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Guillaume Jouvet∗
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Abstract

A new hybrid model for the dynamics of glaciers, ice
sheets and ice shelves is introduced. In this model “mul-
tilayer” the domain of ice consists of a pile of thin lay-
ers, which can spread out, tighten and slide over each
other. The multilayer model accounts for the two most
relevant types of stress: the membrane ones and the
vertical shear ones. Assuming the velocity field to be
vertically constant on each layer with possible disconti-
nuities between the layers, the model derives from local
depth-integrations of the hydrostatic approximation of
the Stokes equations. These integrations give rise to in-
terlayer tangential stresses, which are simplified by keep-
ing the vertical shear components of the stress in the
local frame of the interface. By imposing continuity of
the stress between layers, the final model consists of a
system of two-dimensional non-linear elliptic equations,
the size of this system equal to the number of layers.
By construction, the model is a multilayer generalisa-
tion of the Shallow Shelf Approximation (SSA), which
corresponds to the 1-layer model. Like the SSA, the mul-
tilayer model can be advantageously reformulated as a
minimisation problem. Numerical techniques developed
for the SSA can be used, provided an iterative loops over
the layers. The multilayer model is used to compute the
two-dimensional velocity fields of two benchmark exper-
iments. Although it is mathematically two-dimensional,
the multilayer model shows good agreement with the
three-dimensional higher-order models on these experi-
ments.

1 Introduction

To better evaluate sea level rise (Vaughan and Arthern,
2007) in a climate change regime, it is crucial to develop
ice flows models that are mechanically complete while
being computationally-tractable. Ice is known to behave
like a non-Newtonian fluid, governed by Glen’s flow law
(Glen, 1958). Thus, the velocity and the pressure of
the ice satisfy non-linear Stokes equations. In practise,
solving these equations requires considerable computa-
tional resources and complex meshing procedures to be
implemented at the large scale, which is necessary when
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modelling ice sheets. As a consequence, a number of sim-
plified models have been proposed in the last decades to
lead simulations of real glaciers. Simplifications are al-
ways based on the small aspect ratio (quotient between
the characteristic heights and lengths) of glaciers. More
precisely, after writing the solution of the Stokes equa-
tions as an asymptotic expansion in the aspect ratio ǫ,
high order terms in ǫ are neglected. Two categories of
models derive from such an approach. In the first cat-
egory, each order that was not neglected gives rise to
a system of equations: the Shallow Ice Approximation
(SIA) for ǫ0 (Hutter , 1983), the first order SIA for ǫ1, and
the second order SIA for ǫ2 (Baral et al., 2001; Ahlkrona
et al., 2013; Egholm et al., 2011), which can be solved
iteratively at a much lower cost than the original Stokes
problem. In contrast, the models of the second cate-
gory exploit the lost of higher-order terms by eliminat-
ing unknown variables and by reducing the dimension
of the mathematical model. In this last category, the
first level of simplification assumes hydrostatic vertical
normal stresses (Greve and Blatter , 2009), with the sim-
plification that the pressure variable is eliminated from
the Stokes equations. However, this hydrostatic approx-
imation is almost never used in practise. Instead, the
First Order Approximation (FOA) (Blatter , 1995; Pat-
tyn, 2003) model, which further assumes negligible hor-
izontal derivatives of the vertical velocity compared to
vertical derivatives of the horizontal velocity, is usually
preferred. Compared to the hydrostatic approximation,
the third component of the velocity has vanished from
the FOA system. Despite the fact that the unknowns
of the FOA are reduced to the horizontal components of
the velocity, the FOA model is still mathematically 3D.
As a consequence, solving the FOA still requires meshing
complex and shallow geometries, which change in time.
To remove such complexity, the dimension of the math-
ematical model can be reduced by further mechanical
simplifications. For instance, the Shallow Shelf Approx-
imation (SSA) (Morland , 1987; MacAyeal , 1989), which
accounts only for longitudinal (or membrane) stresses, is
2D after being depth-integrated. In contrast, the ǫ0 SIA,
which accounts only for vertical shear stresses, reduces
to a 1D (vertical) mathematical model, independently in
each column of ice. In the literature (Schoof and Hind-
marsh, 2010), the SSA is called a “membrane” model
while the SIA is called a “lubrication” model. Those
two models (SIA and SSA) are popular to describe the
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dynamics of ice sheets and ice shelves since the size and
the complexity of the system to solve are definitely re-
duced compared to any 3D models.

In practise, the vertical shear components of the stress
tensor are significant where ice is grounded while the
longitudinal components are dominant in floating parts.
As a consequence, both components must be combined
if one wants to model the entire domain (grounded and
floating). This has motivated the construction of “hy-
brid” models, which account for both kind of stresses,
while being mathematically 2D. The simplest hybrid
model consists of the linear combination SIA+SSA,
which consists of summing the velocities of each model
(Bueler and Brown, 2009). Unfortunately, this model
does not include the simultaneous coupling between the
vertical shear and the longitudinal stresses. As a result,
this model can not capture the 3D ice flows that occur
in deep and narrow valleys or in the vicinity of ground-
ing lines (Pattyn and others , 2013; Jouvet and Graeser ,
2013). In contrast, the L1L2 (Hindmarsh, 2004) or some
variants like the ones proposed in (Pollard and Deconto,
2009), (Schoof and Hindmarsh, 2010) or in (Goldberg ,
2011) include the vertical shear stress in the compu-
tation of the effective viscosity of the SSA. All these
hybrid models have in common that they solve a sin-
gle non-linear elliptic 2D problem, and that the velocity
profile is reconstructed a posteriori via an implicit rela-
tion (Schoof and Hindmarsh, 2010; Winkelmann et al.,
2011; Cornford et al., 2013). The hierarchy of the afore-
mentioned models is drawn in Figure 1.

Stokes3D

FOA3D

SIA1D SIA1D+SSA2D

Multilayer2D

“L1L2-like”2D

SSA2D

Hybrid Models

Figure 1: Overview of the hierarchy of ice flows mod-
els: Stokes, First Order Approximation (FOA), Shallow
Ice Approximation (SIA), Multilayer model, “L1L2-like”
and Shallow Shelf Approximation (SSA). The dimension
of the mathematical model is indicated in exponent.

In this paper, a new hybrid model generalizing the
SSA is introduced. The SSA model assumes a vertically-
constant velocity profile, such that it only accounts for
the longitudinal components of the stress while neglect-

ing the vertical components. To recover these compo-
nents, the velocity profile of the new model partitioned
and then assumed to be vertically piecewise-constant.
Inspired by an ocean model (Audusse et al., 2011), this
approach consists of seeing the thickness of ice as a pile of
thin layers, which can spread out, tighten and can slide
over each others. Similarly to the SSA, the model is ob-
tained by integrating vertically the FOA model, but lo-
cally on each layer. The boundary terms appearing when
integrating give rise to interlayer tangential stresses. To
account for sliding between layers, only the vertical shear
components in the local frame are kept. These compo-
nents redefine the interlayer tangential stresses. The fi-
nal model consists of a system of 2D non-linear elliptic
equations of size the number of layers. This multilayer1

model naturally generalizes the SSA, which corresponds
to the 1-layer case of the model. By construction, the
multilayer model is expected to be as accurate as any
higher-order model when increasing the number of ver-
tical layers. However, in contrast to the FOA or the
Stokes model, the multilayer model is mathematically
2D, and then much easier to solve. Moreover, any solver
that has been developed for the SSA can be extended
to solve the multilayer model. To test the multilayer
model against other higher-order models, the 2D veloc-
ity fields of two benchmark experiments are computed
for the experiment B of the ISMIP-HOM project (Pattyn
and others, 2008) and for one real mountain glacier.

