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Predictability Analysis of Distributed Discrete Event Systems

Lina Ye and Philippe Dague and Farid Nouioua

Abstract— Predictability is an important system property
that determines with certainty the future occurrence of a fault
based on a model of the system and a sequence of observations.
The existing works dealt with predictability analysis of discrete-
event systems in the centralized way. To deal with this important
problem in a more efficient way, in this paper, we first propose
a new centralized polynomial algorithm, which is inspired
from twin plant method for diagnosability checking and more
importantly, is adaptable to a distributed framework. Then we
show how to extend this algorithm to a distributed one, based
on local structure. We first obtain the original predictability
information from the faulty component, and then check its
consistency in the whole system to decide predictability from a
global point of view. In this way, we avoid constructing global
structure and thus greatly reduce the search space.

I. INTRODUCTION

Fault diagnosis is a crucial and challenging task in the au-
tomatic control of complex systems ([12] , [11], [1]), whose
efficiency depends on a system property called diagnosabil-
ity. The diagnosability problem has received considerable
attention in the literature. The existing works analyzed diag-
nosability both in the centralized way and the distributed way
([9], [6], [3], [8], [10]). However, diagnosability concerns the
system ability to determine whether the fault has effectively
occurred based on the observations. Sometimes it is very
expensive to recover the system after fault occurrence, which
motivates the work on the analysis of system ability to predict
with certainty future faults based on the observations from
the system whose current state is normal.

Predictability is a crucial system property that determines
at design stage whether the considered fault can be correctly
predicted before its occurrence based on available observa-
tions. If the fault is predicted, the system operator can be
warned and may decide to halt the system or otherwise
take preventive measures. However, up to now, only few
works have dealt with this subject in the domain of diagnosis
for discrete event systems. The authors of [4] proposed a
deterministic diagnoser approach in a centralized way, which
has exponential complexity with the number of system states.
Then in [5], a polynomial approach was presented but only
in a centralized way.

In this paper, we propose a new efficient polynomial al-
gorithm for predictability analysis of discrete event systems,
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which is, more importantly, well adaptable to a distributed
framework. First, we show how to construct an essential
structure called pre twin plant, inspired from twin plant
method for diagnosability analysis, based on which pre-
dictability is analyzed by checking the existence of special
states that violate predictability definition. Then we give and
prove a sufficient and necessary condition for predictability
that can be checked algorithmically. The most important
contribution of this paper is the extension of this algorithm
to a distributed way. The idea is to obtain the original pre-
dictability information from the faulty component and then
to check its global consistency to decide global predictability.
In this way, we avoid constructing global structure and thus
greatly reduce search space.

The rest of the paper is organized as follows. The next sec-
tion presents the system model and recalls the predictability
of discrete event systems. Section 3 proposes a polynomial
algorithm for predictability in a centralized way before
extending it to a distributed framework in Section 4. Then
we conclude in Section 5.

II. PRELIMINARIES

A. System Model

We model a discrete event system as a Finite State
Machine (FSM), denoted by G = (Q,Σ, δ, q0), where Q
is the set of states, Σ is the set of events, δ ⊆ Q×Σ×Q is
the set of transitions (the same notation will be kept for its
natural extension to words of Σ∗) and q0 is the initial state.
The set of events Σ is divided into three disjoint parts: Σo the
set of observable events, Σu the set of unobservable normal
events and Σf the set of unobservable fault events. Given two
FSMs G1 and G2, their synchronization, denoted by G1∥G2,
is based on the set of shared events. Only the shared events
are synchronized events that should occur simultaneously
while the private events can occur independently whenever
possible. It is easy to generalize this for a set of FSMs using
the associativity properties [2].

Example 1: Figure 1 shows an example of system model,
where observable events are denoted by Oi, unobservable
normal events by Ui, unobservable fault event by F .

O1

O2

X1 X2

F

X4

U1

X0 X3
O1

O3

X5 X6 X8

O2

X7

O1O3

O1

O2

Fig. 1. An example of system model G.



