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ABSTRACT

There has been substantial progress on algorithms for single-agent

sequential decision making using partially observable Markov de-

cision processes (POMDPs). A number of efficient algorithms for

solving POMDPs share two desirable properties: error-bounds and

fast convergence rates. Despite significant efforts, no algorithms

for solving decentralized POMDPs benefit from these properties,

leading to either poor solution quality or limited scalability. This

paper presents the first approach for solving transition indepen-

dent decentralized Markov decision processes (Dec-MDPs), that

inherits these properties. Two related algorithms illustrate this ap-

proach. The first recasts the original problem as a deterministic and

completely observable Markov decision process. In this form, the

original problem is solved by combining heuristic search with con-

straint optimization to quickly converge into a near-optimal pol-

icy. This algorithm also provides the foundation for the first al-

gorithm for solving infinite-horizon transition independent decen-

tralized MDPs. We demonstrate that both methods outperform

state-of-the-art algorithms by multiple orders of magnitude, and

for infinite-horizon decentralized MDPs, the algorithm is able to

construct more concise policies by searching cyclic policy graphs.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—

Multiagent systems

Keywords

Planning under uncertainty, cooperative multiagent systems, decen-

tralized POMDPs

1. INTRODUCTION
Multi-agent planning and coordination problems are common

in many real-world domains. The decentralized POMDP (Dec-
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POMDP) provides a general mathematical model for cooperative

multi-agent decision-making under uncertainty, but solving it op-

timally is intractable [7]. As a result, while several optimal ap-

proaches have been developed for general decentralized POMDPs,

they do not scale to more than two agents or even moderately sized

problems [3, 4, 6, 8, 12, 25, 26]. Approximate algorithms for gen-

eral decentralized POMDPs scale better, but without the theoretical

guarantees of optimal or near-optimal algorithms [2, 9, 11, 19, 20,

22, 27, 29, 30]. Therefore, in general, we are constrained to ei-

ther solving small toy problems near-optimally, or solving larger

problems but possibly producing poor solution quality.

One alternative is to consider more tractable subclasses of de-

centralized POMDPs. Transition independent decentralized MDPs

represent a general subclass, where agents possess perfect observ-

ability of a local state (but not those of the other agents) and agents

can only interact with one another through reward functions. The

standard approach to solving this problem is to recast it as a set

of augmented MDPs, which incorporate the joint reward into lo-

cal reward functions for each agent [5]. This approach relies on

local value functions that map states and the complete sets of pol-

icy candidates of the other agents to expected values, requiring a

large amount of time and memory. A bilinear programming (BLP)

method [21] has also been proposed for this problem, but it requires

incorporating time into the state and relies on sparse reward inter-

action (rewards that are additive in many states) for much of its

scalability. A recent algorithm by Dibangoye et al. uses a different

approach that represents a policy explicitly as a sequence of map-

pings from states to actions called a Markovian policy [10]. This

algorithm represents a value function as a mapping from state prob-

ability distributions to expected values, but fails to generalize ex-

pected values over unvisited state probability distributions, which

results in slow convergence rates.

In this paper, we consider an alternative approach to solving

transition independent decentralized MDPs by recasting them as

continuous state MDPs where states and actions are state proba-

bility distributions and decision rules, respectively. We show that

this formulation possesses a piecewise linear convex value func-

tion, permitting ideas for solving POMDPs to be utilized. We then

present two related algorithms that possess both solution quality

error bounds and fast convergence rates similar to those found

in solving POMDPs. The first algorithm improves Dibangoye et



al.’s approach by exploiting the piecewise linear and convex value

function to allow expected values to generalize over unvisited state

probability distributions. It provides the foundation for a related

infinite-horizon algorithm, which can produce an ǫ-optimal solu-

tion by representing the policy as a cyclic Markovian policy graph.

While both approaches outperform state-of-the-art algorithms by

multiple orders of magnitude, the second algorithm is also able to

produce significantly more concise policies.

The remainder of this paper is organized as follows. First, we de-

scribe the decentralized MDP framework and discuss related work.

We then present theoretical results, showing that the value func-

tion for the finite-horizon case is piecewise linear and convex over

the state probability distributions. Next, we describe improvements

over Dibangoye et al.’s algorithm, which include: first, the value

function is now represented as a piecewise linear and convex func-

tion; secondly, after each trial of the algorithm, we maintain a con-

cise value function by means of pruning. We further introduce a

related algorithm for solving the infinite-horizon case within any ǫ

of the optimal solution. Finally, we present an empirical evaluation

of these algorithms with respect to state-of-the-art solvers that ap-

ply in decentralized MDPs, showing the ability to solve problems

that are multiple orders of magnitude larger and those that include

up to 14 agents.

2. BACKGROUND ON DEC-MDPS
In a decentralized MDP, the actions of a given agent do not af-

fect the transitions of the other agents. In this case we say that the

problem is transition independent. The agents interact with one

another only through a common reward function. After taking an

action, each agent receives a local observation, which here fully de-

termines it current local state. Despite this local full observability

property, each agent’s local observation is insufficient to optimize

the selection of its next decision. This is mainly because agents

may not have access to the local observations of the other agents.

However, if all agents shared their local observations, the true state

of the world would be known. It is the presence of this joint full

observability property that differentiates decentralized MDPs from

decentralized POMDPs. These characteristics appear in many real-

world applications including: navigation problems, e.g., Mars ex-

ploration rovers [5, 21]; network sensors, e.g., distributed sensor

net surveillance [18]; and smart grids, e.g., distributed smart-gird

management.