This paper is organized as follows. The model is de-
rived in Section 2. Then, two numerical methods to solve
the resulting system are described in Section 3. Finally,
the numerical results are reported in Section 4.

2 Model derivation

In this section, a generic 3D system of ice sheet and ice
shelf is considered. The most complex ice flow model,
non-linear Stokes, and the First Order Approximation
(FOA), which is a simplification, are described in Sec-
tion 2.1 and 2.2, respectively. Then an integration pro-
cedure derives the multilayer model in Section 2.3. The
redefinition of the interlayer stress terms is reported in
Section 2.4 while the boundary conditions are rewritten
in the multilayer setting in Section 2.5. The multilayer
model is reformulated in a vectorial way in Section 2.6.
Finally, the vectorial problem is rewritten as a varia-
tional problem and a minimisation problem in Section
2.7.

Let V be a three-dimensional domain of ice, which is
defined by

V = {(x, y, z), s(x, y) ≤ z ≤ s(x, y)}, (1)

1In the literature (Hindmarsh, 2004; Egholm et al., 2011), the
terminology “multilayer” is sometimes used as a synonym of “hy-
brid”, as defined in the paper
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where (x, y) denote the horizontal coordinates, z denotes
the vertical coordinate, s(x, y) and s(x, y) are the eleva-
tions of the lower and upper ice surfaces. Call b(x, y) the
elevation of the bedrock. Note that s = b holds where
ice is grounded and s > b where ice is floating. The
flotation of ice is driven by Archimedes principle,

s = max

{

b,− ρ

ρw
h

}

, (2)

where h := s − s is the ice thickness and ρ and ρw are
the densities of ice and water, respectively ; see Figure
2. Relation (2) says that if the buoyancy −ρwgb is less
than the force exerted by ice ρgh, then ice is grounded,
otherwise ice is floating and ρ/ρw of the ice thickness is
below sea level.

Bedrock Water

Water Level

Frozen area

Sliding area

Ice domain

h

b

z

x

Γc

Γs

Γf

Γn
s

s

Γl

Figure 2: Section of an ice sheet and an ice shelf, with
notation.

The boundary of V is divided into the upper interface

Γs = {(x, y, z), z = s(x, y)}, (3)

the lower interface

Γf ∪ Γn ∪ Γl = {(x, y, z), z = s(x, y)} (4)

and a possible vertical ice-cliff at the calving front Γc,
see Figure 2. At the lower interface, ice might be frozen
to the ground, sliding on the ground or floating on the
water. For this reason, the cases are distinguished as
follows: Γf denotes the non-sliding part, Γn the sliding
grounded part, and Γl the floating part, respectively.
Additionally Ω and Ωk denote the projections of V and
its boundaries Γk on the horizontal plane (Oxy) for k ∈
{s, f, n, l, c}.
In what follows, the velocity field of the ice fluid in

V is denoted by ~u = (ux, uy, uz), the pressure field is
denoted by p, the derivative for variable i is denoted by
∂i (i ∈ {x, y, z}), and Einstein summation is adopted.

2.1 Stokes

The Stokes model consists of the momentum conserva-
tion equation and the incompressibility condition:

−∂jσij = ρgi, in V, (5)

∂iui = 0, in V, (6)

where σij and gi are the components of the Cauchy stress
tensor and (gx, gy, gz) = (0, 0,−g), where g is the grav-
itational constant. Call τij the components of the devi-
atoric stress tensor defined by

σij = τij − pδij , (7)

where δij is the Kronecker symbol. Glen’s flow law
(Glen, 1958), which describes the mechanical behaviour
of ice, consists of the following non-linear viscosity rela-
tion:

τij = 2µε̇ij , (8)

where ε̇ij denotes the components of the strain rate ten-
sor defined by ε̇ij = 1

2 (∂jui + ∂iuj), µ is the viscosity
defined by

µ =
1

2
A−

1
n

∣

∣

∣

∣

1

2
ε̇ij ε̇ji

∣

∣

∣

∣

1
2
( 1
n
−1)

, (9)

A > 0 and n ≥ 1 are two constants called the rate factor
and Glen’s exponent, respectively. In reality, A is not
constant since it depends on ice temperature (Greve and
Blatter , 2009). However, for simplicity, it is assumed in
this paper that the ice is isothermal.
The boundary conditions that supplement (5), (6) (7),

(8), and (9) are the following. No force applies on the
ice-air interface,

σijnj = 0, on Γs, (10)

where

~n = (nx, ny, nz)
T = (−∂xs,−∂ys, 1)

T (11)

is an outer normal vector along Γs. Along the lower
surface interface, the no-slip condition is

ui = 0, on Γf , (12)

the non-linear friction condition reads (Hutter , 1983):

uini = 0, on Γn, (13)

τijnjt
k
i = −C|~u| 1

m
−1uit

k
i , on Γn, (14)

for k ∈ {x, y}, where m > 0, C = C(x, y) > 0, and
the condition on the floating interface reads (Greve and
Blatter , 2009):

σijni = ρwg z ni, on Γl, (15)
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for k ∈ {x, y}, where

~n = (nx, ny, nz)
T =

(∂xs, ∂ys,−1)T
√

1 + (∂xs)2 + (∂ys)2
, (16)

~tx = (txx, t
x
y , t

x
z )

T = (1, 0, ∂xs)
T , (17)

~ty = (tyx, t
y
y, t

y
z)

T = (0, 1, ∂ys)
T , (18)

are the outward normal unit vector and two orthogonal
vectors tangent to the boundaries Γn and Γl, respec-
tively. Finally, the same condition applies at the calving
front below sea level:

σijni = ρwgmin(z, 0) ni, on Γc. (19)

where (nx, ny, nz) = (nx, ny, 0) is an outer normal vector
to Γc.

2.2 First Order Approximation (FOA)

Call ǫ = [h]/[x] the aspect ratio of V , where [h] and
[x] denote its typical height and length. A dimension-
less scaling (Blatter , 1995; Schoof and Hindmarsh, 2010)
shows that

∂jσzj = ∂zσzz +O(ǫ2) in V, (20)

σzjnj = σzznz +O(ǫ2), on Γs ∪ Γf ∪ Γn ∪ Γl, (21)

τzjnj = τzznz +O(ǫ2), on Γs ∪ Γf ∪ Γn ∪ Γl. (22)

and

ε̇iz =
1

2
∂zui +O(ǫ2), i ∈ {x, y} in V. (23)

From now on, the remainders O(ǫ2) in (20), (21), (22),
and (23) are neglected such that the Stokes problem and
its boundary conditions simplify. Indeed, using (20), the
third equation of (5) simplifies into

∂zσzz = ρg, in V, (24)

while, using (21), the third equation of (10) becomes

σzz = 0, on Γs. (25)

Integrating vertically (24) with (25) yields

σzz = τzz − p = −ρg(s− z), in V. (26)

By (6) and (8), it follows that

p = ρg(s− z)− τxx − τyy, in V. (27)

