A 2D Synthetic Aperture Radiometry Demonstrator by Switching Strategy at X band
Yassine Aouial, Stéphane Meric, Olivier Lafond, Mohamed Himdi

To cite this version:
Yassine Aouial, Stéphane Meric, Olivier Lafond, Mohamed Himdi. A 2D Synthetic Aperture Radiometry Demonstrator by Switching Strategy at X band. International IEEE Conference on Microwaves, Communications, Antennas and Electronic Systems, Oct 2013, Tel Aviv, Israel. <hal-00920553>

HAL Id: hal-00920553
https://hal.archives-ouvertes.fr/hal-00920553
Submitted on 18 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A 2D Synthetic Aperture Radiometry Demonstrator by Switching Strategy at X Band

Yassine Aouial, Stéphane Méric, Olivier Lafond and Mohamed Himdi
Institute of Electronic and Telecommunication of Rennes
Rennes, France
yassine.aouial@univ-rennes1.fr, olivier.lafond@univ-rennes1.fr, stephane.meric@insa-rennes.fr, mohamed.himdi@univ-rennes1.fr

Abstract — The broad topic of the presented paper consists in the research on novel methods in the field of microwave imaging, in particular the so-called passive microwave / millimeter-wave imaging, which is also referred to radiometric imaging. This study focuses on proximity range applications such as concealed objects detection, human body screening, etc. The aim is to design a low cost and compact fully electronic passive imaging system suitable for short-range 2D imaging applications, and study the necessary devices for the implementation of a complete demonstrator. In this study, a new approach based on the use of a switch sub-matrix strategy has been adapted into a complete antenna system at X band. The main objective of this prototype is to validate this approach experimentally. Image quality is examined by using the interferometric aperture synthesis technique and G-matrix calibration imaging algorithms. The spatial resolution is measured by using the emission from noise source and is compared with theory.

Keywords—Aperture synthesis, interferometric radiometer, microwave remote sensing, millimeter wave imaging, passive screeners.

I. INTRODUCTION

In the recent years, the application of passive imaging has gained increasing interest [1]. For proximity range applications as concealed weapons detection, millimeter wave imaging systems are suggested as an effective tool to detect explosives, hidden and other dangerous objects and contraband [2]. In the literature, passive imaging systems are mainly based on three types of radiometers: real aperture (RA) radiometer [3], 1-D synthetic aperture (SA) (1D-SA) radiometer [4], and 2-D SA (2D-SA) radiometer [5]. The first and the second rely on a mechanical scanning system in order to acquire a 2-D image, while the 2-D SA is based on an electronic scanning system.

Selecting one of the systems mentioned earlier represents a trade-off between hardware complexity and imaging performance. The 2-D SA principle could reduce the volume of the imaging system and improve its performances [6]. In fact, by eliminating focusing lenses, mirrors and mechanical scanners, the imaging system volume can then be reduced. In addition, the image quality can be enhanced by many efficient processing [7] which permit to achieve a high spatial resolution and to calibrate the errors of the system. Motivation for the development of 2-D SA imagers is that they have the potential to be constructed in a planar format and thereby be integrated into existing wall surfaces for security purposes.

Most of the imaging systems using aperture synthesis principle are based on the conventional multi-channels approach, which depends mainly on the number of receivers. However, a new low-cost approach has been proposed [8] that based on the switching strategy. Therefore, the work presented here focuses on the development of a system based on this approach. The working frequency is around 11 GHz. After detailing the principle of the 2-D SA imaging by the switching strategy, we describe the various modules of the system and the imaging procedure and characteristics and finally we give possible performances of the system from measurements of the target.

