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Modelling Stop Intersection Approaches using Gaussian Processes

Alexandre Armand!2, David Filliat!, Javier Ibafiez-Guzméan

Abstract— Each driver reacts differently to the same traffic
conditions, however, most Advanced Driving Assistant Systems
(ADAS) assume that all drivers are the same. This paper
proposes a method to learn and to model the velocity profile
that the driver follows as the vehicle decelerates towards a
stop intersection. Gaussian Processes (GP), a machine learning
method for non-linear regressions are used to model the
velocity profiles. It is shown that GP are well adapted for such
an application, using data recorded in real traffic conditions. It
consists of the generation of a normally distributed speed, given
a position on the road. By comparison with generic velocity
profiles, benefits of using individual driver patterns for ADAS
issues are presented.

I. INTRODUCTION

In general, more than 40% of car accidents, and over
20% of road fatalities occur at road intersections [15].
Crossroads are points of convergence and represent the most
complex area in road networks. At least 90% of accidents
in intersection contexts are caused by driver errors [19].
These errors mainly occur because of a lack of situation
understanding or because of the influence of other factors
on the driver, such as tiredness, alcohol, distractions, etc.
which increase the risk. The age and the experience of
the driver are also important factors. Indeed, [7] presents
statistics results which show that young and elderly drivers
are more often involved in traffic accidents than middle-aged
drivers.

The behaviour of a person on the road evolves over time,
due to age, experience, etc. Further, the manner in which
each person drives differs from one person to another, with
the difference more accentuated by age divergence. Statistics
show that driving speeds depend on gender and age as
well as driver experience [15]. Road intersections particu-
larly highlight drivers behaviour differences. [4] shows that
drivers have their own manner to decelerate as they approach
intersections.

In this paper, we propose to model driver deceleration
patterns using Gaussian Processes as they approach to stop
intersections. The pattern allows us to determine the manner
individual drivers approach intersections. If their current
profile is different of such patterns, it can be inferred that a
risk exists. The manner a driver decelerates is represented by
velocity profiles. The remainder of this paper is organised as
follows. In Section II, a literature review related to velocity
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models at road intersections is proposed, which leads to
the problem formulation. We also review the principles of
heteroscedastic Gaussian Processes (GP) in Section III, in
order to see the features that can be used. Section IV shows
how GP are applied to infer the velocity profile patterns.
Results and discussions are proposed in Section V and the
conclusions complete the paper in Section VI.

II. RELATED WORK AND PROBLEM STATEMENT

Advanced Driving Assistance Systems at road intersec-
tions have been extensively studied in automotive and
robotics domains. Nowadays, many approaches have been
proposed in the literature for risk estimation at road inter-
sections, such as Time To Collision (TTC) based methods
[5], methods based on trajectory prediction, or on driver
intention estimation [3], [2].

Some of the approaches available in the literature use
velocity profiles as a way to decide whether or not the
driver’s behaviour is dangerous, or not appropriated to
the context. In [21], the proposed system uses 3 velocity
thresholds (based on constant decelerations) to estimate the
risk when approaching to the intersection. The thresholds
are arbitrary set and are not driver dependant. The authors in
[9] use speed profiles within a Dynamic Bayesian Network,
implemented in cooperative cars for risk assessment at road
intersections. The cruise speed of the host vehicle is used for
the estimation of the expected deceleration profile, however
it is assumed that all driver react in the same manner. In [10],
velocity profiles are also the core of the proposed approach.
The expected velocity profile is generated online using the
driver model, according to the observed velocity. Once
again, the profile does not depend on the driver’s patterns.
It is shown in [4] that there can be significant behaviour
differences at road intersections between 2 drivers, and that
these differences have to be taken into account by ADAS.
However to our knowledge, the literature does not provide
any approach which uses velocity profiles fully adapted to
the driver.

So far, driver pattern modelling and learning have not
been extensively studied. In [13], a framework is proposed
to model car following patterns and the manner the driver
pushes the gas and brake pedals. Gaussian Mixture Models
(GMM) are used as a probabilistic way to extract personal
features, and the model is evaluated in driver identification.
Such approaches, to our knowledge, have not yet been
investigated in the context of road intersections.