Thus p can be eliminated from the two first equations of
(5):

∂x(2τxx + τyy) + ∂yσxy + ∂zσxz = ρg∂xs, (28)

∂xσxy + ∂y(2τyy + τxx) + ∂zσyz = ρg∂ys, (29)

and from the stress-free boundary condition (10):

(2τxx + τyy)nx + (σxy)ny + σxznz = 0, on Γs, (30)

(σxy)nx + (2τyy + τxx)ny + σyznz = 0, on Γs. (31)

Using (16), (17) and (18), the simplification due to (22),
the friction condition (14) becomes:

(2τxx + τyy)nx + (σxy)ny + σxznz

= −C|~u| 1
m

−1uit
x
i , on Γn, (32)

(σyx)nx + (2τyy + τxx)ny + σyznz

= −C|~u| 1
m

−1uit
y
i , on Γn. (33)

Using (21), (26) and s = − ρ
ρw

h, which derives from the

floating condition (2), the third equation of (15) becomes

σzz = τzz − p = ρwgs = −ρgh, on Γl. (34)

Again using (27) to eliminate the pressure from the two
first equations of (15) and using (34) imply

(2τxx + τyy)nx + (σxy)ny + τxznz = 0, on Γl, (35)

(σyx)nx + (2τyy + τxx)ny + τyznz = 0, on Γl. (36)

Similarly, the condition at the calving front (19) be-
comes:

(2τxx + τyy)nx + (σxy)ny

= (ρwgmin(z, 0) + ρg (s− z)) nx, on Γc, (37)

(σyx)nx + (2τyy + τxx)ny

= (ρwgmin(z, 0) + ρg (s− z)) ny, on Γc. (38)

In addition, (23) says that the horizontal derivatives of
the vertical velocities are small compared to the vertical
derivatives of the horizontal velocities. Consequently,
using and the incompressibility (6), (9) becomes:

µ =
1

2
A−

1
n

[

1

2
(∂xux)

2
+

1

2
(∂yuy)

2
+

1

2
(∂xux + ∂yuy)

2

+
1

4
(∂yux + ∂xuy)

2
+

1

4
(∂zux)

2
+

1

4
(∂zuy)

2

]
1
2
( 1
n
−1)

.

(39)

2.3 Depth integration over layers

The domain of ice is now divided in the vertical direction
into L layers of thickness h1, ..., hL such that

∑

l=1,...,L

hl = h, (40)

see Figure 3. Call sl = s + hl the elevation of the up-
per surface of the layer l for l = 0, ..., L, with the con-
vention h0 = 0. The choice of this vertical division is
discussed later. The derivation of the SSA model is
based on the assumption of a constant velocity profile
(MacAyeal , 1989). Instead, here ~u is assumed to be ver-
tically piecewise constant, equal to ~ul(x, y) on layer l:

~u(x, y, z) =
∑

l=1,...,L

~ul(x, y)1(sl−1,sl](z), (41)
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where 1I(z) equals 1 if z ∈ I and 0 otherwise, see Fig-
ure 3. The discontinuities of the velocity lead to un-
defined stresses between the layers. The redefinition of
such stresses is addressed in Section 2.4.

ul

ul+1

hL

hl+1

hl

h1

sl−1

sl

sl+1

sL = s

s0 = s

Figure 3: Multilayer splitting of the ice thickness.

Consider an arbitrary layer indexed by l ∈ {1, ..., L}.
Using Leibnitz’s rule, the integration of (28) vertically
over the layer l yields

2∂x

(

∫ sl

sl−1

τxxdz

)

− 2[τxx]z=sl∂xs
l + 2[τxx]z=sl−1∂xs

l−1

+∂x

(

∫ sl

sl−1

τyydz

)

− [τyy]z=sl∂xs
l + [τyy]z=sl−1∂xs

l−1

+∂y

(

∫ sl

sl−1

σxydz

)

− [σxy]z=sl∂ys
l + [σxy]z=sl−1∂ys

l−1

+[σxz]z=sl − [σxz]z=sl−1 = ρghl∂xs,

where [·]z=sl (resp. [·]z=sl−1) stands for the limit z 7→ sl

(resp. z 7→ sl−1 ) with z < sl (resp. z > sl−1). From
(7), (8), (9) and using the fact that ~u = ~ul is constant
in the layer l, the latter becomes:

2∂x
(

µlhl
(

2∂xu
l
x + ∂yu

l
y

))

+ ∂y
(

µlhl
(

∂yu
l
x + ∂xu

l
y

))

+Σl,0
x,y +Σl,−1

x,y = ρghl∂xs, (42)

where

µl =
1

2
A−

1
n

[

1

2

(

∂xu
l
x

)2
+

1

2

(

∂yu
l
y

)2
(43)

+
1

2

(

∂xu
l
x + ∂yu

l
y

)2
+

1

4

(

∂yu
l
x + ∂xu

l
y

)2
]

1
2
( 1
n
−1)

,

and, for k = 0,−1,

Σl,k
x,y = (−1)−kαl (44)
[

(2τxx + τyy)n
l+k
x + σxyn

l+k
y + σxzn

l+k
z

]

z=sl+k
,

where

~nl = (nl
x, n

l
y, n

l
z)

T =
(∂xs

l, ∂ys
l,−1)T

αl
, (45)

is the outer normal unit vector to the upper boundary
of layer l, and

αl =
√

1 + (∂xsl)2 + (∂ysl)2. (46)

Similarly, integrating (29) vertically over the layer l ∈
{1, ..., L} leads to

2∂y
(

µlhl
(

2∂yu
l
y + ∂xu

l
x

))

+ ∂x
(

µlhl
(

∂yu
l
x + ∂xu

l
y

))

+Σl,0
y,x +Σl,−1

y,x = ρghl∂ys. (47)

Define the vector

Σ
l,k :=

(

Σl,k
x,y

Σl,k
y,x

)

, fork = 0,−1.

Using the simplification due to (22), one can verify that
Σ

l,0 and Σ
l,−1 correspond to the tangential stresses at

the limit of the top and the bottom of the layer l:

Σ
l,k = (−1)−kαl

[

τijn
l+k
i tx,l+k

j

τijn
l+k
i ty,l+k

j

]

z=sl+k

(48)

where ~nl is defined by (45) and

~tx,l = (tx,lx , tx,ly , tx,lz )T = (1, 0, ∂xs
l)T (49)

~ty,l = (ty,lx , ty,ly , ty,lz )T = (0, 1, ∂ys
l)T (50)

are two orthogonal vectors tangent to the upper bound-
ary of layer l.
On the one hand, the continuity of the stress across

the layers implies:

Σ
l,0 = −Σ

l+1,−1, ∀l = 1, ..., L− 1, (51)

thus that the layers are coupled. On the other hand,
assuming that the layers are oriented in the direction of
the flow, the layers can slide on each other such that
only the shear components are significant at the inter-
face between layers. Based on this statement, Σl,0 and
−Σ

l+1,−1 are redefined by the quantity in equation (68)
in the next section.

