Multilevel Richardson-Romberg extrapolation

Abstract : We propose and analyze a Multilevel Richardson-Romberg ($MLRR$) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg ($MSRR$) method introduced in [Pages 07] and the variance control resulting from the stratification in the Multilevel Monte Carlo ($MLMC$) method (see [Heinrich, 01] and [Giles, 08]). Thus we show that in standard frameworks like discretization schemes of diffusion processes an assigned quadratic error $\varepsilon$ can be obtained with our ($MLRR$) estimator with a global complexity of $\log(1/\varepsilon)/\varepsilon^2$ instead of $(\log(1/\varepsilon))^2/\varepsilon^2$ with the standard ($MLMC$) method, at least when the weak error $E[Y_h]-E[Y_0]$ of the biased implemented estimator $Y_h$ can be expanded at any order in $h$. We analyze and compare these estimators on two numerical problems: the classical vanilla and exotic option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2017, 20 (3), pp.1029--1067. 〈10.3150/16-BEJ822〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00920660
Contributeur : Gilles Pagès <>
Soumis le : vendredi 19 décembre 2014 - 15:21:21
Dernière modification le : lundi 16 avril 2018 - 23:46:09
Document(s) archivé(s) le : lundi 23 mars 2015 - 18:26:01

Fichier

MultilevelRR_3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

PMA | INSMI | UPMC | USPC

Citation

Vincent Lemaire, Gilles Pagès. Multilevel Richardson-Romberg extrapolation. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2017, 20 (3), pp.1029--1067. 〈10.3150/16-BEJ822〉. 〈hal-00920660v3〉

Partager

Métriques

Consultations de la notice

576

Téléchargements de fichiers

1131