Given a system model G, its prefix-closed language L(G),
which describes both normal and faulty behaviors of the
system, is a subset of the Kleene closure of Σ: L(G) ⊆ Σ∗.
Formally, L(G) is the set of words produced by G: L(G) =
{s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}. In the following, we call a
word from L(G) a trajectory in the system G and a sequence
q0σ0q1σ1... a path in G, where σ0σ1... is a trajectory in G
and for all i, we have (qi, σi, qi+1) ∈ δ. Given s ∈ L(G),
we denote the post-language of L(G) after s by L(G)/s,
formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}. The
projection of the trajectory s to observable events of G (resp.
Gi in distributed systems) is denoted by P (s) (resp. Pi(s)).
We assume that the system language is always live.

B. Predictability for Discrete Event Systems

Predictability is considered as a crucial property of a
system since a fault can possibly be avoided when it is
predictable. As diagnosability analysis, our predictability
algorithm has exponential complexity with the number of
faults (see Section IV-C for more details). To reduce the
complexity, we consider fault one by one separately, which
is also the case in the extended distributed algorithm. We
rephrase the predictability definition as follows [4]. Here a
trajectory ending with a fault F is denoted by sF , the set
of prefixes of the trajectory sF is denoted by sF , and N
represents the set of natural numbers.

Definition 1: (Predictability). A fault F is predictable in
a system G iff

(∀sF ∈ L(G))(∃k ∈ N)(∃t ∈ sF )[(F /∈ t) ∧ D]
where D : (∀p ∈ L(G)) (∀p′ ∈ L(G)/p)

[(P (p) = P (t)) ∧ (F /∈ p) ∧ (∥p′∥ ≥ k)⇒ (F ∈ p′)].
The above definition implies that a fault F is predictable iff
for any trajectory ending with the fault sF , there exists at
least one prefix of sF , denoted by t, such that t does not
contain F and for each non faulty trajectory p with the same
observations as t, all the long enough continuations of p
should contain F . Only in this way, F can be certainly pre-
dicted before its occurrence based on the same observations
as those in t.

III. CENTRALIZED ALGORITHM

Now we recall the twin plant method, initially used for
diagnosability analysis, and then show how to adapt it to
analyze predictability. The idea of twin plant is to construct
a structure that obtains all pairs of trajectories with the same
observations [6], which is based on another structure called
diagnoser built from system model 1. A diagnoser provides
the information about fault occurrence in each state of the
system.

Definition 2: (Diagnoser). Given a system model G,
its diagnoser is the nondeterministic FSM D =
(QD,ΣD, δD, q0D), where QD ⊆ Q × {N,F} is the set of
states, ΣD = Σ is the set of events, δD ⊆ QD × ΣD ×QD

1To be consistent with the distributed method developed later, we follow
the diagnoser, twin plant introduced in [6] except keeping observable events
as well as non-observable events, the latter will be used in predictability
analysis in distributed framework, this is also the case for pre twin plant.

is the set of transitions, and q0D = (q0, N) is the initial
state of the diagnoser. The transitions of δD are those
((q, l), e, (q′, l′)) with e ∈ ΣD, (q, l) reachable from the
initial state q0D, (q, e, q′) ∈ δ and satisfying the following
conditions:

• if l = F , then l′ = F ;
• if l ̸= F and e = F , then l′ = F ;
• if l ̸= F and e ̸= F , then l′ = N .

In a diagnoser, we add fault label F to the states, up to
which the fault has effectively occurred, and normal label
N to those without the fault occurrence. The top part of
Figure 2 shows the diagnoser for the system of Example 1.
Given a diagnoser, its corresponding twin plant is obtained
by synchronizing this diagnoser with itself, called left and
right instances (denoted by Dl and Dr, respectively), based
on the set of observable events. From Definition 2, we
know that a diagnoser keeps all system events. However,
to build the twin plant, only observable events should be
synchronized to obtain all pairs of trajectories with the same
observations. To do this, all other non observable events are
distinguished between the left instance and the right instance
by the prefixes L and R respectively. In the following, we use
AddPre(G,Str,Σ) to denote the addition of the prefix Str
to all events contained in Σ of the FSM G. Thus, we have
Dl = AddPre(D,L:,Σ′) and Dr = AddPre(D,R:,Σ′),
where Σ′ is the set of non observable events, i.e., Σ′ =
Σ\Σo. The bottom part of Figure 2 shows the left instance
and the right instance of the diagnoser, respectively. Now we
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Fig. 2. Diagnoser D (top), left instance Dl (bottom left) and right instance
Dr (bottom right).