2.4 Interlayer stresses

From (48), (8) and (9), the k-th component of Σl,0 and
−Σ

l+1,−1 should be equal to

A−
1
nαl

∣

∣

∣

∣

1

2
ε̇ij ε̇ji

∣

∣

∣

∣

1
2
( 1
n
−1)

ε̇ijn
l
jt

k,l
i . (52)

However, ε̇ is not defined between the layers because
of the discontinuity of the velocity field (41). In or-
der to make (52) meaningful and to redefine Σ

l,0 and
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−Σ
l+1,−1, several hypothesis are made. The key as-

sumption is that the multilayer vertical splitting (40) is
chosen such that the layers are aligned with the direction
of the flow:

(∂jui)n
l
i = 0. (53)

Since the layers can slide on each other, the vertical shear
components dominate in the stress expressed in the lo-
cal frame tangential to the layer boundary. As a conse-
quence, the longitudinal stresses in the local frame are
set zero:

ε̇ijt
k,l
j tk̄,li = 0, ∀(k, k̄) ∈ {x, y}. (54)

On the one hand, (53) implies

ε̇ijn
l
j =

1

2
(∂iuj)n

l
i, (55)

while, on the other hand, (54) yields
∣

∣

∣

∣

1

2
ε̇ij ε̇ji

∣

∣

∣

∣

= (ε̇ijn
l
j)

2. (56)

Additionally, (∂iuj)n
l
i is the derivative of ~u in the direc-

tion ~nl:
(∂iuj)n

l
i = ∂z̃uj , (57)

where z̃ is the local variable defined by z̃ = nl
xx+nl

yy+

nl
zz. In (57), the derivative with respect to z̃ (according

to the direction orthogonal to the interface) is approxi-
mated by the finite difference:

∂z̃uk

2
=

ul+1
k − ul

k

h̃l+1 + h̃l
, k ∈ {x, y, z}. (58)

It should be stressed that (58) depends on the local co-
ordinate z̃ and not on z. However, (53) implies that the
Taylor expansion of ul

k at z̃ has no first-order term,

ul
k(x, y, z) = ul

k(z̃) +O([ul]δ2ǫ2/L2), (59)

for k ∈ {x, y, z}. By neglecting the remainder, ul
k is

considered as locally constant in the plan-orthogonal to
~nl, so (58) holds in the primary variables (x, y, z) too.
In addition, calling h̃l the thickness function in the local
frame, the Taylor expansion of h̃l and h̃l+1 at z̃ yields

h̃l =
1 +∇sl · ∇hl

√

1 + |∇sl|2
hl +O([hl]δ3ǫ/L), (60)

h̃l+1 =
1−∇sl · ∇hl+1

√

1 + |∇sl|2
hl+1 +O([hl+1]δ3ǫ/L), (61)

where δ = [s]/[x] and [s] denotes the scales for variations
in surface elevation, see Figure 4. In the following, the
O(δ2) terms are kept in (60) and (61), but the higher-
order remainders are neglected.
Finally, using (52), (55), (56), (57), (58), (59), (60)

and (61), the tangential stress is redefined by

S
l
k = A−

1
nαl

(

αl

βl

)

1
n
∣

∣~ul+1 − ~ul
∣

∣

1
n
−1

2

(

~ul+1 − ~ul
)

· ~tl,k

(62)

Zoom + rotation

Local frameGlobal frame
~tx

~n

~i
~tx sl

h̃l+1

~n

hl+1

hl

~j

O([hl+1]δ3ǫ/L)

1√
1+|∇sl|2h

l+1

− ∇sl·∇hl√
1+|∇sl|2h

l+1

Figure 4: Representation of the global frame (left) and
the local frame (right).

for k ∈ {x, y}, where | · |2 is the Euclidean norm and

βl = (hl + hl+1) +∇sl · (hl∇hl − hl+1∇hl+1), (63)

which simplifies into

βl = hl + hl+1, (64)

if the multilayer splitting (40) is chosen uniform, i.e. if
hl = h/L. Finally, (53) implies

(ul+1
i − ul

i)n
l
i = 0,

so that the third component can be eliminated:

∣

∣~ul+1 − ~ul
∣

∣

2

2
=

(

ul+1
x − ul

x

ul+1
y − ul

y

)T

M l

(

ul+1
x − ul

x

ul+1
y − ul

y

)

,

(65)

(

~ul+1 − ~ul
)

·
(

~tl,x

~tl,y

)

= M l

(

ul+1
x − ul

x

ul+1
y − ul

y

)

, (66)

where

M l =

(

1 + (∂xs
l)2 (∂xs

l)(∂ys
l)

(∂xs
l)(∂ys

l) 1 + (∂ys
l)2

)

. (67)

By combining (62), (65), (66), Sl becomes:

S
l = A−

1
nαl

(

αl

βl

)

1
n

×
∣

∣

∣

∣

ul+1
x − ul

x

ul+1
y − ul

y

∣

∣

∣

∣

( 1
n
−1)

M l

[

M l

(

ul+1
x − ul

x

ul+1
y − ul

y

)]

, (68)

where the norm | · |M l derives from the scalar product

|(ux, uy)|2M l = (ux, uy)M
l(ux, uy)

T . (69)
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However, Sl can be more simply redefined by neglecting
O(δ2) terms in (68). Doing so yields

αl = 1, M l = I, (70)

and

S
l = A−

1
n ×

∣

∣

∣

∣

∣

∣

(

ul+1
x − ul

x

hl+1 + hl

)2

+

(

ul+1
y − ul

y

hl+1 + hl

)2
∣

∣

∣

∣

∣

∣

1
2
( 1
n
−1)

×
(

ul+1
x − ul

x

hl+1 + hl
,
ul+1
y − ul

y

hl+1 + hl

)

. (71)

The multilayer models, which are based on (71), instead
of (68), are later labelled with an asterisk in exponent,
e.g. 16-layer∗. The approximation of the stress tensor in
(71) is similar to the one involved when deriving the SIA
(Greve and Blatter , 2009); see also Appendix B. In fact,
S
l defined in (71) corresponds to the vertical stresses

in the global frame, assuming the other components to
be zero. If the surface gradients are small (i.e. if δ2

is small), then the global frame is close enough to the
local frame so that S

l can be redefined by (71) instead
of (68). In contrast, if these gradients are not negligible,
the slope at the layer interface must be accounted, for
and so S

l is better redefined by (68); see Section 4.

2.5 Boundary conditions

The boundary condition at the top of the highest layer,
i.e. Σ

L,0, is first considered. Returning to (44) and the
free-stress condition (30) (31), it follows that

Σ
L,0 = 0. (72)

The boundary conditions at the bottom of the lowest
layer, i.e. Σ

1,−1, are now considered. On Ωf , no slid-
ing occurs below the lowest layer and the approach of
Section 2.4 can be applied, i.e. Σ1,−1 is redefined by

S
0 = A−

1
nα0

(

α0

β0

)

1
n
∣

∣

∣

∣

u1
x

u1
y

∣

∣

∣

∣

1
n
−1

M0

[

M0

(

u1
x

u1
y

)]

. (73)

On the sliding part Ωn, the conditions (32) and (33) with
(44) become

Σ
1,−1 = C α0 |~u1| 1

m
−1

(

u1
i t

0,x
i

u1
i t

0,y
i

)

on Ωn. (74)

It remains to rewrite (74) in the horizontal velocity
components. Since the velocity field is tangential to
(~t0,x,~t0,y) (condition (13)), it follows, like in Section 2.4,

Σ
1,−1 = C α0

∣

∣

∣

∣

u1
x

u1
y

∣

∣

∣

∣

1
m

−1

M0

[

M0

(

u1
x

u1
y

)]

on Ωn. (75)