2.1 The Dec-MDP Model

DEFINITION 2.1 (THE DECENTRALIZED MDP). A N -agent

decentralized MDP (S,A, p, r, η0, β) consists of:

• A finite set S = Z1 × · · · ×ZN of states s = (z1, . . . , zN ),
where Zi denotes the set of local observations zi of agent

i = 1, 2, . . . , N .

• A finite set A = A1 × · · · × AN of joint actions a =
(a1, . . . , aN ), where Ai denote the set of local actions ai

of agent i = 1, 2, . . . , N .

• A transition function p : S × A × S 7→ [0, 1], which de-

notes the probability p(s̄|s, a) of transiting from state s =
(z1, . . . , zN ) to state s̄ = (z̄1, . . . , z̄N ) when taking joint

action a = (a1, . . . , aN ).

• A reward function r : S×A 7→ R, where r(s, a) denotes the

reward received when executing joint action a in state s.

• The decentralized MDP is parameterized by the initial state

distribution η0; and β, the discount factor.

As noted above, decentralized MDPs are distinguished by the

state being jointly fully observable. This property ensures that the

global state would be known if all agents shared their local obser-

vations at each time step (i.e., there is no external uncertainty in

the problem) and follows trivially from the definition of states as

observations for each agent.

2.2 Additional Assumptions
Throughout this paper, we are interested in decentralized MDPs

that exhibit two main properties.

The first is the transition independence assumption where the

local observation of each agent depends only on its previous local

observation and local action taken by that agent.

ASSUMPTION 2.2. An N -agent decentralized MDP is said to

be transition independent if there exists, for all agent i, a local

transition function pi : Zi ×Ai × Zi 7→ [0, 1], such that

p(s̄|s, a) =
N
∏

i=1

p
i(z̄i|zi, ai),

where s = 〈z1, z2, . . . , zN 〉 and a = 〈a1, a2, . . . , aN 〉.

We also implicitly assume observation independence, in which

the observation function of each agent does not depend on the dy-

namics of the other agents. This hold since we assume the transition

and observation functions are the same in the Dec-MDP model (as

states are made up of local observations of the agents).

Transition independent decentralized MDPs have both proper-

ties. When the agents operate over a bounded number of time-steps

(typically referred to as the problem horizon) T , the model is re-

ferred to as a finite-horizon case. When the agents operate over an

unbounded number of time-steps, the model is referred to as the

infinite-horizon case.

2.3 Additional Definitions and Notations
A decentralized MDP is solved by finding a joint policy repre-

sented as a sequence of rules for selecting joint actions at each time

step τ , called decentralized decision rules στ . Note that the poli-

cies are decentralized in the sense that action choices depend only

on local information.

Decentralized decision rule στ is a N -tuple of decision rules

〈σ1
τ , . . . , σ

N
τ 〉, one individual decision rule for each agent. Each

individual decision rule σi
τ is a mapping from local information

about the states of the process at time step τ to local actions. We

further distinguish between history-dependent policies and Marko-

vian policies.

History-dependent decision rule σi
τ is a mapping from local

action-observation histories hi
τ = 〈ai

0, z
i
1, . . . , a

i
τ−1, z

i
τ 〉 to local

actions σi
τ (h

i
τ ) = ai

τ . A policy that consists of history-dependent

decision rules defines a history-dependent policy. Standard ap-

proaches for solving decentralized MDPs (and Dec-POMDPs) search

in the space of history-dependent policies.

Markovian decision rule σi
τ , however, maps local observations

ziτ to local actions σi
τ (z

i
τ ) = ai

τ . A policy that consist of Marko-

vian decision rules defines a Markovian policy. Clearly, the space

of Markovian policies is exponentially smaller than that of history-

dependent policies. Under transition independent assumptions, Gold-

man et al. [13] and more recently Dibangoye et al. [10] demon-

strated that there always exists a Markovian policy that achieves

performance at least as good as any history-dependent policy for
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Figure 1: A policy represented as a Markovian policy graph.

transition independent Dec-MDPs. For this reason, algorithms that

search in the Markovian policy space will be more efficient than

those that search in the history-independent policy space.

Markovian policy graphs are introduced in this paper to repre-

sent Markovian policies for both finite and infinite-horizon cases.

More formally, a Markovian policy graph is defined with the tu-

ple (X,Σ, ν, µ, x0), where X is the set of nodes in the graph; Σ
denotes the set of decision rules; ν : X 7→ Σ describes the map-

ping that determines the decision rule ν(x) to be executed when

the graph is in node x; mapping µ : X 7→ X is the deterministic

transition function, providing the next graph node for each node;

and x0 denotes the initial node. This graph allows for a concise

representation of a nonstationary policy. An example of a joint pol-

icy represented as a Markovian policy graph is illustrated in Figure

1. Note that decentralized decision rules for each node (x) are not

shown. Similar graphs (in the form of finite-state controllers) have

been used to represent policies for general Dec-POMDPs [6], but in

our case, actions (decision rules) and transitions are deterministic

and transitions do not depend on the observation seen.