rephrase the definition of twin plant [6], as follows.
Definition 3: (Twin Plant). Given a diagnoser D, the

corresponding twin plant is obtained by synchronizing its left
instance with its right instance based on the set of observable
events, denoted by T = (QT ,ΣT , δT , q

0
T ) = Dl∥Dr.

In a twin plant T , each state is composed of a pair of
diagnoser states providing two possible diagnoses with the
same observations. Given a twin plant state ((ql, ll), (qr, lr)),
if ll = lr = N , this state is called a normal state. If
ll = lr = F , it is called a faulty state. Otherwise, if ll ̸= lr,
it is called an uncertain state.

Recall that a fault is diagnosable iff we can be sure that
the fault has effectively occurred based on long enough
sequence of observations after the fault occurrence [9]. In
other words, the existence of two indistinguishable behaviors,
i.e., holding the same enough observations with exactly one



of them containing the given fault, violates the diagnosability
property. The diagnosability analysis is therefore to check
the existence of such behaviors. Thus, the twin plant defined
as above is sufficient for diagnosability checking since for
each path, the corresponding two trajectories always have
the same observations, from the beginning to the end. A
path with an uncertain cycle in the twin plant corresponds
to two indistinguishable behaviors. While for predictability
analysis, we check whether the future occurrence of the
fault can certainly be predicted based on the observations
of a trajectory not yet containing the fault. In other words,
we should compare the observations of two trajectories
only before the fault occurrence and do not care about
whether they have the same observations after the fault,
i.e., synchronized events are only observable ones before the
fault. Before proposing pre twin plant, we first define the
union of two FSMs such that one FSM can be combined to
the other as its continuation, i.e., the initial state of one FSM
is contained in the state space of the other FSM. This will
be used in constructing pre twin plant.

Definition 4: (Union of FSMs). Given two FSMs G1 =
(Q1,Σ1, δ1, q

0
1) and G2 = (Q2,Σ2, δ2, q

0
2), then their union

is G1 ∪ G2 = (Q1 ∪ Q2,Σ1 ∪ Σ2, δ1 ∪ δ2, q
0), where the

initial state of the union q0 is defined as follows:
• if q01 ∈ Q2, then q0 = q02
• if q02 ∈ Q1, then q0 = q01

We do not consider the case where q01 /∈ Q2 ∧ q02 /∈ Q1 or
q01 ∈ Q2 ∧ q02 ∈ Q1 ∧ q01 ̸= q02 . The former means that the
two FSMs are totally independent in terms of state and thus
cannot be unified. In the latter case, there is no initial state
after the union since both initial states in the two FSMs after
the union have at least one input transition.

Now, we construct pre twin plant for predictability in the
following way, which is to obtain all pairs of trajectories with
the same observations before the occurrence of the fault if
there is any.

Definition 5: (Pre Twin Plant). Given the left instance and
the right instance of a diagnoser, Dl and Dr, the correspond-
ing pre twin plant, denoted by T p = (QTp ,ΣTp , δTp , q0Tp),
is obtained by the following steps.

1) T p = Dl∥SF
Dr, where ∥SF

is a special synchro-
nization that stops each time when the state becomes
non-normal state for the first time, i.e., after the first
occurrence of the fault.

2) ∀(qTp , F, q′Tp) ∈ δTp , if qTp = (qDl , qDr ) is a
normal state, we perform TemAddPre(Dl, L:,Σ

q
Dl

o ),
TemAddPre(Dr, R:,ΣqDr

o ) and T p = T p ∪
(Dl:qDl∥Dr:qDr ), where Σ

q
Dl

o (ΣqDr

o ) denotes the set
of observable events in Dl (Dr) reachable from qDl

(qDr ) and Dl:qDl (Dr:qDr ) is the part of Dl (Dr)
that begins from the state qDl (qDr ).