Finally, the conditions (35) and (36) on the floating part
Ωl become

Σ
1,−1 = 0, on Ωl. (76)

At the calving front Ωc, (37), (38) are integrated from
sl−1 to sl, and the following boundary condition is ob-
tained:

2µlhl
(

2∂xu
l
x + ∂yu

l
y

)

nx + µlhl
(

∂yu
l
x + ∂xu

l
y

)

ny

= F lnx, (77)

µlhl
(

∂yu
l
x + ∂xu

l
y

)

nx + 2µlhl
(

2∂yu
l
y + ∂xu

l
x

)

ny

= F lny, (78)

where

F l =
1

2
ρg
[

(s− sl)2 − (s− sl+1)2
]

+
1

2
ρwg

[

(min(sl+1, 0))2 − (min(sl, 0))2
]

. (79)

2.6 Vectorial reformulation

From now on, Σ
l,0 and −Σ

l+1,−1 defined by (48) are
replaced by S

l defined by (68) (or (71) for the multilayer∗

model). Additionally, the notation u = (ux, uy) is used
in order to rewrite (42) and (47) in the compact form

−A−
1
n ∇ ·

(

hl
∣

∣D(ul)
∣

∣

1
n
−1

∗
[D(ul) + tr(D(ul))I]

)

−S
l + S

l−1 = −ρghl∇s, (80)

where D(u) := 1
2

(

∇u+∇u
T
)

denotes the strain-rate
of u, ∇,∇· denote gradient and divergence, respectively,
with respect to the horizontal variables (x, y), tr is the
trace operator, I the identity second order tensor and |·|∗
denotes the norm |X|∗ :=

√

(X,X)∗ associated with the
scalar product defined by

(X,Y )∗ :=
1

2
(tr(XY ) + tr(X)tr(Y )) .

Now, (73), (75) and (76) can be summarized by

S0 = A−
1
nα0

(

α0

β0

)

1
n
∣

∣u
1
∣

∣

1
n
−1

M0

(

M0
u
1
)

× 1Ωf

+ Cα0
∣

∣u
1
∣

∣

1
m

−1

M0 (M0
u
1)× 1Ωn

, (81)

where 1R(x, y) equals to 1 if (x, y) ∈ R and 0 otherwise.
Finally, the multilayer solution (u1, ...,uL) solves the

following 2× 2-block tridiagonal system of equations:

−A−
1
n ∇ ·

(

hL
∣

∣D(uL)
∣

∣

1
n
−1

∗
[D(uL) + tr(D(uL))I]

)

+A−
1
nαL−1

(

αL−1

βL−1

)

1
n
∣

∣u
L − u

L−1
∣

∣

1
n
−1

ML−1

(

ML−1(uL − u
L−1)

)

= −ρghL∇s, (82)

for all l ∈ {2, ..., L− 1}:

−A−
1
n ∇ ·

(

hl
∣

∣D(ul)
∣

∣

1
n
−1

∗
[D(ul) + tr(D(ul))I]

)
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+A−
1
nαl−1

(

αl−1

βl−1

)

1
n
∣

∣u
l − u

l−1
∣

∣

1
n
−1

M l−1

×
(

M l−1(ul − u
l−1)

)

+A−
1
nαl

(

αl

βl

)

1
n
∣

∣u
l − u

l+1
∣

∣

1
n
−1

M l

(

M l(ul − u
l+1)

)

= −ρghl∇s, (83)

and

−A−
1
n ∇ ·

(

h1
∣

∣D(u1)
∣

∣

1
n
−1

∗
[D(u1) + tr(D(u1))I]

)

+A−
1
nα0

(

α0

β0

)

1
n
∣

∣u
1
∣

∣

1
n
−1

M0

(

M0
u
1
)

× 1Ωf

+ Cα0
∣

∣u
1
∣

∣

1
m

−1

M0 (M0
u
1)× 1Ωn

(84)

+A−
1
nα1

(

α1

β1

)

1
n
∣

∣u
1 − u

2
∣

∣

1
n
−1

M1

(

M1(u1 − u
2)
)

= −ρgh1∇s.

At the calving front, (77) (78) can be rewritten as:

A−
1
n hl|D(ul)|

1
n
−1

∗ [D(ul) + tr(D(ul))I] · n := F l
n,
(85)

where n denotes an horizontal outward normal vector to
Ωc.

It is interesting to notice the similarity of the system
(82) (83) (84) with the vectorial equation of the SSA
(MacAyeal , 1989; Schoof , 2006; Jouvet and Graeser ,
2013), which corresponds to the 1-layer model (i.e. when
L = 1). When neglecting the O(δ2) components in the
friction term of (84), it reduces to the common expres-

sion |u1| 1
m

−1
u
1 × 1Ωn

, see e.g. (Cornford et al., 2013).

In order to get a better overview of the multilayer
model, the 2-layer∗ model is rewritten in Appendix A
in a much simpler setting, which assumes a 2D flow in
the vertical x−z plane, such that no dependency on the
traverse coordinate y occurs. Additionally, the multi-
layer model is rewritten in Appendix B in the “infinite
parallel-sided slab” setting. In particular, it is shown
that the multilayer solution (101) converges to the ex-
act solution of the Stokes equations when refining the
vertical multilayer splitting (40). Interestingly, this con-
vergence does not hold with the FOA. This shows that
the reconstruction of the interlayer stress of Section 2.4
recovers some mechanical components that are neglected
in the FOA.

2.7 Variational and minimisation prob-
lems

To analyse the multilayer system (82) (83) (84) and to
implement a finite element method, it must be rewritten
as a variational problem. For that, the equations of the

system (82) (83) (84) are multiplied by a test function
v
l, summed, integrated-by-parts using (85), to give

A−
1
n

∑

l=1,...,L

∫

Ω

hl|D(ul)|
1
n
−1

∗ (D(ul), D(vl))∗dΩ

+A−
1
n

∫

Ωf

α0

(

α0

β0

)

1
n
∣

∣u
1
∣

∣

1
2
( 1
n
−1)

M0

(

M0
u
1
)

· v1dΩ

+ C

∫

Ωn

α0
∣

∣u
1
∣

∣

1
m

−1

M0

(

M0
u
1
)

· v1dΩ

+A−
1
n

∑

l=2,...,L

∫

Ω

αl−1

(

αl−1

βl−1

)

1
n
∣

∣u
l − u

l−1
∣

∣

1
n
−1

M l−1

(

M l−1(ul − u
l−1)

)

· (vl − v
l−1)dΩ

= −ρg

∫

Ω

∑

l=1,...,L

hl∇s · vldΩ

+

∫

Ωc

∑

l=1,...,L

F l
n · vldS. (86)

One can verify that (86) is as the Euler-Lagrange equa-
tion 〈DJ (u),v〉 = 0 where u = (u1, ...,uL) and v =
(v1, ...,vL), for the functional

J (u) =
A−

1
n

1
n
+ 1

∑

l=1,...,L

∫

Ω

hl|D(ul)|
1
n
+1

∗ dΩ (87)

+
A−

1
n

1
n
+ 1

∫

Ωf

α0

(

α0

β0

)

1
n
∣

∣u
1
∣

∣

1
2
( 1
n
+1)

M0 dΩ (88)

+
C

1
m

+ 1

∫

Ωn

α0|u1|
1
2
( 1
m

+1)