The occupancy state is also a useful concept. The occupancy

state ητ , where ∀s̄ : ητ (s̄)
def
= P (sτ = s̄ | η0, σ0, . . . , στ−1), repre-

sents a probability distribution over states given an initial state dis-

tribution η0, and a joint policy prior to step τ . The occupancy state

can be updated at each step to incorporate the latest decentralized

decision rule. That is, ητ (s̄) =
∑

s∈S p(s̄|s, στ−1(s)) · ητ−1(s).
We also denote △ the space of occupancy states, that is the stan-

dard |S|-dimensional simplex. Dibangoye et al. [10] demonstrated

that the occupancy state is a sufficient statistic for a given sys-

tem under the control of a sequence of decentralized decision rules

〈σ0, . . . , στ−1〉.
Also, note the difference between occupancy states and belief

states. Formally, a belief state bτ , where bτ (s)
def
= P (s|hτ , η0),

denotes the probability that the system is in state s if the system’s

history is hτ starting in state probability distribution η0. The total

probability property provides, ητ (s) =
∑

hτ
P (s|hτ , η0)·P (hτ |η0).

In words, this equation states that at the τ -th time step all belief

states are summarized in a single occupancy state.

3. RELATED WORK
Most exact algorithms for decentralized MDPs, including those

assuming transition independence, search directly in the policy space

[2, 4, 5, 6, 8, 9, 11, 17, 19, 20, 21, 22, 25, 26, 29, 30]. Given

some explicit representation of policies, these algorithms build a

joint policy that optimizes a performance objective (or comes ac-

ceptably close to doing so). We assume the objective is to maxi-

mize the expected total discounted reward (where β ∈ (0, 1] is a

discount factor). Exact algorithms that search in the policy space

must, nonetheless, be able to compute a value from the joint policy

they iteratively improve.

We discuss two alternative representations of the value function

under transition independence assumptions in the finite-horizon case.

One possibility is to view a value function as a mapping from joint

policies to expected values. Given a decentralized Markovian pol-

icy π ≡ 〈σ0, σ1, . . . , σT−1〉, this representation of the value func-

tion stores the expected value of taking that policy starting in occu-

pancy state η0: υβ(π)
def
= E(

∑T−1
τ=0 βτ · ρ(ητ , στ ) | η0, π), where

Algorithm 1: Markovian Policy Search

mps begin
Initialize the bounds υβ and ῡβ .

while ῡβ,0(η0)− υβ,0(η0) > ǫ do

mp-trial(η0)

mps-trial(ητ ) begin

if ῡβ,τ (ητ )− υβ,τ (ητ ) > ǫ then
Select σgreedy according to ῡβ and η.
Update upper bound value function.
Call mp-trial (χ[ητ , σgreedy]).
Update lower bound value function.

the expected immediate reward for taking decentralized Markovian

decision rule στ in occupancy state ητ is given by ρ(ητ , στ ) =
∑

s∈S ητ (s) · r(s, στ [s]). Algorithms that use this representation

must explicitly enumerate joint policies, as the value function does

not generalize over unvisited joint policies. While these algorithms

can be optimal, they must keep track of the complete set of Marko-

vian policy candidates for each agent, requiring a large amount of

time and memory [5, 21].

A second possibility is to represent a value function as a se-

quence 〈υβ,0, υβ,1, . . . , υβ,T−1〉 of mappings υβ,τ : △ 7→ R from

occupancy states to expected values, one for each time step τ =
0, 1, . . . , T − 1. This is similar to the approach used by many

POMDP solution methods to represent the value over the belief

states [16]. Given this representation of the value function, a cor-

responding joint policy π = 〈σ0, σ1, . . . , σT−1〉 is extracted using

one-step lookahead: στ = argmaxσ ρ(ητ , σ)+β·υβ,τ+1(χ[ητ , σ]),
where χ[ητ , στ ] denotes the occupancy state that results from tak-

ing decentralized Markovian decision rule στ in occupancy state

ητ . Algorithms that use the value function represented as a map-

ping from occupancy states to expected values must traverse the

space of occupancy states to update the value function following

the one-step-backup for each visited occupancy state: for all τ =
0, 1, . . . , T − 1,

υβ,τ (ητ ) = maxσ ρ(ητ , στ ) + β · υβ,τ+1(χ[ητ , στ ]), (1)

and υβ,T (ηT ) = 0. In words, (eqn. 1) means that the value at occu-

pancy state ητ is given by the immediate reward for taking the best

decentralized Markovian decision rule for ητ plus the discounted

expected value of the resulting occupancy state χ[ητ , στ ]. Algo-

rithms that iteratively perform the one-step backup converge to the

optimal value function in the limit. However, the one-step backup

requires the explicit enumeration of all decentralized Markovian

decision rules, which is computationally intensive and significantly

limit the scalability.

Dibangoye et al. [10] recently introduced the first algorithm that

solves a transition independent decentralized MDP over planning-

horizon T by searching in the value function space, namely the

Markovian policy search described in Algorithm 1. This algorithm

searches to a finite depth T and finds a solution in the form of a tree

that grows with the depth of the search. The search tree can be rep-

resented as a decision tree in which the nodes of the tree correspond

to occupancy states and the root of the tree is the initial occupancy

state η0. Arcs are labeled by the choice of a decentralized Marko-

vian decision rule. The value of a node is the maximum among the

values of decentralized Markovian decision rules that follow each

occupancy state. Upper and lower bounds are computed for occu-

pancy states on the fringe of the search tree and backed up through

the tree to the starting occupancy state at its root. Thus, expand-

ing the search tree improves the bounds at the interior nodes of the
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Figure 2: A decision-tree constructed by the Markovian policy

search algorithm [10]. The state occupancy distributions are

represented by circular nodes. Decentralized Markovian deci-

sion rules σ and rewards ρ(η, σ) label the outgoing arcs from

the nodes. The values inside the brackets represent the lower

and upper bounds.

tree. The error bound (ῡβ,τ (ητ )− υβ,τ (ητ )) can be made arbitrar-

ily small by expanding the search tree far enough and an ǫ-optimal

value function for the occupancy state at the root of the tree can be

found after a finite search. An example on how such a decision tree

is constructed and evaluated is presented in Figure 2.

