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WEAKLY NONLINEAR ANALYSIS OF THE FLUTTER
MOoOTION OF THIN CYLINDERS.

Joél TCHOUFAG!, David FABRE!, Jacques MAGNAUDET?

Y Université de Toulouse, Institut de Mécanique des Fluides de Toulouse,
Av. du Prof. Camille Soula, 31400 Toulouse, France
2CNRS, IMFT,F-31400 Toulouse

Abstract.

The nature overflows of examples which prove that buoyancy-driven objects in a viscous medium
can result in diverse and exotic trajectories. Among them is found the so-called Zig-Zag (ZZ)
path or flutter which we investigate in the present work. The configuration is that of a thin
cylinder initially rising/falling vertically in an unbounded fluid otherwise at rest. The problem
is parametrized by the aspect ratio (diameter to thickness) x, the moment of inertia I* and
Archimedes number (gravitational-velocity-based Reynolds) Ar. For small I*, past studies have
reported a supercritical transition from the vertical to the ZZ path at a critical Ar.. We show by
means of linear and weakly nonlinear analyses that the observed flutter results from the nonlinear
saturation of an unstable global mode of the coupled fluid+disk problem.

Key words: wake, instability, asymptotic expansion.

1 Introduction

The problem of a freely falling or rising body in a viscous fluid is quite fascinating.
Even simple objects such as coins falling in a newtonian fluid have been known
for centuries as able to undergo chaotic trajectories as well as regular ones such
as flutter or tumbling. From falling leaves and seeds in ecology to the freefall of
a spacecraft through rarified atmosphere in aeronautics, the wide range of applica-
tions of this problem has led, particularly in the last decade, to several experimental,
numerical and theoretical works (see Ern et al. 2012, for a comprehensive review).
Tackling this complex problem from a stability point of view, we recently carried
out the linear stability analysis of the coupled fluid-body problem in the case of
two-dimensional objects such as thin plates and rectangular rods [1] and axisym-
metric bodies, namely disks of finite thickness[14]. Now, the aim of this study is to
predict the characteristics of the flutter motion (ZZ) systematically undergone by
thin cylinders initially rising or falling in a steady vertical (SV) manner. The paper
is organized as follows. After describing the relevant parameters and the governing
equations of the problem, we will briefly give some results of the linear stability
analysis of the coupled fluid+disk system. We shall then proceed with the analysis
of a third order weakly nonlinear expansion of this system. To assess the validity
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Figure 1: Problem configuration. The disc is assumed to be initially released with its axis oriented in the
vertical direction. Gravity oriented downwards, discs such that p > 1 fall whereas light discs with p < 1
rise.

of our asymptotic model, we will compare the amplitude and the frequency of our
asymptotic model to existing experimental and DNS data.

2 Problem formulation

We consider a thin cylinder (hereinafter referred to as 'disc’) of thickness h, diameter
d and density pp falling or rising freely under gravity in an unbounded fluid of
kinematic viscosity v and density p, at rest at infinity. The disc is of volume ¥,
mass M and moment of inertia tensor I. Let U(¢) and €2(t) be the translational
and rotational components of the instantaneous velocity of the moving object as
shown on figure 1. The problem is then entirely defined by three dimensionless
parameters: the Reynolds number Re, = ||U||d/v, the aspect ratio x = d/h and
the body-to-fluid density ratio p = p,/p sometimes replaced by the dimensionless
inertia I* = £:p/x (which reads g;03/pd when y — oo with o, the surface density).
Since the disc velocity is usually not known beforehand, Re, is strictly speaking
not a control parameter of the problem and is advantageously replaced by the so-
called Archimedes number Ar = \/gUgd/ v based on the gravitational velocity
Uy = (205 — 1gh)".

At least two frames of reference, sketched in figure 1, will be of interest here: the ab-
solute or laboratory frame (O, Xq, yo, Zo) and the relative or body frame (C,x,y, z)
where C' in the disc’s center of mass. In the first one, we define the distance vector
CM = r for any material point M, and the vector ® = ((,Z, ¥) characterizing the
roll/pitch /yaw of the system. That is, rotations about x,y and z, respectively. Last,
the rotation rate is defined as 2 = d®/dt. The elasticity of the considered body
being neglected (no possible buckling and flapping), the trajectory of the disk is
described by the rigid-body motion equations and the flow around it by the Navier-
Stokes equations. The system of equations governing the fluid+disc dynamics is
fully coupled through the fluid forces and torques acting on the disc’s surface . on
the one hand and the no-slip boundary condition on . imposed to the flow by the
moving disc on the other hand. Written in the absolute reference frame but with
axes rotating with the disc [10], the full set of equations reads:
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V-V =0 , (1)
oV 1 2
E‘F(V—W)-VV—FQXV = ——VP+vVV | (2)
P
dU
M+ MO XU = (M—p“//)g—i-/T-ndS . B
B
1. ¥ oca0 - /rx(T-n)dS | (4)
dt y
dd
0

