First-principles density functional theory study of strained wurtzite InP and InAs
Chahira Hajlaoui, Laurent Pedesseau, Faical Raouafi, F. Ben Cheikhlarbi, Jacky Even, Jean-Marc Jancu

To cite this version:

HAL Id: hal-00920126
https://hal.archives-ouvertes.fr/hal-00920126
Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
First-principles density functional theory study of

strained wurtzite InP and InAs

C. Hajlaoui1, 2, L. Pedesseau1, F. Raouafi2, F. Ben Cheikh Larbi2, J. Even1, and J.-M. Jancu1*

1Université Européenne de Bretagne, INSA, FOTON, UMR 6082, 35708 Rennes, France
2Laboratoire de physico-chimie, des microstructures et des micro-systèmes, Institut Préparatoire aux Études Scientifiques et Techniques, Université de Carthage, BP51, 2070 La Marsa, Tunisie

Abstract.

We report on semilocal and hybrid density functional theory (DFT) study of strained wurtzite crystals of InAs and InP. The crystal-field splitting has a large and non-linear dependence on strain for both crystals. Moreover, the study of the electronic deformation potentials reveals that the well-known quasi-cubic (QC) approximation fails to reproduce the non-ideal c/a ratio. This theoretical study is of crucial importance for the simulation of self-assembled InAs/InP nanowires.

*Corresponding author: jean-marc.jancu@insa-rennes.fr
Semiconductor core/shell nanowires (NWs) hold lot of promises for applications in the field in electronics, photonics, and biochemical sensors. These systems, compared to pure semiconductor wires, demonstrate a reduction of surface scattering and ionized impurity scattering with improved electronic confinement properties. The synthesis process is mainly based on the gold-catalyzed vapor liquid-solid (VLS) growth mechanisms, which allows for a precise control of geometrical dimensions and strain accommodation. The VLS method is particularly suited in interfacing highly strained III-V materials onto Si substrates. Interestingly, it favors the hexagonal phase at the nucleation stage leading to a crystallization of III-V semiconductors in a hexagonal wurtzite (WZ) structure whereas the bulk counterpart for most of them is cubic zinc-blende (ZB). Recently, much effort has been devoted to the growth and fabrication of strained InP/InAs/InP NW devices for the realization of high field-effect electron mobility transistors and circuits. Advantages of these systems include the high electron mobility (30 000 cm²/V s at 300 K) and velocity (43000 cm/s) of InAs and a large conduction band offset between InAs and InP (0.5 eV). Strain engineering is a well-established technique to tune the electronic band gap of nanostructures. For instance, the lattice mismatch of InAs on InP is about -3 % and it is expected to tailor the band offsets and carrier mobility by lifting the degeneracy in the electronic bands. In addition, strain effects can generate a piezoelectric polarization charge at interfaces leading to a band bending in the active region of the wire. Determining the materials properties of InAs/InP NWs is key to improving current generating efficiencies of underlying devices. The WZ and ZB band structures for bulk InAs and InP have been extensively studied both theoretically and experimentally. Moreover, electronic deformation potentials (DPs) of cubic semiconductors are well documented in literature. However, to the best of our knowledge, no work on DPs has dealt with WZ III-V materials so far. This first step is mandatory for realistic modeling of InAs/InP NWs in the WZ structure, including the effects of linear and non-linear electro-elastic coupling.

In this work, we perform ab initio calculations of deformation potentials in wurtzite InAs and InP. The structural relaxations with strain perturbations are performed using the plane-wave
projector augmented wave method (PAW) as implemented in the VASP code. We used the Heyd-Scuseria-Ernzerhof (HSE06) DFT hybrid exchange correlation functional with a screening parameter $\mu = 0.2$ and a mixing parameter of $\alpha = 0.25$. This approach has been found to give reliable results in group III-nitrides and group II-oxides. Generalized-Gradient Approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) parameterization and single shot GW (G_0W_0) calculations implemented in VASP are also performed for comparison. We used GGA eigenvalues as input to the single shot G_0W_0 calculations leading to more reliable parameters such as band gap and deformation potentials. The semi-core d-electrons of InA are treated as valence electrons. The procedure is carried out with a plane-wave cutoff of 600 eV and a 6x6x4 Monkhorst–Pack mesh for k-point sampling. This allows for a full relaxation of the structural parameters. The accuracy of the predicted equilibrium lattice constants for both InP and InAs correlates directly with the level of approximation in the functional as shown in Table I. HSE gives the most accurate results and the well-known overcorrection of GGA-PBE become apparent. We also note in Tab. I that the WZ structure is not perfectly tetrahedral with non-ideal c/a and u (an ideal WZ lattice consists in a tetragonal ratio $c/a = 1.633$ of the lattice constants and an ideal internal cell parameter $u = 3/8$) as found for both simulations and experiment.