II. APERTURE SYNTHESIS IMAGING BY THE SWITCH SUB-MATRIX STRATEGY

A. Imaging principle by Aperture Synthesis

The general theory concerning aperture synthesis for passive imaging is published in [9]. Its basic strength enables large collecting areas to be synthesised using physically much smaller collecting antennas and receivers to deliver high spatial resolution. The aperture synthesis imager measures the complex correlation between signals collected by two spatially separated antennas \(k \) and \(l \) that have overlapping fields of view, yielding samples of visibility function \(V \) of the brightness temperature \(T_B \) of the scene under observation. Fig.1 shows the schematic of a two dimensional geometric arrangement for the 2D-SA imaging. In an ideal case, far field situation, the relationship between visibility and brightness temperature is given by:

\[
V_{ij}(u_{ij},v_{ij}) = \frac{1}{\sqrt{\Omega_k\Omega_l}} \int_{\Omega_{ij}} \int_{\Omega_{ij}} \frac{T_B(\xi,\eta) - T^*_i(\xi,\eta)F_l(\xi,\eta)}{\sqrt{1-\xi^2-\eta^2}} \exp(-j2\pi(u_{ij}\xi + v_{ij}\eta))d\xi d\eta
\]

where \((u_{ij},v_{ij})=(x_i-x_j,y_i-y_j)/\lambda_0\) denotes the spatial frequency (Baseline) that depends on the antenna position \((x,y)\) difference, \((\xi,\eta) = (\sin \theta \cos \phi, \sin \theta \sin \phi)\) is the direction cosines defined with respect to the x- and y-axis, \(T_i\) is the physical temperature of the receivers, \(\Omega_k\) and \(\Omega_l\) are respectively the solid angle of the antennas \(k \) and \(l \), and \(F \) denotes the normalized antenna voltage patterns. The function
\(\tilde{r}_{ij}() \) is the so-called fringe-washing function that depends on the frequency response of the pair of elements whose signals being correlated. The image of the brightness temperature of the scene can be found then via a reverse process [7].

B. The Switching Sub-matrix Strategy

Most of the imaging systems using aperture synthesis principle are based on the conventional multi-channels approach. However, a system that the subject of high spatial resolution requires a hundred of antennas and receiver channels and this approach might not be a low-cost concept. Therefore, a new approach has been proposed [8] that based on the switching strategy. This strategy is of interest in an imaging system as they sample all spatial frequencies (visibilities) across an aperture with the minimum number of receivers in order to improve the cost-performance ratio. The concept of using a 2D imaging interferometer by two-dimensional approach sub-matrices Switch has been detailed in [8]. The principle is based on using only two receiver channels associated to an antenna array through two independent sub-matrices of switches. To implement this approach, an optimization process to find the optimal configuration based on the size of the array has also been proposed [10]. For the size of 7x7 elements, Fig. 2 shows the optimum array found with a minimum number of antennas. This optimum array provides full rectangular spatial frequency coverage and therefore the same spatial resolution in contrast to the fully filled configuration. This structure shows several advantages in terms of resolution, complexity and cost, which have satisfy requirements for the considered demonstrator.

III. SYSTEM ARCHITECTURE AND CHARACTERISTICS

To investigate how well 2-D SA passive imager function, a demonstrator at X-band has been designed, built and characterised. The RF center frequency is 11 GHz and the IF center frequency is 50 MHz with a 50 MHz system bandwidth. The measurement setup consists of the correlation between all enabling antennas. A total aperture synthesis is obtained by sequentially switching antenna elements, required pairs of positions and measuring the corresponding samples of the visibility function.

A. System Block diagram

The system is composed of three modules that provide the necessary system hardware and software functionalities as shown in Fig. 2: antenna and front-end module, receiver module and signal processing module. The antenna and front-end module is composed of a 21 patch antennas placed in a sparse array, 21 LNAs and 8 MMIC single-pole multiple-throw switches (SP4T). Consequently, using multilayer manufacturing technology as shown in Fig. 3 can easily integrate the switch sub-matrix. The top layer is used for antennas and the bottom layer for the front-end. The least spacing between antennas is 0.75\(\lambda_0 \), and the maximum spacing is 3.5\(\lambda_0 \). The antenna elements receive signals in the horizontal polarization mode, and the gain is over 6 dB. For the measured H-plane radiation pattern, the half-power beamwidth (HPBW) is about 75°. The measured E-plane radiation patterns show that the HPBW for one antenna element is about 90°.

For the receiver module (Rx1 and Rx2), the receiver circuitry follows a heterodyne-circuit concept with double-frequency down conversion. The received signal is down converted to the first intermediate frequency (IF), filtered and amplified further to provide a power level that is adequate for the following analog-to-digital (A/D) conversion. The final down conversion and demodulation to a baseband are performed by the digital electronic circuitry after sampling of the analog signal at 100-MHz sampling frequency.