M0 dΩ (89)

+
A−

1
n

1
n
+ 1

∑

l=2,...,L

∫

Ω

αl−1

(

αl−1

βl−1

)

1
n

(90)

×
∣

∣u
l − u

l−1
∣

∣

1
n
+1

M l−1 dΩ

+ ρg

∫

Ω

∑

l=1,...,L

hl∇s · uldΩ (91)

−
∫

Ωc

∑

l=1,...,L

F l
n · uldS. (92)

More precisely, one can show that solving (86) is equiv-
alent to solving the minimisation problem:

Find u s.t. J (u) ≤ J (v), ∀v. (93)

Like the SSA, minimization problem (93) consists of a
vector p-Laplace problem with p = 1+ 1

n
< 2. However,

unlike the SSA, this p-Laplace problem is additionally
vectorial over the interlayer terms (90), which couples
the layers. Terms (90) can be seen as a penalisation
of jumps for the piecewise-constant velocity profile, as
in formulations of the Discontinuous Galerkin method
(Hesthaven and Warburton, 2007). While the p-Laplace
term (87) corresponds to the longitudinal stresses, the
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penalisation (90) corresponds to the vertical shear stress
components. In addition, the terms (88) and (89) apply
only on the lowest layer and correspond to the no-slip
and the sliding conditions. Finally, (91) represents the
gravitational forces while (92) corresponds to the bal-
ance between the ice pressure and the hydrostatic sea
water pressure.
One can show that the functional J is convex,

strongly continuous in W 1,1+ 1
n (Ω) and therefore weakly

lower semi-continuous (Schoof , 2006, 2009). Addition-
ally, J is coercive if the hl are uniformly lower bounded
by a positive constant (Schoof , 2006, 2009). It follows
the existence of a minimizer of J , provided this last as-
sumption is satisfied. In addition, J is strictly convex
and the minimizer is unique if Ωn ∪ Ωf has a positive
measure.
For convenience, the functional J corresponding to

the 2-layers∗ model for a simplified 2D flow in the verti-
cal x− z plane is rewritten in Appendix A.

3 Numerical method

In this section, two methods to solve the multilayer sys-
tem (82) (83) (84) with the boundary condition (85)
are described. Like for the SSA (Jouvet and Graeser ,
2013), the variational problem (86), or equivalently the
minimisation problem (93), are more appropriate than
the strong form (82) (83) (84) to implement the finite
element method. Consider a regular triangulation of
Ω ⊂ R

2 and the finite element space, which is spanned by
the continuous, linear functions on each triangle. Since
this finite element space can be identified to R

I×2, where
I is the number of nodes of the mesh, the Ritz-Galerkin
approximation of the minimisation problem (93) reads:

Find U ∈ R
L×I×2 s.t. Jh(U) ≤ Jh(V ), ∀V ∈ R

L×I×2,
(94)

where the vector U contains the nodal values of the
approximation of u and Jh : R

L×I×2 −→ R ∪ {+∞}
is strictly convex, coercive and lower semi-continuous.
Here Jh is either Jh = J defined by (87) or an approx-
imation of J by numerical quadratures. The simplest
strategy for solving (94) is to use a Gauß–Seidel method.
This method consists of minimizing successively Jh in
each coordinate directions (l, i, k) ∈ L×I×2. Since these
minimisations are scalar, there exist many methods (bi-
section, Newton, ...) to perform these tasks. There are
two main ways to loop over the indices (l, i, k) ∈ L×I×2:
looping first over the layer indices l and then over the
horizontal node indices i or the opposite. Opting for one
or for the other strategy leads to two different methods,
which are successively described in the two next sections.

3.1 Method 1

In the first method, the approximation sequence Uν =
(U1

ν , ..., U
L
ν ), (where U l

ν ∈ R
I×2), which is initialized by

U0, is defined recursively by taking the solutions of the
successive minimisation problems:

J
(

U1
ν+1, U

2
ν , ..., U

L
ν

)

≤ J
(

V, U2
ν , ..., U

L
ν

)

, ∀V,
...

J
(

., U l−1
ν+1, U

l
ν+1, U

l+1
ν , .

)

≤ J
(

., U l−1
ν+1, V, U

l+1
ν , .

)

, ∀V,
...

J
(

U1
ν+1, U

2
ν+1, ..., U

L
ν+1

)

≤ J
(

U1
ν+1, U

2
ν+1, ..., V

)

, ∀V,

where the V are taken in R
I×2. Thus, this first method

consists of solving the multilayer system (82), (83) or
(84) layer by layer, e.g. from the lowest one l = 1 to the
highest one l = L, using the old solution Uν in the inter-
face terms, and to iterate. It remains to define a method
to solve each individual minimisation problem. Since
each of these problems are similar to the one resulting
from the SSA, one can use the solvers that was devel-
oped for the SSA. The non-linear Gauß–Seidel method
is well-known to suffer from poor convergence rates. To
improve the convergence, one can use the method de-
scribed in (Jouvet and Graeser , 2013), which combines a
Newton-type acceleration with a linear geometric multi-
grid method for solving the correction step. Addition-
ally, it might take a lot of iterations to reach the final
solution when initializing U0 by zero. To get a better
initialisation, one can apply a “coarse-to-fine” strategy,
which consists of first using the 1-layer model, copying
the solution on two layers, using the 2-layer model, ect,
until to reach the prescribed number of layers. As said
above, one can naturally upgrade any SSA solver to a
multilayer solver with this first method. However, com-
puting the ice flows of the “infinite parallel-sided slab”
for which the exact solution is known, see Appendix B,
shows that the convergence severely deteriorates when
the number of layers grows. Indeed, the number of it-
erations needed to reach a given accuracy increases ex-
ponentially with respect to the number of layers. This
can be justified as follows: further efforts are needed
to transfer some informations between the lowest and
the highest layers if they are many layers. This phe-
nomena is even more pronounced if the vertical cou-
pling dominates. In contrast, if the vertical coupling
is slight, then the convergence can be reached after a
single loop. As a consequence, this first method is well-
suited for computing the ice flows of a system of ice sheet
/ ice shelf since the longitudinal stresses dominate the
vertical ones. However, this method is not efficient for
computing the ice flows of smaller mountain glaciers, in
which the shear stresses significantly increase the verti-
cal coupling between layers. For these types of ice flows,
it is recommended to use the second method, which is
described in the next section.
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3.2 Method 2

In contrast with the first method, the second one first
loop over the node indices i, i.e. the sequence Uν =
(U1

ν , ..., U
I
ν ), (where U i

ν ∈ R
L×2), which is initialized by

U0, is defined recursively by taking the solutions of the
successive minimisation problems:

J
(

U1
ν+1, U

2
ν , ..., U

I
ν

)

≤ J
(

V 1, U2
ν , ..., U

I
ν

)

, ∀V,
...

J
(

., U i−1
ν+1, U

i
ν+1, U

i+1
ν , .

)

≤ J
(

., U i−1
ν+1, V

i, U i+1
ν , .

)

, ∀V,
...