Step 1 is to synchronize the left and right instances of
the diagnoser based on the set of observable events, which
should stop whenever the state switches from normal state
to non-normal one. This is illustrated by the left part of
Figure 3. Since for predictability, we do not care about
whether the observations of two trajectories after the fault

are the same or not, in step 2, we distinguish the observable
events after the first fault occurrence by using the function
TemAddPre(G,Str,Σ), which is to temporarily add the
prefix Str to all events in Σ of the FSM G. Here what
we mean by temporarily is that the addition of a prefix is
only valid during step 2 when dealing with one normal state
immediately before the fault. In other words, if we go on
to treat another normal state before the fault, we use the
original instances without such prefixes. The reason is that
the same observable event may occur before the fault in one
path while after the fault in another path. In the pre twin
plant, the normal part, i.e., part before fault, is called Obs-
Equivalent (OE) part since the corresponding trajectories
have the same observations and the non-normal part, i.e.,
part since fault, is called Non-Obs-Equivalent (NOE) part,
where observable events are not synchronized events any
more. Intuitively, each path in the pre twin plant corresponds
to a pair of trajectories that have the same observations
before fault occurrence. For predictability analysis, what
we are interested in is those normal states that are within
unobservable reach such that an immediate successor is a
non-normal state. Now we define such states, which draw
the boundary from normal states to non-normal ones.

Definition 6: (Critical Normal State). Given a pre twin
plant T p, the set of critical normal states, denoted by Γc,
is defined as Γc = {qc ∈ QTp |qc is normal and ∃q ∈
QTp , (qc, su.F, q) ∈ δTp , where su ∈ Σ∗

u}.
Before critical normal states, we have the same observations
for the corresponding pair of trajectories. The right part of
Figure 3 illustrates a part of the pre twin plant for the system
of Example 1. Here we use dashed arrows to represent the
transitions in the NOE part and normal arrows for those
in the OE part. The nodes with dashed frame represent
uncertain states. The gray node ((X2N)(X6N)) is a critical
normal state since it is a normal state immediately before
the first occurrence of the fault. Note that from this critical
normal state, there is a reachable uncertain cycle containing
events both from the left and right instances. This means that
the corresponding pair of infinite trajectories have the same
observations before the fault and only one of them contains
the fault, which violates predictability.
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Fig. 3. Part of FSM obtained from step 1 of Definition 5 for system in
Example 1 (left) and part of its pre twin plant (right).

Theorem 7: A fault is predictable in the system iff in the
corresponding pre twin plant, there is no critical normal state
qc such that there exists at least one uncertain cycle reachable
from qc containing at least one event from the left instance
and at least one from the right instance.



Proof:
(⇒) Suppose that a given fault F is predictable and that
there does exist a critical normal state qc in the pre twin
plant, from which we have one reachable uncertain cycle,
denoted by ϕ, that contains events both from the left instance
and the right instance. Now we denote the pair of trajectories
corresponding to the path containing qc and ϕ as s and s′,
where one trajectory, suppose s, contains the fault and s′
does not. This is deduced from the fact that ϕ is an uncertain
cycle. Since each path in the pre twin plant corresponds
to a pair of trajectories with the same observations before
fault occurrence, then for the non faulty prefix of s up
to qc, denoted by t, the trajectory s′ must have a non
faulty prefix with the same observations as t, which has
enough continuation without the fault. Considering that qc
is a boundary to switch from normal state to non-normal
one, i.e., the prefix up to qc is a normal prefix of s with the
maximum number of observable events, it follows that for
each normal prefix t′ of the faulty trajectory s, s′ always
has a normal prefix with the same observation as t′ but with
enough continuation without the fault, i.e., infinite normal
continuation, which violates the predicability definition. This
contradicts the assumption that F is predictable.
(⇐) Now suppose that the fault F is not predictable and that
there is no critical normal state as described above. From
the non predictability of F , we know that there does exist
at least one faulty trajectory s with enough events such that
for each normal prefix of s, we can always find another non
faulty trajectory with the same observations as this normal
prefix that has at least one enough continuation without
the fault, i.e., infinite normal continuation. Now suppose t
is the longest normal prefix of s, after which is the first
occurrence of the fault. Then a non faulty trajectory with
the same observations as t is denoted by p and one of its
infinite normal continuations is denoted by p′. From the way
to construct the pre twin plant, we know that the pair of
trajectories s (left instance) and p.p′ (right instance) are
synchronized as a path in the pre twin plant since they
have the same observations before the fault occurrence.
It follows that this path should have at least one critical
normal state with a reachable uncertain cycle containing both
events from the left instance and the right instance since the
system language is assumed to be live. This implies that the
assumption is contradicted.

