed properties over messages. 

However, in case of asynchronous Web services, this framework cannot be applied to discover 

the eventual timed conflicts. Like the work presented in (Ponge 2006, Ponge and al. 2007), 

(Guermouche and al. 2008-a), handles only synchronous services. 

 
In (Eder and al 2008), the authors handle the timed conformance problem. The timed 

conformance problem consists in checking if a given timed orchestration satisfies a global timed 

choreography. In this framework, the authors deal with timed cost (i.e., the delay) of operations. 

According to our work, our aim is to detect deadlocks that can arise when a set of Web services 

are interacting altogether. Whilst in (Eder and al. 2008), the authors are not interested in 

analyzing the compatibility of a choreography but only in checking if a given orchestration is 

conform with a choreography. So, one of the assumption on which the work presented in (Eder 

and al. 2008),  is that the choreography does not hold timed conflicts. 

 

Regarding our previous work, in (Guermouche and al. 2009-a, Guermouche and al. 2009-b, 

Guermouche and al. 2010) we present a framework for analyzing the compatibility of Web 

                                                
2
 In (Ponge and al. 2007) the non-cancellation constraints are called C-Invoke. They specify a time window 

within which a given message can be fired. Outside the window, the transition is disabled (exchanging the 

message results in an error). 
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services. (Guermouche and al. 2009-b), presents an algorithm to analyze a compatibility of Web 

services based on the clock ordering process proposed in (Guermouche and al. 2008-e). This 

work is limited to discover only some kind of timed conflicts that do not consider other eventual 

timed conflicts that can arise when Web services interact together.  In (Guermouche and al. 2009-

a), we propose a model checking approach for analyzing the compatibility of Web services. This 

work considers only three general compatibility classes. Moreover, (Guermouche and al. 2009-a) 

do not consider data flow and data constraints when analyzing the choreography compatibility. 

CONCLUSION 
 
In this paper, we presented a formal framework for analyzing the compatibility of a choreography. 

Unlike the existing approaches, this framework caters for timed properties of asynchronous Web 

services. We presented how to model the timed behavior of Web services. To model timed 

properties, we propose to use the standard clocks of standard timed automata. In a choreography, 

when the services are interacting together, timed conflicts can arise. In order to handle timed 

deadlocks, we proposed an approach based on the model checker UPPAAL. 

 

Since we deal with timed asynchronous services, the use of the channel notion is inadequate. This 

notion of channels allows to analyze only synchronous services. Moreover, UPPAAL does not 

take into account constraints over data semantics. In order to handle asynchronous services 

augmented with data flow and data constraints, we proposed a set of abstractions. By using the 

result of these abstractions, we presented a set of CTL formulas that characterize the different 

choreography compatibility classes we have defined. 

 

In our ongoing work, we are interested in analyzing the compatibility of a choreography in which 

the instances of the involved services is not known in advance. Our aim is to provide primitives 

for defining dynamically the required instances for a successful choreography. Moreover, we plan 

to extend the proposed approach to support more complex timed properties when analyzing Web 

services. 
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