Fig. 1 shows the InAs and InP band structures at equilibrium near the Γ-point computed with HSE. Calculations are performed without spin-orbit coupling. The direct band gap is formed by an s-like $\Gamma_{1c}(BC)$ conduction-band state and doubly degenerate p-like $\Gamma_{6v}(HH, LH)$ and $\Gamma_{1v}(CH)$ valence-band states. Two energy gaps can be defined according to the optical transitions: $\Gamma_{6v} \rightarrow \Gamma_{1c} (A, B)$ and $\Gamma_{1v} \rightarrow \Gamma_{1c} (C)$. In our simulations, $E_{A/B}$ is the fundamental transition energy for both InAs and InP. As evidenced in Fig. 1, away from the Brillouin zone-center, the valence bands are strongly admixed and their dispersion is non-parabolic. Therefore the valence-band effective masses cannot be easily derived for application in $k.p$ models. On the other hand, the conduction band energy dispersion is parabolic near the Γ-point and our HSE calculation of the electron masses perpendicular and parallel to the c-axis gives: 0.055 and 0.032 (in units of free
These results are consistent with those of De and Prior obtained within an empirical pseudopotential approach. As seen in Tab. I, the band-gap energy is sensitive to the details of the exchange and correlation functional and both the hybrid functional and single G_0W_0 reproduce values close to the experimental data. Conversely, an equivalent crystal field splitting $\Delta_c=HH-CH$ is obtained for PBE and HSE and the value of InAs compares well with the self-consistent GW calculation of Zanolil et al. A similar behavior between PBE and HSE for Δ_c under deformation is evidenced both for biaxial strain ε_{\perp} and for uniaxial strain ε_{zz} as shown in Fig. 2. As definition, $\varepsilon_{\perp}=(\varepsilon_{xx}+\varepsilon_{yy})$ and ε_{zz} stand for the strain components in and perpendicular of the c-plane. In the calculations, the internal parameter u was fully relaxed for each strain. An nonlinear behavior is observed for the two semiconductors which can be interpolated with a polynomial regression. It should be noted that (Fig. 2b) HSE exhibits a strong nonlinearity for the crystal field splitting of InAs even for moderate biaxial strain.

The electronic deformation potentials are defined as the linear coefficients in the expansion of the $k.p$ band energies with respect to strain. We interpolated the present first-principle calculations for small deformations with a derivation of DPs from a 3x3 band $k.p$ model which gives the linear dependence of $E_{A/B}$ and E_C on strain as:

$$E_{A/B} = E_{A/B}(0) + (a_{cz} - D_1)\varepsilon_{zz} + (a_{ct} - D_2)\varepsilon_{\perp} - (D_3\varepsilon_{xx} + D_4\varepsilon_{\perp})$$

$$E_C = E_C(0) + (a_{cz} - D_1)\varepsilon_{zz} + (a_{ct} - D_2)\varepsilon_{\perp}$$

(a_{cz}, a_{ct}) and (D_1, D_2, D_3, D_4) characterize the deformation potentials of Γ_i, and Γ_i and Γ_6, respectively. These relations are compatible with hexagonal symmetry C_{6v}. On the other hand, the breaking of symmetry C_{6v} to orthorhombic C_{2v} with in-plane anisotropic strain lifts the degeneracy of HH and LH levels as:

$$\Delta E = |E_{HH} - E_{CH}| = 2|D_5(\varepsilon_{xx} - \varepsilon_{yy})|$$

The electronic deformation potentials of WZ InAs and InP are listed in Table II. Differences are
evidenced between PBE, G0W0, and HSE. However, the calculations ensure an overall uniform behavior for the DPsincreasing distinctively from InAs to InP. This trend with the band-gap has been also observed in group III-nitrides20 and group II-oxides.21 Moreover, the band-gap-related deformation potentials of $a_{ct}\cdot D_1$ and $a_{ct}\cdot D_2$ are found more sensitive to exchange correlation functionals than D_3, D_4, and D_5. Because there is currently no available experimental information and in order to gain insight into the quality of our simulations, we performed DP simulations in ZB InAs and InP as a test. By comparison to our previous DFT-LDA calculations26, HSE-based calculations lead to a better agreement with experiment. The same conclusion is drawn from our present GGA computation. This gives us confidence in the ability of the hybrid functional to model deformation potentials in wurtzite III-V semiconductors. Finally, the QC approximation was tested for InAs and InP from HSE results. The QC approximation is extensively used in $k\cdot p$ Hamiltonians and based on a similar local atomic coordination between WZ and ZB crystals leading to a correlation of their physical properties along the [111] direction of the zinc-blende. Herein, we evaluated the deviation from the QC approximation of deformation potentials. Indeed, the same approximation in $k\cdot p$ theory lead to: $D_3 + 2D_4 = 0$ and $D_1 + D_3 = D_2$. Actually, neither for InAs nor InP satisfied these equations. For instance the first one yields -0.93 eV for InP and the failure must be related to the non-ideal c/a ratio.