The robotics field has often used regression algorithms
to learn mechanical models of robots. An extensive sur-
vey of online regression algorithms is proposed in [18].
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Fig. 1.

A classical stop intersection and a corresponding speed profile.

Among all the algorithms presented, Locally Weighted
Projection Regression (LWPR) appears as the most often
used regression method in the robotics literature, provid-
ing accurate models. Gaussian Mixture Regression (GMR)
based approaches are presented and gives similar results as
LWPR. These approaches could be well suited for velocity
profiles modelling, however they do no provide degrees
of confidence on the outputs, such as a variance. Pattern
repeatability for driver behaviour can differ very much, there
is a wide spread. Within this context, LWPR and GMR do
not cope very well with the driver pattern modelling needs.
However, Gaussian Processes (GP) enable accurate non-
linear regressions, and provide normally distributed outputs
(mean and variance). This method seems to be more robust
to pattern spread than the other cited methods. Further,
in [14], a comparison between LWPR, GMR and GP is
presented. The authors show that GP offers high learning
precision and accuracy, and are rather simple to imple-
ment. This algorithm is used by [17] within a learning by
demonstration framework. Heteroscedastic (input dependant
variance) Gaussian Processes are used to learn mechanical
models of robot arms from a couple of samples. The paper
highlights GP capabilities to extract the “task constrains”,
that is the critical features of the learnt patterns. In ADAS
research, GP have been used in [1] and [6] for trajectory
predictions and were real-time capable.

It is proposed to apply Heteroscedastic Gaussian Pro-
cesses for the learning of velocity profiles at the approach
to road intersections. It is shown that this algorithm is well
suited for our application. The rationale is that GP can
highlight the areas were the driver always behaves in the
same manner. In addition, they can be implemented in real
time and infer continuous and consistent patterns.

III. GAUSSIAN PROCESSES MODELLING
A. Basic Principles

In recent years, there has been an increased use of
Gaussian Processes (GP) for regression and classification
problems [16]. GP apply simple linear algebra while pro-
viding powerful tools to solve non linear problems. The aim
is to recover a functional dependency y; = f (z;) + ¢; from
n observed data points D = {(z;,y;)};_,. Here, e€ R is

a random noise that is independent, identically distributed
for each observation. The training data set comprises y; as
the noisy output values at input locations x;. The Gaussian
Process regression consists in learning the predictive Normal
distribution p (y*|x*, D) of a new test output y* given a test
input z*.

We simplify the notation by defining the d x n matrix
X that collects all the training inputs {z;}_,, d is the
dimension of z;. The same is done for the training outputs
{v;}:_, which are put into a Y vector of size n.

The covariance function (or Kernel) k(.,.) is used to
compute the terms of the covariance matrices K, K* and
K**. This function defines the Gaussian Process which is
written as GP(0,k(.,.)). The Kernel depends on parame-
ters € known as hyperparameters which are determined in
advance. The mostly used covariance function is the Squared
Exponential given by:

2

k(zi ;) = 02 exp (—W) (1)

with § = {o,,!} defines the noise level and the length

scale. We also define K€ R™*" with K;; = k(x;,x;),

K* € RV *" with K;; = k(zf,z;) and K** € R such

as K% = k(x},z7).

The predictive distribution at the query points x* is a

multivariate Gaussian distribution A/ (u*, 3*) based on the
training data with mean p*such as:

p= K (K +020)7Y ©)

and covariance > *such as:

Y =K - K"K +o2I)'K*T 3)

The hyperparameters # must be tuned to obtain a smooth
and reliable regression. The tuning of 6 is part of the learning
process of GP. The maximum a posteriori estimate of 6
occurs when p(y|X,0) is a its greatest. The log marginal
likelihood [16] is computed as:

1 _ 1 n
log p(y| X, 0) = —5y" K, 'y — 5 log |K,y| 5 log(2m) (4)
where K, = K + 0,1 and |.| is the matrix determinant. We
use a conjugate gradient multivariate optimization algorithm
to locally minimize the log marginal likelihood and to get
an optimized value of 6. Figure 2.a shows an example of a

GP with an optimized value of 6.