For lower and upper bound functions, Dibangoye et al. [10] use

mappings from occupancy states to expected values. To describe

how lower and upper bound functions are improved, recall that

every node of the search tree corresponds to a occupancy state.

Therefore, expanding a node (one arc at a time), and backing up

its upper bound, is equivalent to performing a one-step backup for

the corresponding occupancy state as in Equation (1). To circum-

vent the explicit enumeration of all decentralized Markovian deci-

sion rules, Dibangoye et al. implement the one-step backup using

constraint optimization. In contrast, the lower bound is updated as

follows. Beginning at the root of the search tree and selecting the

decentralized Markovian decision rule that maximizes the upper

bound of the current node, each decentralized Markovian decision

rule that label arcs of the search tree that has been visited during

the trial are identified. For each of these decentralized Markovian

decision rules στ , in backwards order from the leaf node of the

search tree, the lower bound at the corresponding occupancy state

ητ is updated as follows υβ,τ (ητ ) = max{υβ,τ (ητ ), ρ(ητ , στ ) +
β · υβ,τ+1(χ[ητ , στ ])}. The algorithm terminates when the error

bound at the initial occupancy state is small enough. It is guar-

anteed to terminate after a finite number of trials with a ǫ-optimal

joint policy.

Dibangoye et al. [10] represent lower and upper bound functions

in a way that does not allow them to generalize over unvisited occu-

pancy states. As a consequence, to improve lower or upper bound

value at a given occupancy state, the algorithm needs to explicitly

visit it and perform the updates for that specific occupancy state.

However the number of occupancy states that must be backed up to

guarantee ǫ-optimality is often intractable. The key for improving

the convergence rate of the Markovian policy search algorithm, is

to leverage the piecewise linear and convex structure of the exact

value function of transition independent decentralized MDPs.

4. THE FINITE-HORIZON CASE
This section discusses a new algorithm for solving transition in-

dependent Dec-MDPs over planning-horizon T by re-casting the

model as a continuous-state MDP. This allows algorithms to be

developed that take advantage of the piecewise linear and convex

structure of the value function to improve efficiency.

DEFINITION 4.1. Given a transition independent decentralized

Markov decision process (S,A, p, r), the corresponding Markov

decision process (△,Σ, χ, ρ) is given by:

• A continuous-state space △ is the space of occupancy states.

• An action set Σ is the space of decentralized Markovian de-

cision rules.

• A deterministic transition function χ : △ × Σ 7→ △, which

defines the next occupancy state χ[η, σ] = η̄ when taking

decentralized decision rule σ in occupancy state η, where

η̄(s̄) =
∑

s∈S p(s̄|s, σ[s]) · η(s).

• A reward function ρ : △ × Σ 7→ R, where quantity ρ(η, σ)
denotes the expected immediate reward when executing de-

centralized decision rule σ in occupancy state η.

By recasting a transition independent decentralized MDP as a

completely observable MDP with a continous, |S|-dimensional state

space that consists of all possible occupancy states, the problem can

be solved using POMDP theory and algorithms. To better under-

stand this relationship, notice that standard approach to solving a

POMDP is to recast it as a completely observable MDP with a state

space that consists of all possible belief states. In this form, Small-

wood and Sondik [23] demonstrate that the value function defined

for all possible state probability distributions can be represented

as a piecewise linear and convex function. Transition independent

decentralized MDPs inherit this property.

Let υ∗
β : △× N 7→ R be the exact value function over planning-

horizon T , such that value υ∗
β(η, τ) = υβ,τ (η) depends on the

current occupancy state η and horizon τ , where υβ,τ (η, τ) = 0 for

τ ≥ T . We are now ready to present our main theoretical result.

THEOREM 4.2. The value function υ∗
β : △ × N 7→ R solution

of the system of Equations (1) is piecewise linear and convex.

PROOF. We proceed by induction. The (T − 1)-th value func-

tion υβ,T−1 is piecewise linear and convex since ρ(·, σ) : △ 7→ R

is a linear combination of rewards r(s, σ[s]) for any decentral-

ized Markovian decision rule σ. Suppose υβ,τ+1 : △ 7→ R is

piecewise linear and convex. In demonstrating this property for

υβ,τ : △ 7→ R defined for any occupancy state ητ by υβ,τ (ητ ) =
maxσ ρ(ητ , σ)+β ·υβ,τ+1(χ[ητ , σ]), we first note that the transi-

tion function χ(·, σ) : △ 7→ △ is convex because it is a linear com-

bination of transition probabilities. The max operator preserves

piecewise linearity and convexity, and the sum of piecewise linear

and convex functions is piecewise linear and convex.

A piecewise linear and convex value function υ∗
β can be represented

by a sequence of finite sets of |S|-dimensional vectors of real num-

bers 〈Λ0,Λ1, · · · ,ΛT−1〉, such that the value of each occupancy

state ητ is given by:

υβ,τ (ητ ) = maxυ∈Λτ

∑

s∈S ητ (s) · υ(s). (2)

Algorithms for solving transition independent decentralized MDPs

by searching in the value function space, can represent the value

function in this way, allowing it to generalize over unvisited occu-

pancy states. To illustrate this, we consider the Markovian policy

search algorithm discussed earlier and show how to represent upper

and lower bound functions ῡβ,τ and υβ,τ to exploit the piecewise

linearity and convexity property of the exact τ -th value function

υβ,τ . Similar representations have been previously used by algo-

rithms for solving POMDPs [15, 16, 24].