The signals are sampled and digitized by the A/D acquisition board and processed by a computer for image reconstruction. Since the amplitude mismatch, phase shift, and mutual coupling in the antenna array will introduce amplitude
B. System calibration and image reconstruction

The calibration algorithm for an aperture synthesis radiometer had been described in [11]. Due to system imperfections, such as antenna errors, channel errors, each antenna radiation pattern and the frequency response of each receiver will be influenced, and then the brightness temperature in the field of view (FOV) is affected by the system.

In the most general sense, this calibration can be represented by matrix operations on vectors. Eq. 1 can be written in terms of the response of the imager to the scene, and this is given by Eq. 2, where vector V_n is the visibilities of length n and the vector T_m is the brightness temperature from m pixels in the scene and G_{mn} is the response matrix of $n \times m$ elements. Inversion of this equation gives the temperature at each pixel for a given visibilities. Eq. 3 gives the calibration matrix $G_{m,n}$ (matrix of $m \times n$ elements) which can be found by the Moore–Penrose pseudoinverse of the response matrix G. The response matrix is found by measuring farfield radiation pattern in the phase center of each antenna (i.e. Fig. 4) and the frequency response of each receiver. This method of calibration is similar to passing a source through all the pixels in the field of view (FOV) and recording the responses V_n.

\[V_n = G_{n,m} T_m \]
\[\hat{T}_m = G^*_{m,n} V_n \]

where \(G^*_{m,n} = (G_{m,n} G_{m,n}^H)^{-1} \) and G^H: Conjugate transpose of G.

IV. EXPERIMENTS AND RESULTS

In order to demonstrate the possibility of using the sub-matrices approach in a passive imaging radiometer system, a series of experiments was conducted. These experiments include a noise source measurement experiment at X-band. Therefore, a noise source was placed at 2 m from the system. The output power of the noise source is set high that the thermal noise from the background. Fig. 5.a shows the prototype of the experiment in the anechoic chamber. After system calibration, the system response of the point source in two directions can be seen in Fig. 5. The estimated incident direction of the noise source is precise, and the background brightness temperature is slightly stable.

Concerning system performances, the measured angular resolution is 6.5°. Theoretically, this resolution value is equal to 6.3°. Consequently, the measured and theoretical angular resolutions are in good agreement. The measurement of the radiometric sensitivity of the X-band aperture synthesis imager was calculated by using relationship [6]:

\[\Delta T = \frac{T_s + T_R}{\sqrt{B \tau}} \left(\frac{D_{sys}}{\lambda_0} \right)^2 \left(\frac{\Omega_{FOV}}{N} \right) \]
where B is the bandwidth of the receiver, τ is the equivalent integration time, N is the number of antennas, D_{syn} is the diameter of the synthetic aperture, Ω_{FOV} is the FOV solid angle, T_B is the brightness temperature of the scene, T_R is the effective receiver noise temperature. For this demonstrator, the equivalent integration time is about 10 ms and the bandwidth is about 50 MHz. The sensitivity of the system is less than 9 K, when T_B is 300 K. The radiometric sensitivity describes the capacity of the system to distinguish among small scene contrasts in the image. Actually, the sensitivity value of the system is not good to detect concealed objects with an apparent temperature similar to that of the background. The principal objectives of the project are to develop a demonstrator having a low-cost and real-time imaging capability. Therefore, follow on demonstrators require higher specifications (sensitivity and resolution) of the system and a choice of the optimal frequency (W-band) for the scenario.

V. CONCLUSION

In this paper, based on research on a low-cost fully electronic passive imaging system, the concept of using the switching sub-matrix strategy to develop a low cost system for proximity range applications has been presented. Obviously, this approach has important benefits in terms of cost and system compactness. The experiment result demonstrates the angular resolution and sensitivity of the system. For the further work, the future demonstrator will illustrate how a 2-D SA imaging architecture delivers real-time imagery with a high sensitivity to detect threats of interest for security scanning portals. This will possibly in W-band for the optimum radiometric contrast [12].

REFERENCES