where V(r,t) and P(r,t) are the velocity and pressure fields in the fluid, W(r,t) =
U(t) + Q(t) x r is the local entrainment velocity, T = —PI + pv(VV + tVV)
denotes the stress tensor and I is the Kronecker tensor. Finally, the no-slip condition
on the disc surface and the vanishing of the fluid velocity at large distance imply
V=W on ¥ and V=0 for [r||—

The problem is solved numerically, using the finite elements software FreeFem++
(http://www.freefem++-.org). The equations governing the disc motion are pro-
jected onto (x,y,z) and those governing the fluid onto the local cylindrical basis
(e, €9,x) (see figure 1). The computational domain is made of triangular elements
and local refinements are applied to capture properly the boundary layer and near
wake of the disc.

3 Weakly Nonlinear Stability Analysis

To perform the weakly nonlinear stability analysis (WNA) of the problem, we pro-
ceed in the line of past studies dealing with instabilities in the wake of a fixed bluff
body[13, 9]. The procedure relies on a multiple time scale technique involving a fast
and a slow time scale, namely ¢t and 7 = ¢*t. Note that this formalism is different
from the weakly nonlinear analysis recently performed on the oblique motion of discs
and spheres[6]. We assume the following asymptotic expansion:

0
¢ = A_Tg (6a)
Q= Qo+ eqy(t,7)+ 62q2(t, T) + e3q3(t,7') 4 (6b)

With ¢ < 1 and § = Ar — Ar. the departure from criticality where the steady flow
Qo is linearly unstable. The state vector is made of the set of variables associated
to the fluid and the disc and reads Q = [V (r,t), P(r,t), U(t), Q(t), ®(¢)] in the
most general case. Introducing the above ansatz into (5), a zeroth-order non-linear
problem, higher-order linear problems are obtained, all of which are rewritten in a
weak formulation and then projected onto the finite elements basis. The latter is
made of P2 (quadratic) elements for the velocity field and P1(linear) for the pressure.
The obtained matrices are inverted by the LU solver of the embedded UMFPACK
library, while the SLEPc library is employed to compute the generalized eigenpairs
of the first order linear stability problem.
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3.1 Zeroth order: base flow

The zeroth-order flow, also known as the base flow, is sought in the form of a steady
axisymmetric flow associated with a steady vertical broadside motion of the disc.
Therefore, the corresponding state vector Qo = [Vo(r), Po(r), —Upx,0,0]. From
now on, the governing equations and problem variables will be made dimensionless.
Interestingly, when equation (3), which reduces to a balance between the net weight
of the disc and the drag force, is adimensionalized, it comes:

A2 = 2 ReCh(Re) (1)
32

where Cp = 8D/ denotes the dimensionless drag coefficient and now Re = Upd/v.
In what follows, the stability analysis is carried out for fixed values of Re, i.e. for
imposed values of the settling/rise velocity. Nevertheless, for the sake of comparison
with experimental and computational studies in which the actual control parameter
is the Archimedes number, the corresponding values of Ar will be systematically
computed using (7). This correspondence is exact as long as the threshold at which
the steady vertical motion of the body is destabilized is concerned. After this pri-
mary bifurcation at Re., we perform a first order Taylor expansion of (7) around
Re. to obtain the modified Ar = f(Re) relationship. Using an iterative Newton
method, the base flow is obtained by solving the incompressible steady Navier-
Stokes equations supplemented with the no-slip condition (Vo = —x) on the disc
and the far-field condition Vi = 0. Figure 2 shows an example of the base flow in
the case of an extremely thin disc at a Reynolds number Re = 94. As one could
expect, the wake structure is exactly that of the axisymmetric flow past a fixed disc,
viewed in the laboratory frame. The drag coefficient C'p ~ 1.20 compares well with
the value Cp ~ 1.23 determined experimentally by [12].

Figure 2: Typical base flow: case of an extremely thin disc (x = 10%) falling at Re = 117.
The colour scale refers to the magnitude of the axial velocity. The gravity vector is oriented
to towards the left.