4.1 The Upper-Bound Function
We use a point set representation, Ψτ = {(ηk

τ , φ
k
τ )|k = 0, 1, · · · },

for the upper bound function ῡβ : △× N 7→ R. The upper-bound

value ῡβ,τ (ητ ) = φτ at any unvisited occupancy state ητ is thus

the projection of ητ onto the convex hull formed by finite set of oc-

cupancy states and their corresponding values in Ψτ . This demon-

strates the ability to generalize the upper-bound function ῡβ over

unvisited occupancy states. Updates are performed by adding new

points into point set after the application of a one-step backup. To

initialize upper-bound function ῡβ,τ , we assume full observabil-

ity and calculate the τ -th optimal value function of the underlying

MDP. This provides the initial upper-bound values at corners of

simplex △, which form the initial point set Ψτ .

For algorithms that represent the upper-bound function in this

way, it is important to achieve a fast upper-bound evaluation at any

occupancy state. However the convex hull projection relies heav-

ily on linear programming and is computationally intensive. One

possible alternative, the so called sawtooth projection, uses approx-

imate linear programming and leverages the special structure of the

occupancy state simplex to improve efficiency [15]. Relative to the

convex hull projection with the same point set, the sawtooth projec-

tion provides a weaker bound but much faster function evaluations.

To better understand the complexity of the sawtooth projection, let

|Ψτ | be the number of points in the point set that represents value

function ῡβ,τ . The complexity O(|Ψτ ||S|) of each evaluation in-

creases with increasing points in Ψτ . Given that evaluations oc-

cur multiple times during a trial, the importance of pruning away

unnecessary points is clear. In practice, many points (ητ , φτ ) in

point set Ψτ may be completely dominated by a combination of

the other points. Those points can be pruned away without affect-

ing the upper-bound accuracy. A point (ητ , φτ ) is said to be domi-

nated if the remaining points in conjunction with the corner points

satisfy inequality ῡβ,τ (ητ ) ≤ φτ .

4.2 The Lower-Bound Function
For the lower bound function υβ : △ × N 7→ R, we use piece-

wise linear and convex functions 〈υβ,0, υβ,1, . . . , υβ,T−1〉. Each

piecewise linear and convex value function υβ,τ : △ 7→ R cor-

responds to a finite set of |S|-dimensional vectors of real num-

bers Λτ . Because each function υβ,τ is represented as a piece-

wise linear and convex function, it generalizes over unvisited oc-

cupancy states. Updates are performed by adding new vectors into

sets Λ0,Λ1, . . ., and ΛT−1. To describe how to construct vector

υτ that is added into set Λτ , let’s assume the algorithm starts in

occupancy state ητ , and selects στ with respect to upper bound

function, and then moves to occupancy state χ[ητ , στ ]. Recall

that the lower bound function is updated backwards. Thus, we

start by selecting vector υτ+1 in set Λτ+1 that is maximal at oc-

cupancy state χ[ητ , στ ]. We then compute vector υτ as follows:

υτ (s) = r(s, σ[s]) + β
∑

s̄ p(s̄|s, σ[s]) · υτ+1(s̄). As a conse-

quence, we add a new vector into set Λτ after each trial. This may

slow down lower bound function evaluations and updates.

Many vectors in sets Λ0,Λ1, . . ., and ΛT−1 may be unnecessary

to maximize the lower bound value at the starting occupancy state.

These vectors can be pruned away without affecting the ability to

find the optimal value function. To perform this pruning mecha-

nism, we rely on a correspondence between vectors and one-step

policy choices. Each vector in Λτ corresponds to the choice of

a decentralized Markovian decision rule, and the choice of a suc-

cessor vector in Λτ+1. To describe the correspondence between

vectors and one-step policy choices, we introduce the following

notation. For each vector υx
τ in Λτ , let ν(x) denote the choice of a

decentralized Markovian decision rule, and let µ(x) denote the suc-

cessor vector in Λτ+1. Given this correspondence between vectors

and one-step policy choices, it is clear that any vector that is not

reachable from the vector that maximizes the lower bound value of

the starting occupancy state can be pruned away without affecting

the value of the starting occupancy state. This correspondence also

proves that an optimal joint polity for a finite-horizon transition

independent decentralized MDP can be represented by an acyclic

Markovian policy graph in which each node corresponds to a vec-

tor in nonstationary value function υβ : △× N 7→ R.

5. THE INFINITE-HORIZON CASE
Although the Markovian policy search algorithm is designed to

solve finite-horizon decentralized MDPs with transition indepen-

dent assumptions, it can also be used to solve infinite-horizon prob-

lems. The optimal value function for the infinite-horizon case is

not necessarily piecewise linear, although it is convex. However it

can be approximated arbitrarily closely by a piecewise linear and

convex function. Building upon this insight, we use the Marko-

vian policy search algorithm to calculate a value function υǫ
β : △×

N 7→ R over a finite planning-horizon T which achieves a total

β-discounted rewards within ǫ of an optimal value function over

an infinite-horizon. To this end, we chose T such that the regret

regret(υǫ
β) of operating only over T =

⌈

logβ

(

(1−β)ǫ
||r||∞

)⌉

steps

instead of an infinite number of steps is upper-bounded by ǫ:

regret(υǫ
β) =

∑∞
τ=T βτ · ||r||∞, (3)

where ||r||∞ = maxs,a r(s, a)−mins,a r(s, a). As β gets closer

to 1, planning-horizon T increases. This results in arbitrarily large

sequence 〈υβ,0, υβ,1, . . . , υβ,T−1〉 of value functions.