As a conclusion, a systematic study of the electronic band structure in wurtzite InAs and InP is presented. Hybrid-functional calculations allow for a realistic description of the strained band energies. From accurate calculations of the electronic deformation potentials, we found the widely used QC approximation is not fulfilled for both InAs and InP. We demonstrated that the dependence of electronic bands on strain is strongly nonlinear and it should be taken into account for a proper modeling of InAs/InP nanowire-based devices.

This work was performed using HPC resources from GENCI CINES and IDRIS 2013-2013096724.
The work is supported through the participation of the INSCOOP ANR project
Figure 1: Blow-up of the WZ-InAs (a) and WZ-InP (b) band structures calculated with HSE close to the Γ point. Σ and Δ denote the in-plane and parallel directions with respect to the c-axis. The origin of the energy scale is taken at the top of the valence band (VBM).
Figure 2: Left Panel: GGA-PBE dependence of the crystal-field splitting $\Delta_{cr}(\varepsilon)$ of InAs and InP on (a) in-plane and (c) perpendicular strain with respect to the c-plane. Right Panel: Dependence of $\Delta_{cr}(\varepsilon)-\Delta_{cr}(0)$ on (b) in-plane and (d) perpendicular strain calculated with HSE for InAs and InP. Quantization axis z is along the [0001] WZ direction.
Table I: Results of GGA-PBE, HSE, and \(G_0 W_0 \) calculations for wurtzite InAs and InP at equilibrium for the lattice constants \((a, c)\), internal parameter \(u\), direct band gap \(E_{A/B}\), crystal-field splitting \(\Delta_{cr}\), and compared with the experimental values\(^{2,14,27}\) (Expt.). Single \(G_0 W_0 \) is performed on top of GGA calculations with identical structural parameters of GGA-PBE.

<table>
<thead>
<tr>
<th>Method</th>
<th>(a(Å))</th>
<th>(c(Å))</th>
<th>(u)</th>
<th>(E_{A/B}(eV))</th>
<th>(\Delta_{cr}(eV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP</td>
<td>PBE</td>
<td>4.229</td>
<td>6.881</td>
<td>0.3776</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>(G_0 W_0)</td>
<td></td>
<td></td>
<td></td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>HSE</td>
<td>4.174</td>
<td>6.824</td>
<td>0.3742</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>Expt.</td>
<td>4.150(^a)</td>
<td>6.777(^a)</td>
<td>-</td>
<td>1.49(^a)</td>
</tr>
<tr>
<td>InAs</td>
<td>PBE</td>
<td>4.426</td>
<td>7.164</td>
<td>0.3817</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>(G_0 W_0)</td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>HSE</td>
<td>4.330</td>
<td>7.066</td>
<td>0.3756</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Expt.</td>
<td>4.283(^b)</td>
<td>6.995(^b)</td>
<td>0.3750(^b)</td>
<td>0.52(^c)</td>
</tr>
</tbody>
</table>

\(^a\) reference 27

\(^b\) reference 14

\(^c\) reference 2
Table II: Deformation potentials (eV) of wurtzite InAs and InP obtained with GGA-PBE, G₀W₀, and HSE.

<table>
<thead>
<tr>
<th>Method</th>
<th>Method</th>
<th>(a_{ct} - D_1)</th>
<th>(a_{ct} - D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(D_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InAs</td>
<td>PBE</td>
<td>-3.67</td>
<td>-5.31</td>
<td>4.70</td>
<td>-2.18</td>
<td>-2.21</td>
</tr>
<tr>
<td></td>
<td>G₀W₀</td>
<td>-3.06</td>
<td>-6.12</td>
<td>5.62</td>
<td>-2.77</td>
<td>-2.63</td>
</tr>
<tr>
<td></td>
<td>HSE</td>
<td>-2.69</td>
<td>-8.33</td>
<td>5.85</td>
<td>-3.17</td>
<td>-2.78</td>
</tr>
<tr>
<td>InP</td>
<td>PBE</td>
<td>-3.13</td>
<td>-7.20</td>
<td>5.55</td>
<td>-3.09</td>
<td>-2.84</td>
</tr>
<tr>
<td></td>
<td>G₀W₀</td>
<td>-3.98</td>
<td>-7.43</td>
<td>5.67</td>
<td>-3.15</td>
<td>-2.88</td>
</tr>
<tr>
<td></td>
<td>HSE</td>
<td>-4.05</td>
<td>-7.64</td>
<td>5.92</td>
<td>-3.28</td>
<td>-2.94</td>
</tr>
</tbody>
</table>
References