Consider Example 1. In the pre twin plant partly shown
in Figure 3, we have at least one critical normal state
with a reachable uncertain cycle containing events from
left and right instances, which, from Theorem 7, implies
that the fault is not predictable. More precisely, consider
the faulty trajectory s = (O1.O2.F.O1∗), which has two
normal prefixes p1 = O1 and p2 = O1.O2. We have a
normal trajectory s′ = (O1.O2.O3.O2∗) such that for both
p1 and p2, s′ has a prefix with the same observations as
them but with enough normal continuation. When we obtain
the observable events in any normal prefix of s, i.e., O1 or
O1.O2, we can never be sure about the future occurrence of
F since both s and s′ have the same observations before F

but only s contains F .

IV. EXTENSION TO DISTRIBUTED FRAMEWORK

In this section, we show how to extend our centralized
method to a distributed framework. We consider a distributed
discrete event system composed of a set of components
G1, ..., Gn that communicate by communication events. Each
component is modeled by a FSM, denoted by Gi =
(Qi,Σi, δi, q

0
i ), where Qi is the set of states, Σi is the set

of events, δi ⊆ Qi×Σi×Qi is the set of transitions and q0i
is the initial state. The set of events Σi is divided into four
disjoint parts: Σio the set of observable events, Σiu the set of
unobservable normal events, Σif the set of unobservable fault
events and Σic the set of unobservable communication events
shared by at least one other component. For any pair of
distinct local components Gi and Gj , we have Σio∩Σjo = ∅,
Σiu ∩ Σju = ∅ and Σif ∩ Σjf = ∅, which means that
the only shared events between different components are
communication events. Thus, given a considered fault F , it
can only occur in one component, denoted by GF (called
the faulty component, the others being the normal ones). We
assume that the language for each component is always live.

Example 2: Figure 4 presents a simple distributed system
composed of two components, where observable events are
denoted by Oi, unobservable normal events by Ui, unob-
servable fault event by F and unobservable communication
events by Ci.
The global model is implicitly defined as the synchronization
of the two components G = G1∥G2, where the synchronized
events are communication events, i.e. shared events.
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Fig. 4. A distributed system composed of two components: G1 (left) and
G2 (right).

A. Original Predictability Information

In the distributed framework, since the fault can only occur
in the component GF , to obtain the original predictability
information, we construct the local diagnoser DF for GF

and then the corresponding pre local twin plant T p
F , shortly

called PLTP, whose constructions are similar to those for
centralized approach, i.e., Definition 2 and Definition 5. The
only difference is that communication events are handled
in the same way as unobservable events. Figure 5 shows
the local diagnoser (top) for the faulty component G1 of
Example 2 and a part of its PLTP (bottom), where the gray
nodes represent critical normal states.

B. Global Consistency Checking

Given a PLTP, we obtain the critical normal states in the
same way as in the centralized method. However, until now
we only consider the faulty component, whose connection to
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Fig. 5. Local diagnoser D1 (top) and part of PLTP T p
1 (bottom) for the

faulty component G1 .

the neighborhood is not yet taken into account. After syn-
chronization with other components, the reachable uncertain
cycles after critical normal states in the PLTP may disappear
or those critical normal states originally without reachable
uncertain cycle may later have such ones. So, the next step is
to check the global consistency of the PLTP, i.e., checking the
existence of critical normal states with reachable uncertain
cycles after synchronization. Given a path p1 and a path
p2, if the synchronization of p1 with p2 is blocked at state
q = (q1, q2) due to different synchronized events, then we
say (q, p1, p2) is a blocked point, i.e., a blocked state q with
respect to p1 and p2. Now we define pre local twin checker
for normal components, shortly PLTC, which is used to be
synchronized with PLTP for global consistency checking.
The idea is similar to PLTP except that there is no fault
information for PLTC.