Although the improved Markovian policy search algorithm can

apply in infinite-horizon cases and converges more quickly than

the original Markovian policy search algorithm, both are limited to

solving finite-horizon problems with reasonable planning-horizon

T . The shared bottleneck is that they need to find a (possibly large)

sequence of optimal value functions 〈υβ,0, υβ,1, . . . , υβ,T−1〉, one

for each horizon. The fastest algorithm for solving finite-horizon

decentralized MDPs with transition independent assumptions is still

prohibitively slow for infinite-horizon cases when regret ǫ is sig-

nificantly small as the planning-horizon increases with decreasing

regret. In this section, we introduce a new approach, called Marko-

vian policy graph search, for solving infinite-horizon decentralized

MDPs with transition independent assumptions that is closely re-

lated to the Markovian policy search algorithm described in the pre-

vious section but differs in an important respect; it does not search

for an ǫ-optimal nonstationary value function υǫ
β : △×N 7→ R us-

ing a (possibly large) sequence of T value functions υβ,τ : △ 7→ R.

Instead, it optimizes a stationary value function υǫ
β : △ 7→ R to

maximize a long-term expected cumulative discounted reward.

For both lower and upper bound functions, υǫ
β : △ 7→ R and

ῡǫ
β : △ 7→ R, we use representations that have been discussed ear-

lier to exploit the piecewise linear and convex property of ǫ-optimal

value function υǫ
β : △ 7→ R, namely vector set Λ and point set Ψ,

respectively. We also discussed how to update both lower and upper

bound functions, we do not add to that discussion in the Markovian

policy graph search algorithm, but we note again the one-to-one

relationship between nodes in the policy graph and vectors in the

lower bound. The words vector and node can be use interchange-

ably in this context. After each trial, we prune the upper bound

function, much as described earlier. For the lower bound function,

however, the pruning mechanism we described earlier may main-

tain unnecessary vectors (and thus unnecessary nodes) in set Λ. To

describe our pruning mechanism, let Λ′ be the set of vector candi-



Algorithm 2: Markovian Policy Graph Search

mpgs begin
Initialize the bounds υǫ

β
and ῡǫ

β
.

while ῡǫ
β
(η0)− υǫ

β
(η0) > ǫ do

mpgs-trial(η0, 0)
Prune lower bound υǫ

β
and corresponding policy graph

Prune upper bound ῡǫ
β

Evaluate lower bound υǫ
β

and corresponding policy graph

mpgs-trial(η, τ) begin

if ῡǫ
β
(η)− υǫ

β
(η) > ǫβ−τ then

Select σgreedy according to ῡǫ
β

and η (adding a new node to

the policy graph).
Update upper bound value function ῡǫ

β
.

Call mpg-trial (χ[η, σgreedy], τ + 1).
Update lower bound υǫ

β
according to σgreedy and η.

dates, and Λ be the set of old vectors. We now demonstrate how

a simple comparison of vectors in Λ′ and Λ provides the basis for

our pruning mechanism.

Following similar pruning rules as policy iteration for solving

infinite-horizon POMDPs [14], we can make use of the graph struc-

ture and stationary properties of the infinite-horizon policy to im-

prove the pruning of our lower bound (and thus the policy graph).

Note that vectors υ′ in Λ′ can be duplicates of vectors υ in Λ, that

is, they can have the same decentralized Markovian decision rule

and successor vector (in which case they will be pointwise equal).

If they are not duplicates, they indicate how the lower bound func-

tion Λ can be improved – either by changing vector υ (that is,

changing its corresponding decentralized Markovian decision rule

ν(υ) = ν(υ′) and/or successor vector µ(υ) = µ(υ′)) or by adding

vector υ′. There may also be vectors that are not reachable from

the vector that maximizes the starting occupancy state, those vec-

tors can be pruned from Λ without affecting the lower bound value

at the starting occupancy state. Thus, the lower bound function Λ
is improved using a combination of three transformations: chang-

ing vectors, adding vectors, and pruning vectors. When a vector is

changed, the values of other vectors may also change (as the graph

structure has been changed). In this case, the lower bound evalua-

tion is invoked to recompute the vector values. This is achieved by

solving the following system of equations:

υ
x(s) = r(s, ν(x)[s]) + β

∑

s̄∈S

p(s̄|s, ν(x)[s]) · υµ(x)(s),

for all vectors υx in Λ. Markovian policy graph search is sum-

marized in Algorithm 2 and an example on how a lower bound is

improved one is presented in (fig. 3).

6. EMPIRICAL EVALUATIONS
Experiments were run on standard finite and infinite-horizon tran-

sition independent Dec-MDPs. For both cases we ran the proposed

Markovian Policy Search (MPS) algorithm with the two exten-

sions described in Section 4 and 5, referred to as Improved Marko-

vian Policy Search (IMPS) and Markovian Policy Graph Search

(MPGS), respectively. These algorithms were run on a Mac OSX

machine with 2.4GHz Dual-Core Intel and 2GB of RAM available.