B. Gaussian Processes using heteroscedastic variance

The Gaussian Process model described in the previous
section assumes that the noise level o,, is constant over the
whole process. It is not a problem to estimate the mean
value, however depending on the value of o,, the variance
might be either under or over-estimated. Therefore, to model
driver patterns, it is judicious to use a more flexible noise
model. Kersting introduced a heteroscedastic variance which
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Fig. 2. Influence of the variance on GP regressions. a) Use of a standard

homoscedastic variance. b) Use of a heteroscedastic variance. c¢) Taking
into account input uncertainty.

is input dependent [8]. We replace the constant noise level
o, by a input dependent function r(x), thus the mean and
variance functions become:

=K (K+R)'Y )

S =K*+R* -~ K*(K+R) 'K*T (6)

where R = diag(r), with v = (r(z1),...,7(z,))",
and R* € R such as R* = diag(r*) with r* =
(r(z?),....,r(z2))". R* is usually learned from training
data. Figure 2.b illustrates the influence of a heteroscedastic

variance on a GP.

C. Gaussian Processes with input noise

In general, the GP model assumes that the inputs are
noise free. However, in our application, the input which is
the position of the vehicle is subject to noise (due to the
localization sensor). Therefore, making the assumption of
noise-free inputs would lead to bad regression performances.
Mc Hutchon defined an input noise dependent version of GP
in [12].

In standard GP, y is a noisy measurement of the output:

y=y-+ey (N

where €, ~ N(0,072) with a homoscedastic GP, and €, ~
N(0,7(x)?) with a heteroscedastic GP. We also assume that
the inputs in the model are noisy:

T=T+ €, (8)

where €, ~ N(0,02). We assume here that the input
noise is constant. The output as a function of the input can
be written as:

y:f(fz"i'ez)"_fy ®
Mc Hutchon and Rasmussen have defined a linear model
for the input noise, thus the output becomes:

y=[f(&)+el05+ey (10)

where Oy is the derivative of the mean of a GP function.
To obtain it, we run a first GP to predict the mean plus the
derivative of the output for each input. The probability of an
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An example of 10 learning velocity profiles for a 50 km/h cruise

observation is given by P(y*|z*, D) ~ N(f, 02+ 01 %,0y)
where ¥, = diag(c?). The covariance matrix K is not
changed to compute the new mean and variance functions:

p =K' (K+R+P)'Y (11)

S = K"+ R —K*(K+R+P) 'K

with P = dZCLg(AgEIAg) and Ag = {3g,i}?:1.

Figure 2.c illustrates the consideration of a noisy input
for a GP. It is noticeable that the variance is larger over the
X axis.

12)

IV. PATTERN EXTRACTION

The vehicle velocity profile as it is driven towards an
intersection with a compulsory stop sign is to be modelled
using Gaussian Processes. For this purpose, it is assumed
that the different velocity profiles of the vehicle, as it
approaches that type of intersection, follow a normal dis-
tribution of the distance/ speed ratio. The model developed
in Section III-C is used as it provides the best estimation of
the variance. The derivation of the model uses data acquired
as described in the next section.

A. Data Acquisition

The experiment had to be done with real data recorded
in a passenger vehicle. Indeed, this would not make sense
to use simulated data to model individual driving patterns.
A passenger vehicle, a Renault Espace with an automatic
gearbox was used for the experimental part driven in open
roads. For this purpose, data available in the CAN bus
was recorded, namely the vehicle velocity as well as the
actuation of the driver in the vehicle. The position of the
vehicle was recorded from the position estimated from an
automotive type GPS receiver running at 1 Hz. The localiz-
ation of the vehicle with respect to a road intersection was
made using the development software for navigation systems
known as ADAS-RP (Nokia). The standard navigation map
was extended to include the position of the vehicle stop
point prior to entering the intersection.

The experiment to acquire the data which should enable
the system to learn the velocity trajectory was as follows:
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Fig. 4. On the left, the red dots are data from the 10 learning profiles,
used for regression (blue curves). The blue dots are the projections of the
red dots on the regressed learning profiles. The blue dots are used for the
estimation of the output dispersion for every input of the data set D. On
the right, the estimated variance function of the distance to the road stop.