Definition 8: (Pre Local Twin Checker (PLTC)). Given
a normal component Gi, the corresponding pre local twin
checker (PLTC), denoted by Cp

i , is obtained as follows.
1) The left instance of Gi is obtained by Gl

i =
AddPre(Gi, L:,Σ

′
i) and the right instance of Gi is

obtained by Gr
i = AddPre(Gi, R:,Σ′

i), where Σ′
i is

the set of non observable events in Gi, i.e., Σ′
i =

Σi\Σio .
2) Cp

i = Gl
i∥Gr

i .
3) In Cp

i , for each blocked point (q, pl, pr),
where q = (ql, qr), pl is in the left instance
and pr is in the right instance, we perform
temporary addition of prefix before continuing
synchronization, i.e., TemAddPre(Gl

i, L:,Σ
ql:pl

io
),

TemAddPre(Gr
i , R:,Σqr:pr

io
), and Cp

i =

Cp
i ∪ ((pl:ql)∥(pr:qr)), where Σql:pl

io
(Σqr:pr

io
)

represents the set of observable events reachable from
ql (qr) in pl (pr) and pl:ql (pr:qr) is the part of pl

(pr) that begins from the state ql (qr).
In PLTC, the part obtained by step 2 is called Obs-Equivalent
(OE) part and the other part obtained by step 3 is called
Non Obs-Equivalent (NOE) part. We reuse the function
TemAddPre to denote that the temporary addition of prefix
is only valid during the step 3 when dealing with current
blocked point. When we continue for other blocked points,
we use the original instances without such prefixes con-

sidering that the same observable event can be in the OE
part of one path while in the NOE part of another path.
Here the reason why we take steps to unblock the parts
where observations are different is that we construct PLTCs
to synchronize with the PLTP to check the existence of
reachable uncertain cycle after critical normal states from
a global point of view. In a normal component, for those
parts occurring after the fault after synchronization with
GF , we do not care about whether the observations of two
trajectories are the same or not. But during the construction
of PLTCs, we do not know which parts are after the fault,
thus we unblock all parts as described above. During the
synchronization of the PLTP and PLTCs, we will impose a
constraint to guarantee the same observations before the fault
occurrence, which will be explained later. Part of the PLTC
for the component G2 of Example 2 is depicted in Figure
6, where the transitions in the NOE part are represented by
dashed arrows. Here the gray node S1 is a blocked state.
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Fig. 6. Part of PLTC for the component G2.

Given the PLTP and a set of PLTCs, whose correspond-
ing components are GF , Gk1 , ..., Gkm , where Gki , i ∈
{1, ...,m} denotes a normal component in the system,
to check the consistency of the PLTP in the subsystem
{GF , Gk1 , ..., Gkm}, denoted by GS , we incrementally syn-
chronize the PLTP and this set of PLTCs with a special
constraint as follows.
Constraint: given the PLTP and a PLTC, we synchronize
them based on the left and right communication events with
the constraint that the communication events in the OE part
of the PLTP cannot be synchronized with those in the NOE
part of the PLTC.
Note that the synchronized events are always the common
events, i.e., left communication events are synchronized with
left ones and right communication events are synchronized
with right ones. But left ones cannot be synchronized with
right ones since with different prefixes, they are considered
as different events. Now we explain why it is necessary to
impose this constraint. Recall that the OE part of the PLTP is
before the first occurrence of the fault, where the correspond-
ing pair of trajectories have the same observations. While the
NOE part of a PLTC is the part after blocked points, where
the corresponding pair of trajectories do not necessarily have
the same observations. If the above constraint is not applied,
we cannot guarantee that after the synchronization, the pair
of trajectories in the corresponding subsystem have the same
observations before the first occurrence of the fault. After



checking the consistency of the PLTP in the subsystem GS

as described above, in the obtained FSM, a state containing a
normal/uncertain/faulty state of the PLTP for the component
GF is also called a normal/uncertain/faulty state. And the
resulted FSM is called the consistent PLTP for GS . Now
we define a special normal state, whose existence violates
predicability in a distributed system.