J
(

U1
ν+1, U

2
ν+1, ..., U

I
ν+1

)

≤ J
(

U1
ν+1, U

2
ν+1, ..., V

I
)

, ∀V.

where the V are taken in R
L×2. For simplicity, the

Gauß–Seidel method is written above, but this one can
be better replaced by the Newton multigrid method de-
scribed in (Jouvet and Graeser , 2013). In any case,
it remains to define a method to solve each column-
wise minimisation problem (of size R

L×2). For that,
a non-linear Gauß–Seidel method, which minimizes suc-
cessively from the lowest to the highest layer, can be
used. However, since one never needs more than around
ten layers (L ∼ 10) in practise, those minimisation prob-
lems are of small size and then can be more efficiently
solved by Newton’s method. The convergence of this
second method is expected to be much better compared
to the first method when solving strongly vertically cou-
pled ice flows.

3.3 Validation

The numerical methods presented in this section were
validated against exact solutions. On the one hand, the
1-layer model was tested with manufactured solutions
similar to the ones used in (Schoof , 2006). However,
these solutions could not be used to validate the multi-
layer model, which involves additional interlayer terms.
For this reason, these terms were tested separately with
the exact solution of the “infinite parallel-sided slab”
built in Appendix B.

4 Results

In this section, the ice flows of two different applications
are computed with several multilayer and higher-order
models to perform a comparison study. In contrast with
Section 2, the solutions of Section 4 are restricted to a
simple setting: the flow is 2D in the vertical x− z plane
(no y dependency), no shelf part and no sliding condi-
tion on the bedrock are considered. The first application
concerns the experiment B of the ISMIP-HOM project
(Pattyn and others, 2008) while the second one concerns
a vertical section of Gries glacier, Switzerland. In both
applications, the multilayer solutions are computed us-
ing the method 2 of Section 3 with a uniform division of

the ice thickness, i.e. hl = h/L = H. On the one hand,
the horizontal segment Ω, which supports the glacier,
is uniformly divided into 64 segments to generate a 1D
mesh. This 1D mesh is used to compute the velocity
field with the 1-layer, 2-layer, 4-layer, 8-layer, 16-layer∗

and the 16-layer models (the L-layer∗ corresponds to the
L-layer model, but with the simplified redefinition of the
interlayer tangential stress (71) instead of (68), see Sec-
tion 2.4). On the other hand, a triangular 2D mesh is
built by extruding 16 vertical layers of the 1D mesh be-
tween the lower and the upper surfaces. This 2D mesh is
used to compute the velocity fields of the FOA and the
Stokes models. The numerical convergence of the 16-
layer∗, 16-layer, the FOA and the Stokes solutions was
assessed by checking the discrepancy between the solu-
tion and the one obtained by doubling the horizontal
resolution or the number of layers. The following phys-
ical parameters were used: ρ = 910 kg m−3, ρw = 1000
kg m−3, n = 3, and g = 9.81 m s−2.

4.1 ISMIP-HOM B

In this section, the results of experiment B of the ISMIP-
HOM project (Pattyn and others , 2008) are reported. In
this experiment, the geometry was defined by

s(x) = −x tan(0.5◦),

s(x) = s(x)− 1000 + 500 sin (2πx/Lx) .

for x ∈ Ω = [0, Lx], the no-slip condition (12) was pre-
scribed on the bedrock, periodic boundary conditions
were used at the boundaries of Ω and the rate factor was
taken equal to A = 3.17 × 10−24 Pa−3 s−1, see (Pattyn
and others, 2008) for further details. Figure 5 displays
the solutions of all models with Lx = 10, 40 and 160 km.
Figure 5 (top) shows that the multilayer models con-

verge when increasing the number of layers, such that
the 8 and the 16-layer solutions are nearly indistinguish-
able. Additionally, this convergence does not depend on
the wavelengths Lx in the boundary conditions. As a
matter of fact, the multilayer model solutions get closer
to the FOA and the Stokes solutions when increasing
the number of layers, however, do not converge to any
of those solutions. For instance, the 16-layer solution is
above the FOA solution by about 10% when Lx = 10
km, however, this disagreement decreases for the higher
wavelengths (Lx = 40 km and Lx = 160 km). Inter-
estingly, when Lx = 10 km, the 16-layer matches well
the Stokes solution in the first half of the domain, but
moves slightly away in the second part, where a de-
pression occurs in the bedrock. However, the FOA and
Stokes solutions are identical for the higher wavelengths
while the 16-layer one shows a discrepancy in the depres-
sion area. Here, the deficiency of the multilayer model
is attributed to the choice of the vertical division (40).
Indeed, the uniform splitting leads to nearly flat lay-
ers close to the top. However, the streamlines of the
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Figure 5: ISMIP-HOM Experiment B results for Lx = 10, 40 and 160 km, from left to right, respectively. Top:
surface horizontal velocities of the 1-layer, 2-layer, 4-layer, 8-layer, and the 16-layer models. Middle: surface
horizontal velocities of the 16-layer∗, the 16-layer, the FOA and the Stokes models. Bottom: horizontal velocity
field of the 16-layer model. For convenience, the horizontal domain is stretched.

Stokes velocity field (not shown) are significantly more
curved at the top of the depression. This violates the
assumption of alignment between the ice flows and the
layers, on which the multilayer model is based. Finally,
the simplified 16-layer∗ model leads to higher disagree-
ments with the reference solutions (FOA and Stokes)
than the 16-layer model at small wavelengths (i.e. when
the surface gradient are not negligible) while no differ-
ences between the 16-layer and the 16-layer∗ solutions
are observed for larger wavelengths. This is due to the
fact that, in contrast with the 16-layer model, the 16-
layer∗ neglects O(δ2) terms in the redefinition of the
interlayer stress (71), where δ is the slope of the layers.
This proves that these terms are relevant and must be
kept where the glacier is steep.

4.2 Gries glacier

Gries glacier is a 5-km-long glacier situated in Switzer-
land with an ice thickness ranging from 0 to about 200
meters. The geometry of the glacier along a central
flow-line is available in 1961 from (Kirner , 2007) such
that the section of the glacier can be represented in the
x− z plan. The velocity field of Gries glacier was com-
puted with the no-slip condition (12) on the bedrock and
A = 2.5× 10−24 Pa−3 s−1 as a rate factor. For compar-
ison purposes, Figure 6 displays the horizontal velocity
fields obtained with the 16-layer∗, the 16-layer, the FOA,
and the Stokes models, respectively.

As a first result, the 16-layer∗ and the 16-layer models
show significantly different results in the steepest part,
while the discrepancy is invisible elsewhere. Taking the
Stokes solution as a reference (since it is free of any sim-
plification), it appears that the 16-layer∗ model overes-
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Stokes

FOA

16-layer

16-layer∗

Figure 6: The horizontal velocity field across a section
of Gries glacier in 1961 obtained with the 16-layer∗, the
16-layer, the FOA, and the Stokes model, respectively.
The unit is meters per years and the continuous lines
correspond to level lines every 10 meters per year. For
convenience, the horizontal domain is stretched by a fac-
tor 5.

timates the solution in this area. As in Section 4.1, this
confirms the relevance of the O(δ2) terms in the redefini-
tion of the interlayer stress (71). On the other hand, the
FOA and the Stokes solutions also show some discrep-
ancies in the steepest part, which are due to the simpli-
fications O(ǫ2) of Section 2.2. Interestingly, the 16-layer
solution matches the FOA solution very well. Like in
Section 4.1, the discrepancy between the multilayer and
the Stokes solutions is attributed to a mismatch between
the alignment of the layers and the real direction taken
by the ice flows.