We solved the constraint optimization problems using the aolib li-

brary, as suggested by Dibangoye et al. [10].

For the finite-horizon case, we compare the IMPS algorithm to

the current state-of-the-art algorithm for finite-horizon transition

independent Dec-MDPs, namely the Markovian Policy Search (MPS)
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Figure 3: Example of how the lower bound function Λ can be

improved. Vectors υx̄a , υxd and υxe (and their corresponding

nodes) in the left panel represent to a path through the search

tree, beginning from the starting occupancy state and transi-

tioning to υxb . Vector υxd becomes a new vector in Λ. Vector

υxe pointwise dominates vector υxb and therefore the decen-

tralized Markovian decision rule in the policy graph and the

successor vector of υxb can be changed accordingly. Vector υx̄a

is a duplicate of vector υxa and causes no change. Finally, vec-

tor υxc and associated node are pruned. The improved lower

bound function and explicit Markovian policy graph are shown

in the right panel.

algorithm. We do not compare against other algorithms here be-

cause Dibangoye et al. [10] demonstrate that MPS outperforms

other algorithms that apply in this case (including GMAA*-ICE

[25], IPG [3], and BLP [21]) by an order of magnitude in all tested

benchmarks. For the infinite-horizon case, we compare to state-of-

the-art algorithms for solving infinite-horizon Dec-MDPs and Dec-

POMDPs: including optimal methods policy iteration (PI) [6] and

incremental policy generation (IPG) [3], as well as approximate

methods for computing finite-state controllers using nonlinear pro-

gramming [1] and a combination of heuristic search and EM (Peri,

PeriEM, EM) [20]. Note that, while PI and IPG are optimal in

theory, they do not produce optimal solutions on our benchmark

problems due to resources being exhausted before convergence can

occur. Because the infinite-horizon approaches were developed for

general Dec-POMDPs, their results are unknown on many of our

domains. Note that we do not compare with ND-POMDP methods

that consider locality of interaction [18]. This is mainly because

our benchmarks allow all agents to interact with all teammates at

all times, therefore there is no reason to expect the optimal ND-

POMDP method (GOA [18]) to outperform algorithms presented

in this section.

The results for finite-horizon case are in Table 1. We report the

running for each algorithm to compute lower and upper bounds

within ǫ of the optimal value function along with the the values for

these bounds and the difference between them. In all benchmarks,

the IMPS algorithm is significantly faster than the state-of-the-art

MPS algorithm. In the Meeting in a 3x3 grid, for example, the

IMPS algorithm is 10 times faster than the MPS algorithm. We

expect that computational speedup will also allow IMPS to scale

up to significantly larger problems.

For the infinite-horizon case, the results can be seen in Table 2
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ῡ
β
(η
)

MPGS

IMPS

MPS

0 20 40 60 80 100 120

10

10.2

10.4

TIME (sec.)

U
P

P
E

R
B

O
U

N
D
ῡ
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Figure 4: The convergence rates for 4 problems: Recycling robot (left), Meeting in 3x3 grid (center-left), ISR (center-right), and Pentagon (right).

Algorithm Time υǫ
β
(η0) ῡǫ

β
(η0) Error

Recycling robots (|S| = 4, |Ai| = 3, |Zi| = 2)
MPS 0.438s 308.78 308.78 0
IMPS 0s 308.78 308.78 0
Meeting in a 2x2 grid (|S| = 16, |Ai| = 5, |Zi| = 4)
MPS 346.9s 98.80 98.81 0.009
IMPS 80.7s 98.80 98.80 0
Meeting in a 3x3 grid (|S| = 81, |Ai| = 5, |Zi| = 9)
MPS 2212.7s 94.25 94.31 0.06
IMPS 208s 94.26 94.35 0.093
Meeting in a 8x8 grid (|S| = 4096, |Ai| = 5, |Zi| = 64)
MPS 214.73s 93.68 93.68 0
IMPS 25.4s 93.68 93.68 0
MIT(|S| = 8100, |Ai| = 4, |Zi| = 90)
MPS 1236.11s 154.93 154.93 0
IMPS 242.04s 154.93 154.93 0
ISR (|S| = 8100, |Ai| = 4, |Zi| = 90)
MPS 1294.28s 182.54 182.58 0.03
IMPS 335.56s 182.54 182.54 0
PENTAGON (|S| = 9801, |Ai| = 4, |Zi| = 99)
MPS 1033.70s 76.39 76.48 0.09
IMPS 198.5s 76.39 76.39 0

Table 1: Results for finite-horizon decentralized MDP domains with

transition independent assumptions over planning-horizon T = 100

with β = 1.0 and ǫ = 0.1.

and Figure 4. Table 2 describes how much time and memory (in

terms of the number of nodes in the solution) it takes for each al-

gorithm to compute a solution. For our approaches, we provide

results for producing a lower bound function that is within ǫ of the

best known value. This provides a basis for comparison to algo-

rithms that do not have any theoretical guarantees. For all tested

benchmarks, (I)MPS and MPGS outperform other algorithms. The

MPGS algorithm produces the most concise lower bound function,

but as the size of the lower bound function increases it also adds

a little overhead as illustrated in the PENTAGON and ISR prob-

lems. The IMPS and MPS algorithms, however, produce good

lower bound functions quite fast for all benchmarks although they

require more memory to represent the lower bound function. Algo-

rithms that quickly find a good lower bound function can nonethe-

less have slow convergence rates to guarantee they have found an

ǫ-optimal solution.