Definition 9: (Violating Normal State (VNS)). In the con-
sistent PLTP for the subsystem GS , if GS contains all con-
nected components, then all retained critical normal states are
called globally consistent critical normal states (GCCNSs).
The following two types of GCCNSs are called violating
normal states (VNSs):

1) any GCCNS with at least one reachable uncertain cycle
containing events from the left and right instances;

2) any GCCNS when there exists at least one component
outside of GS .

Theorem 10: A fault is predictable in a distributed system
iff there is no VNS.

Proof:
(⇒) Suppose that the fault F is predictable and there does
exist a VNS. If the VNS is of the first type, from Theorem
7, it is easy deduced that F is not predictable. If it belongs
to the second type, after synchronizing current consistent
PLTP with the PLTC of a non connected component, then
this VNS must have at least one reachable uncertain cycle
containing events from both the left and right instances since
for each component, the language is live and there is no
communication event blocking any cycle from this PLTC
during synchronization. Thus, F is not predictable, which
contradicts the assumption.
(⇐) Now suppose that F is not predictable and there is
no VNS. From non predictability of F , we know that in
the global pre twin plant, there exists at least one critical
normal state that has a reachable uncertain cycle containing
events both from left and right instances. Recall that a path
containing such a critical normal state corresponds to a
pair of trajectories with the same observations before fault
occurrence. Such path in the global pre twin plant must
correspond to a path in the consistent PLTP for the subsystem
containing all connected components, which contains at least
one VNS. This can be deduced from the way to construct
the consistent PLTP. Thus, the assumption is contradicted
and the theorem is proved.
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Fig. 7. Part of FSM after global consistency checking for PLTP.

Consider Example 2, whose PLTP and PLTC are partly
shown in Figure 5 and Figure 6. Figure 7 shows one part
of obtained FSM after constrained synchronization between
the PLTP and the PLTC. The critical normal states T8 =
((X8N)(X5N)) and T9 = ((X8N)(X6N)) do not dis-
appear and the uncertain cycle with events L:O3, R:O2 is

not blocked. In other words, in the consistent PLTP for the
whole system, we have VNSs, which, from Theorem 10,
implies that the fault is not predictable. Now see again Figure
4. One pair of trajectories violating predictability is p =
O5.C2.O1.O3.U1.O2 ∗ .O6∗ and p′ = O5.O1.O3.F.O3∗.
If we observe the sequence O5.O1.O3, which is possible in
both p and p′, we can never be certain about the future fault
occurrence considering that in p′, this is the normal prefix
just before the occurrence of the fault.

C. Algorithm

Algorithm 1 Polynomial Predictability Algorithm for Dis-
tributed Systems

1: INPUT: component models G1, ..., Gn of the system G:
G = {G1, ...Gn}; the fault F in GF

2: Initializations: GS ← ∅ (the current subsystem, initially
empty)

3: T p
f ← ConstructPLTP (GF )

4: T p
f ← Reduce(T p

f )
5: GS ← GF

6: while ConnectComp(GS , G) ̸= ∅ and T p
f ̸= ∅ do

7: Gi ← SelectConnectComp(GS , G)
8: Cp

i ← ConstructPLTC(Gi)
9: T p

f ← CheckConsistency(T p
f , C

p
i )

10: T p
f ← Reduce(T p

f )
11: GS ← Add(GS , Gi)
12: if (V NS ̸= ∅ in T p

f ) then
13: return T p

f

14: else
15: return ”the fault is predictable in G”

Now we describe our distributed algorithm based on
Theorem 10, which is optimized in the sense that we reduce
the search space by distributing the analysis on the PLTP and
PLTCs. As shown in the pseudo-code, algorithm 1 performs
as follows. Given the input as the set of component models,
the fault F with the component GF , we first construct the
PLTP of GF and then reduce it to only retain all paths
containing critical normal states since any VNS is developed
from a critical normal state in the original PLTP (line 3-4).
Current subsystem GS is then assigned by GF (line 5). When
the consistent (reduced) PLTP of GS is not empty and there
exists at least one component connected to GS (line 6), which
means that the consistency of current PLTP should be further
checked in an extended subsystem, the algorithm repeatedly
performs the following steps:

1) Select one component connected to GS and construct
its PLTC. (line 7-8 )

2) The consistency of current PLTP is further checked by
synchronizing with this PLTC based on their common
left and right communication events with the constraint
described in the precedent section. (line 9)

3) The newly obtained PLTP is reduced to keep only paths
containing critical normal states. Then the extended
subsystem is updated by adding this selected compo-
nent. (line 10-11)



Note that each time we reduce the PLTP, we keep the same
set of events. A (reduced) PLTP has the same set of events as
the union of that of its renamed left and right instances of the
corresponding diagnoser. In the same way, a PLTC has the
same set of events as the union of that of its renamed left
and right instances of the corresponding component. Only
in this way, we can guarantee the correct synchronization
of a reduced PLTP with a PLTC. Three cases can stop this
algorithm:

• There is no connected component and there is at least
one VNS (line 12). From Theorem 10, the fault is not
predictable. Thus, the algorithm returns the final PLTP
providing useful information about VNSs (line 13).

• There is no connected component and the PLTP is not
empty but all the critical normal states retained are
not VNSs, i.e., they have no reachable uncertain cycles
and all components are directly or indirectly connected
with each other. In this case, the algorithm returns the
predictability information (line 14-15).

• The PLTP is empty, which implies that there is no VNS,
the predictability information is returned (line 14-15).

Theorem 11: Algorithm 1 has polynomial complexity
with the number of system states and exponential complexity
with the number of faults.

Proof: From their construction, for a component Gi, the
maximum number of states and transitions of the diagnoser
are (|Qi| × 2|Σif

|) and (|Qi|2× 22|Σif
|× |Σi|), respectively.

The maximum number of states and transitions of its PLTP
(PLTC) are (|Qi|2×22|Σif

|) and (|Qi|4×24|Σif
|×|Σi|), re-

spectively. In the worst case, the global consistency checking
consists in synchronizing PLTP (PLTCs) of all components.
Thus, we can conclude that Algorithm 1 has polynomial
complexity with the number of states and exponential com-
plexity with the number of faults.
Note that the exponential complexity with the number of
faults is for the case where we handle all faults simultane-
ously. To reduce the complexity, our algorithm is illustrated
by dealing with one fault each time.

V. CONCLUSION

In this paper, we propose a new polynomial approach
for predictability analysis in a centralized way and then
extend it to a distributed framework. First, we build the
PLTP for the faulty component GF to obtain the original
predictability information. Then we propose PLTCs for nor-
mal components, which is synchronized with the PLTP re-
specting a special constraint to check the global consistency.
In reality, our distributed approach can greatly reduce the
search space since each time we check consistency in an
extended subsystem, we often keep a small subpart of current
PLTP. Note that in our distributed case, the observations
are globally available. Thus, predictability requires global
occurrence order of observable events, for which we have to
get some centralized information. This is also the case for
most of distributed diagnosability algorithms developed in
latest decades.

One close work to ours is the polynomial algorithm
proposed in [5], where the authors directly use twin plant
to analyze predictability in a centralized way. They check a
pair of trajectories violating predictability that could lie in
two different paths of twin plant, which is not suitable for
distributed case. While we adapt twin plant to pre twin plant,
where any pair of trajectories violating predictability can be
caught by a path in pre twin plant. In this way, we can check
their global consistency in a distributed way, i.e., whether
the paths representing pairs of local trajectories violating
predictability can survive after global consistency checking
and contain VNSs.

One perspective of this work is that when the fault is not
predictable, with the information returned by our algorithm,
we can study whether it is possible to add sensors, i.e.,
make some unobservable events observable, to make the
fault predictable. If the answer is positive, we can further
investigate which unobservable events becoming observable
can upgrade the predictability level. Another perspective is
the probabilistic analysis of predictability for probabilistic
discrete event systems. Inspired by the work [7] about prob-
abilistic diagnosability, the objective would be to quantify
by a probability or even more qualitatively the possibility of
a fault occurrence in the future from present observations,
which is a major issue for industrials.
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