The vehicle was driven by four users independently at five
different velocities (30, 40, 50, 60 and 70 km/h). For each
speed, 10 runs were executed to determine the manner in
which the driver decelerated. An example is shown in Figure
3. We obtained n = 10 data sets DI; = {X1;,Y1;}!,
with X; the learning input vector which corresponds to
the distance to the road stop, and Y'/; the associated learning
velocity vector. We also define the full data set D = {X, Y}
that gathers the n learning data sets DI;, with X = {x; };":1
and YV = {?/j}?; . The size of the vectors X and Y is

n

m= > (sizeof(X1;)).

i=1

B. Estimation of the variance corrections matrices

To generate the variance correction matrix 2 introduced
in the part III-B, it is necessary to estimate the output
variance 7;(z;)? for each input x; of the learning dataset
D. To do so:

« We modelled a simple Gaussian Processes (described

in part I1I-A) GPI; for each of the n learning data sets
Di;. (See fig. 4.1).

« For each learning input x; from the dataset D, n output

predictions y; are computed with the n GP GPI,.

1 n B N2 .

ﬁzl (95 — i) is
1=

computed with y; the mean of the n predicted values

y;}
« We get the vector S = {s;}]", and the m x m matrix
R = diag(S) as the variance correction matrix.

e The empirical variance s;

Figure 4.2 illustrates the estimated variance of the velocity
at any distance to the stop intersection, given a velocity and
a driver.

It is also necessary to determine the correction matrix P
related to the input noise o,, described in the part III-C. We
used o, = 5 m to model the GPS noise.

« A first Gaussian Process GPd that uses the data set D

is run to compute the predicted points Y* = {y}."
at every input point {z;};-, from D. The correction
matrix R is used to compute the parameters of GPd,

according to III-B.

o The output derivatives AY = {83’ ’ } ™, are then

computed thanks to Y*, according to III-C.
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Fig. 5. An example of driver pattern modelled using GP (in red with 95%
of confidence) with the training dataset D (blue dots).

e We therefore create the second correction matrix P =
diag(AY" 2,AY"T) with ¥, = diag(o.).

C. Learnt velocity profile

Finally, the main Gaussian Process GP was applied to the
training data set D = {X, Y} for each driver independently,
thus modelling each driver behaviour at intersections. The
correction matrices R and P were taken into account. The
full non linear regression for a driver driving at 50 km/h is
shown in Figure 5.

V. RESULTS AND DISCUSSIONS

In this section, results of velocity profile modelling using
Gaussian Processes are presented. We used real data ac-
quired on open roads, as explained in the previous section.

A. Gaussian Processes based modelling

Figure 5 illustrates a speed profile corresponding to the
pattern of an average driver. Ten runs were used for the
training step, which represent about 150 points for the GP-
based regression. Two other learnt patterns (at different
cruise speeds) are shown in the Figure 6. We can notice
that:

e The mean is continuous and smooth, in addition it
coherently matches with the training samples.

e A driver cannot behave exactly in the same manner
at every approach. Indeed, there is a significant un-
certainty on the moment he starts decelerating and
on the deceleration rate. The variance provided by
the GP takes these uncertainties into account in a
straightforward manner.

e The use of a heteroscedastic version of GP enables
a good estimation of the variance according to the
training samples. If homoscedastic GP had been used,
the covariance matrix would have been set from the o,
parameter (see Section III-A) which does not depend
on the training samples. The choice of this parameter
would have been done with difficulty, and the variance
generated by GP would have been either over or under-
estimated. The driver pattern would not have been
accurately modelled.
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(relaxed in green, average in red, sporty in blue and generic in magenta)

o The normally distributed output provided by the GP-
based approach allows to easily check if a given set
of velocity and distance to intersection matches with
the driver’s manner to approach to an intersection.
A probability that the driver behaves as usual in the
same conditions can be easily estimated (through the
likelihood computation for example).

In the Figure 7, the velocity profiles of 3 different drivers,
generated with GP are shown (for clearness, the pattern
of the fourth driver has not been shown). It is noticeable
that the proposed modelling method allows to highlight
differences between driving styles.