Fcombi

5 Discussion

The numerical results of Section 4 have shown that the
multilayer model, which is 2D-vectorial, can be used as
an alternative of the 3D higher-order models. Three
aspects of this work will be further investigated in the

future: the mathematical model, the numerical model
and the applications, each one being described in the
three next paragraphs.

In most of existing ice flow models, the mechanical
modelling strictly precedes the numerical modelling. It
is sometimes necessary to go back to the physics after the
discretization, e.g. when preconditioning the linear sys-
tems (Brown et al., 2012). As in Audusse et al. (2011),
the common order of modellings was here partly inverted
since the vertical discretization comes first followed by
the mechanical modelling and the horizontal numerical
discretization. A question naturally arises from this ap-
proach: Can the multilayer model be derived from a ver-
tical semi-discretization of the Stokes equations by a Dis-
continuous Galerkin method (Hesthaven and Warbur-
ton, 2007) or a finite volume method with an extruded
mesh? Indeed, it is intriguing to notice that the inter-
layer terms (Eq. (90)) look similar to penalisation terms
for the jumps of the velocity between layers. This state-
ment calls for several model extensions. One of them
consists of increasing the order of the vertical discretiza-
tion, by allowing the velocity field to be described by ver-
tically piecewise polynomials. However, it is not clear if
this approach keeps intact the mathematical structure of
the multilayer model, which takes strongly advantage of
the reformulation as a minimisation problem. All other
existing hybrid models have this structure while the ve-
locity profile is given by an implicit relation involving an
integral for “L1L2-like” model (Hindmarsh, 2004; Schoof
and Hindmarsh, 2010; Goldberg , 2011) or by a polyno-
mial for the isothermal SIA+SSA (Winkelmann et al.,
2011). As a consequence, a natural way to extend the
multilayer model is to include any of the “L1L2-like”
models individually on each layer. In this paper the
ice flows were assumed to be isothermal for simplicity.
However, coupling the multilayer model with a thermal
model should be considered in practical applications.

In Section 3, a first numerical method was presented
to solve the multilayer system using a solver for the SSA
and an iterative method that loops over layers. This
method is suited to compute the ice flows of a shal-
low system of ice sheet / ice shelf, in which the hori-
zontal stresses dominate. However, its convergence rate
decreases dramatically when computing strongly verti-
cally coupled ice flows, like these of mountain glaciers.
To overcome this problem, a second method, which re-
verses the order of loops (horizontal over nodes or verti-
cal over layers), is expected to converge must faster for
such an application. To verify this, a comparison study
of the numerical performance will be addressed in a fu-
ture work. The second method presented in this paper
is still subject to improvements to make its convergence
mesh-independent and inherent to the type of flows. For
instance, one could apply the non-linear multigrid solver
(Jouvet and Graeser , 2013) directly in the 3D structure
of the minimisation problem (93). Another crucial as-
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pect of the multilayer model concerns the choice of the
vertical subdivision and its impact on the results. This
splitting must be done in such way that the ice flows
and the layers are approximatively aligned. The choice
of a uniform splitting likely contributed to the discrep-
ancies observed between the multilayer and the Stokes
solutions of Section 4. The optimality of the multilayer
splitting will investigated in a future work.
In this paper, the multilayer model was derived for

a general system of ice flows, however, the solutions
computed in Section 4 were restricted to a simple set-
ting: 2D geometry, no shelf part and no sliding con-
dition on the bedrock. To complete this work, further
comparisons with other higher-order models will be per-
formed. In particular, the multilayer model will be used
to simulate the idealized marine ice sheets of the project
MISMIP (Schoof et al., 2000) and MISMIP 3D (Pattyn
and others , 2013). A special attention will be given on
the ability of the model to reproduce the motion of the
grounding line indicated by other higher-order models.
In such an application, the simultaneous use of several
multilayer models will be useful: the multilayer model
can be used in the vicinity of the grounding line while
the 1-layer model (the SSA) model can be used else-
where. In addition, the multilayer model will be also
tested to simulate 3D mountain glaciers like in (Jouvet
et al., 2009, 2011) in diagnostic and prognostic ways,
such that the computational and the mechanical perfor-
mances of the multilayer model can be compared with
those of the Stokes model.
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gie, Départment des Sciences de la Terre et de
l’Environnement, Université Libre de Bruxelles.
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A 2-layer∗ flow-line model for a
marine ice sheet

In this appendix, the multilayer model of Section 2.6
is rewritten in a simplified setting, which depicts a 2D
marine ice sheet like the one of Figure 2. More precisely,
the following assumptions are made:

i) The flow is 2D in the vertical x − z plane (no y
dependency), Ω = [0, xc] is an interval, and xc is
the abscissa of the calving front.

ii) The bedrock b decreases with respect to x such that
there are a grounded ice sheet on the left-hand-side
Ω = [0, xg] and a floating ice shelf on the right-
hand-side Ω = [xg, xc] of the domain Ω.

iii) The non-linear sliding law (13), (14) applies on the
grounded area [0, xg] while the floating condition
(15) applies elsewhere.

iv) The multilayer splitting is uniform and made of two
layers, i.e. if hl = h/2 for l = 1, 2.

v) In the 2-layer∗ model, the interlayer tangential
stress is redefined by (71) instead of (68), see Sec-
tion 2.4.

In this simplified setting, the system (82), (83), (84)
becomes: Find (u1, u2) (the index x is removed for clar-
ity) such that
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while at the calving front, the condition (85) becomes:
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Finally, the variational formulation (86) becomes
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and the functional J rewrites
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B Multilayer exact solution for
the “infinite parallel-sided
slab”

The “infinite parallel-sided slab” simplified setting
(Greve and Blatter , 2009) relies on the following assump-
tions:

i) The flow is 2D in the vertical x − z plane (no y
dependency) and Ω = [0, xl] is an interval.

ii) The bedrock slope ∂xb and the ice thickness h = H
are constants, such that ∂xb = ∂xs.

iii) The no-slip condition (12) applies everywhere on
the bedrock.

iv) The bedrock is everywhere above sea level such that
there is no floating ice shelf.

v) Periodic boundary conditions are prescribed at x =
0 and x = xl in order to simulate an infinite hori-
zontal domain.

Since the geometry shows no x variation, the solution
(u1, ..., uL) is independent of x such that all derivatives
can be removed in the multilayer system (82) (83) (84),
which rewrites: Find (u1, ..., uL) (the index x is removed
for clarity) s.t.
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where α =
√

1 + (∂xb)2 and α = 1 for the multilayer
and the simplified multilayer∗ models, respectively.
It is easy to verify that the solution of the system

above is

ul = −2
A

α2(n+1)
(ρg(∂xb))

nH (100)

×
(

1

2
(HL)n + (H(L− 1))n + ...+ (H(L− l + 1))n

)

.

Therefore, this exact solution can be used to check the
convergence of the methods of Section 3.
Note that (100) consists of the integration of

∂zu = −2
A

α2(n+1)
[ρg(∂xb)(s− z)]n, (101)

with the rectangle formula as a quadrature rule on any
layer. Interestingly, the multilayer solution (101) equals
the exact solution of the Stokes system (Greve and Blat-
ter , 2009), while the multilayer∗ (when α = 1) solution
(101) equals the SIA solution (Greve and Blatter , 2009)

∂zu = −2A[ρg(∂xb)(s− z)]n. (102)
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