To illustrate this point, Figure 4 describes the time MPS, IMPS

and MPGS require to find an upper bound function that is within

ǫ = 0.1 of the optimal value function. The MPS algorithm ran

out of time for all four benchmarks, and returned an upper bound

function that is relatively far from the optimal value function. In

contrast, the upper bound functions of IMPS and MPGS quickly

converge to an ǫ-optimal value function. MPGS performs less up-

dates and trials than the IMPS algorithm, but it often requires more

computational effort at each update as illustrated for the Meeting in

a 3x3 grid problem, resulting in a slower convergence rate. IMPS

Algorithm |Λ| Time υǫ
β
(η0)

Recycling robots (|S| = 4, |Ai| = 3, |Zi| = 2)
MPGS 2 0s 31.929
MPS 109 0s 31.928
IMPS 109 0s 31.928
Mealy NLP 1 0s 31.928
Peri 6×30 77s 31.84
PeriEM 6×10 272s 31.80
EM 2 13s 31.50
IPG 4759 5918s 28.10
PI 15552 869s 27.20
Meeting in a 3x3 grid (|S| = 81, |Ai| = 5, |Zi| = 9)
MPGS 2 45s 5.818
MPS 88 2s 5.802
IMPS 88 2s 5.802
Peri 20×70 9714s 4.64
Meeting in a 8x8 grid (|S| = 4096, |Ai| = 5, |Zi| = 64)
MPGS 10 1s 5.133
MPS 67 4s 5.127
IMPS 67 4s 5.127
ISR (|S| = 8100, |Ai| = 4, |Zi| = 90)
MPS 102 45s 9.907
IMPS 102 6s 9.907
MPGS 66 39s 9.907
PENTAGON (|S| = 9801, |Ai| = 4, |Zi| = 99)
MPS 102 34s 8.031
IMPS 102 7s 8.031
MPGS 18 2s 8.031

Table 2: Results for infinite-horizon transition independent decentral-

ized MDPs with β = 0.9. Results for Mealy NLP, EM, PeriEM, PI

and IPG were likely computed on different platforms, an therefore time

comparisons may be approximate at best.

performs more updates and trials but at a lower price, resulting in a

faster convergence rate over many problems including: Meeting in

a 3x3 grid, ISR and PENTAGON.

We continue the evaluation of the proposed algorithms on ran-

domly generated instances with multiple agents, based on the recy-

cling robot problem, see Dibangoye et al. for a description of these

scenarios. We calculate ǫ-optimal lower bound functions for 100
instances per group of N agents where N go from 5 to 14 agents,

and reported the average computational time as shown in Figure

5. While MPS, IMPS and MPGS were able to compute a near-

optimal value function for all groups of agents, the MPS algorithm

takes many days for the larger instances. The IMPS and MPGS al-

gorithms, however, find a near-optimal value function much faster.

For example, while the IMPS and MPGS algorithms take less than a

day (on average) to solve each instance of problems with 15 agents,

the MPS algorithm requires almost three days (on average). Prob-

lems with up to 11 agents can also be solved in much less time.

Overall, there are many reasons that explain our results. IMPS

and MPGS quickly converge to a near-optimal value function mainly

because they leverage the piecewise linearity and convexity struc-
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Figure 5: The MPS, IMPS and MPGS algorithm performance

for increasing number of agents with β = 0.9 and ǫ = 0.1.

ture of the value function. We note that IMPS often converges faster

than MPGS although they both perform updates of lower and upper

bounds. Because MPS optimizes a nonstationary value function, it

significantly reduces the size of lower and upper bound functions at

each time step. The size of upper and lower bound function at each

time step increases by one in the worst case after each trial, result-

ing in much faster updates. MPGS, however, optimizes a stationary

value function. Therefore, its upper and lower bound functions in-

crease by one after each update. Since there may be many updates

per trial, in the worst case the size of the lower and upper bound

functions increase linearly with the depth of the search tree, result-

ing in more computationally demanding updates.

7. CONCLUSION AND DISCUSSION
In this paper, we present the first approach to solving transition

independent decentralized MDPs that provides error-bounds and

fast convergence rates. To accomplish this, we describe how transi-

tion independent decentralized MDPs can be transformed into con-

tinuous state MDPs with piecewise linear convex value functions.

We notice that by recasting these problems as MDPs with states

that consists of Dec-MDP state probability distributions, powerful

approaches from POMDP literature can be applied.

While POMDP approaches can now be applied, these algorithms

suffer from a major drawback. They rely on the one-step backup

that requires the explicit enumeration of all possible actions. Algo-

rithms that perform the exhaustive enumeration for solving transi-

tion independent decentralized MDPs quickly run out of time and

memory, because they need to explicitly enumerate all possible de-

centralized decision rules. Our proposed algorithms, however, cir-

cumvent the exhaustive enumeration by combining constraint opti-

mization and heuristic search.

In the future, we plan to explore extending IMPS and MPGS to

other classes of problems and larger teams of agents. For instance,

we may be able to produce near-optimal solution to more general

classes of Dec-MDPs or approximate results for Dec-POMDPs by

recasting them as continuous-state MDPs. The improved scalabil-

ity of IMPS and MPGS is encouraging, and we plan to pursue

methods to increase this even further. In particular, we think our

approach could help increase the number of agents that interact in

conjunction with other assumptions in the model such as locality of

interaction [18, 28] and sparse joint reward matrices (as in bilinear

programming approaches [21]).
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