B. Benefit of personal patterns compared to generic profiles

1) Comparison: The literature provides several studies
which analyse the deceleration behaviours, as presented in
[11]. The authors explain that it is difficult to develop a
generic model of deceleration profiles because several para-
meters influence the driver behaviour, such as his driving
style, or also the type of vehicle.

In the Figure 7, we compare 3 driver patterns modelled
with GP (relaxed, average and sporty) with a generic profile.
This generic profile is set with a 2.4 m/s? deceleration rate,
which is the average rate at 50 km/h according to [20].
This is a typical generic profile that may be used for ADAS
applications. We can notice that:
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Fig. 8. Comparison of the use of a relaxed driver profile with generic
average profile (generic profile in magenta, GP profile in green, the run in

black and the 9m/s? threshold in red dots).
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Fig. 9. Comparison of sporty driver profile with generic average profiles
(generic profile in magenta, GP profile in blue, the run in black and the
9m/s? threshold in red dots).

o The personal patterns modelled with GP show partic-
ular features, specific to the driver, which cannot be
presented in generic profiles. On the Figure 6, the 50
km/h profile shows that the driver usually decelerates
in 2 steps, a first with a very low deceleration rate
(he stops pushing the gas pedal) followed by a higher
deceleration rate (starts pushing the brake pedal).

o Such generic profiles may over-estimate the deceler-
ation rate of the driver. It is clearly visible on the
Figure 7 that an average generic profile is not adapted
to relaxed driving styles.

2) Perspectives: Knowing the driver patterns (in other
words the habits) may help ADAS systems in terms of
accuracy and performances.

o Frameworks which estimate the driver intention using
velocity profiles can generate better data if individual
profiles are used. For example, in [9] the system needs
to estimate the driver intention to stop. With a relaxed
driver, the intention not to stop can be detected earlier
with individual profiles than with generic profiles.
Indeed, the Figure 8 shows that the velocity leaves
the profile envelope (generated by GP) whereas it still
matches with an average generic deceleration profile.
On the contrary, the deceleration of a sporty driver can



be interpreted as an intention not to stop with a generic
profile (Figure 9). By knowing how the driver usually
behaves when he intends to stop may help to estimate
more precisely (and maybe in a more reactive way) his
intention.

o Frameworks based on speed monitoring (like [21])
check at any time if the host vehicle velocity stays
below critical thresholds. These methods can provide
information and alerts only when the velocity goes
over the threshold. By using profiles generated with
GP, it is possible to detect unusual driver behaviours.
For example, if at a given position the driver is usually
decelerating, and if at the same position he has not star-
ted to decelerate, the probability that there is something
wrong is high. Information can be generated early, even
before the situation becomes dangerous.

C. Limitations

1) Computational cost: The main limitation of the pro-
posed GP-based modelling method is the high computational
cost mainly due to the inversion of the covariance matrix K.
Thus the computational cost of using GP is directly linked
to the number of training sample points. Therefore, for real
time applications, a compromise has to be found between a
large amount of training data (synonym of accurate model)
and a reasonable computational cost. An alternative is to
use Local Gaussian Processes (LGP) as presented in [17].
This approach consists in separating the pattern into several
regions and in applying GP to each region.

2) Context: The proposed approach for stop intersections
assumes that there is no other context element than the stop
sign which interferes with the subject vehicle. For example,
our model is not valid if there is a lead vehicle between the
stop line and the subject vehicle. Velocity profiles can be
modelled, taking into account permanent context elements
for which the driver behaviour is always the same (such
as element described in digital maps). However, to model
the behaviour of the driver in front of other mobile entities
(vehicles, pedestrians, etc), other variables than the velocity
have to be taken into consideration.

VI. CONCLUSION

A pattern shaping method for the modelling of velocity
profiles of individual drivers as they approach stop intersec-
tions has been presented. It showed that Gaussian Process
is very well adapted for such a task. It allows to model ac-
curately the driver patterns taking into account uncertainties
that might exist due to the driver and the quality of the on-
board sensors. The advantages of using personified driver
patterns instead of generic profiles for ADAS applications
have been addressed. If real time implementation constraints
arise, execution optimisation can be made applying Local
Gaussian Processes as they segment the trajectory to reduce
the data needed during the training phase.

The proposed framework will be next applied to situation
awareness monitoring in driving assistance functions.
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