3.2 First order: linear stability analysis

At order €, the linearized form of Eq. (5) are obtained and recast in a matrix form
as 0;:%qy + /qp = 0. The long-term solution of this problem can be sought as the
superposition of its linearly unstable modes, the stable ones eventually vanishing.
In particular, we search for normal modes, i.e :

~f imf
_ qlm(h ZE)@ ) At
q1 = | - e’ +cec 8

' (q’im(:&y,Z) ®)
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Where c.c. denotes the complex conjugate and q,, = (61{ ,@%,)T is the global mode
of azimuthal wavenumber m associated to the complex eigenvalue A\ = \. + i)\;
whose real and imaginary parts are the growth rate and frequency of the mode,
respectively. Note the relevant unknowns in qi,, and the boundary conditions on
the disk and for the far-field depend on m [14]. The first order linear problem thus
gives, for each m, a generalized eigenproblem A\%,,q1,m + %, q1m = 0. Rather than
solving for every m, computations are limited in practice to the subspace m > 0 due
some spatial symmetry[9]. Given an axisymmetric disc of aspect ratio x, one can
compute the eigenpairs (A, q) for various sets of Ar and I*. We find that |m| =1
modes are the most amplified ones, as in the case of wake instability past fixed 3D
bluff bodies [11]. Moreover, it can be shown that modes such that |m| > 2 only act
on the fluid, as if the disc were held fixed regardless of its mass[14]. Therefore, they
are not involved in the fluid-body coupling and this WNA shall show that they are
not required to capture the oscillations of the bodies. For the sake of conciseness, we
shall only display on figure 3 the structure of the unstable global mode underneath
the primary destabilization of the SV rise of a x = 3 disc with p = 0.99. In the
following, only this value of p shall be used for comparison with experiments and
DNS.

2 2
Yo — ———— N
‘ — -24
2 -_g
0 2 4 6 8 10 12
€T

Figure 3: Structure the global mode a disc Y = 3 at its threshold. The axial velocity (resp. axial
vorticity) is shown on the upper (resp. lower) part and normalized with respect to the inclination.

The alternate positive/negative disturbances shows the oscillating character of the
mode. This instability corresponds to an Hopf bifurcation at Ar. ~ 44.98 and
matches with the transition to flutter observed in DNS[2] at ArPNS ~ 44.8 and
experiments|7] at ArE¥F ~ 46. Since it is normalized so that ||@|| = 1, the same
order of magnitude for the levels of axial velocity denote a strong coupling between
the disc and the surrounding fluid. Bearing in minde that only the fluid variables
depend on the azimuthal direction, we write the first order solution as:

a1 = AT(T)qar /TN AT (T)qu-e TN e (9)
When Ar > Ar., it is the amplitudes A* that grows exponentially in this e-order
approximation, before saturating as we show below.
3.3 Higher orders: Landau amplitude equation
At order €2, the governing equations can be written as
0Bz + ' qa = F2(Qo, a1). (10)

The forcing on the right hand side is made of seven independant terms from three
sources: the effect of a small variation of Ar, the interactions of (qa+ + c.c.) with
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itself and at last the interactions between (qa+ + c.c.) and (qa- + c.c.). Solving the
linear system (10) for each contribution of the forcing results in a solution of the
form [9]:

a2z = Q5+ |ATqarar + A PQa-a—
+A+A_*(A]A+A7*62w + A+A_qA+A— PNt 4 e
+A+2qA+A+62i9+2i)\it + AfQ(AlA_A_€7210+2i)\¢t +cc. (11)

The problem at order €3 is once again an inhomogeneous linear system with a forcing
F3(Qo,q1,q2). However, F3 contains terms which go as ~ e+t Such terms
are known as resonant forcing because they are exciting the unstable global modes
of the fluid+disc system which could then experience resonance. In order to avoid
these secular responses and solve the expansion at the third order, we use the Fred-
holm alternative and impose compatibility conditions. That is, the resonant forcing
terms must be orthogonal to the kernel (modes) of the adjoint operator of the lin-
earized operator (0, %+ .<7). This condition leads to the following system of complex
amplitude equations (or normal form):

dA* 1 dA*

dr € dt
Where o is the exponential growth rate in the linear regime, while p and v are
coefficients which depend on the normalization of the global modes and express the
intensity of the interactions causing the nonlinear saturation. This is the classical
normal form for a Hopf bifurcation. It has two non trivial solutions: the rotating
wave (RW) involving only one spiral mode and the standing wave (SW) corre-
sponding the superimposition of both counter-rotating modes qa+ and qa-. RW is
super(sub)-critical if p,, > 0(< 0) and stable (i.e observed in experiments) if p, < v;.
SW is super(sub)-critical if (u, + ) > 0(< 0) and is the observed solution when
vy < ;. The magnitude and the frequency (Strouhal number) of the limit cycles of
these solutions read:

= 0 AT — pAE|AE]? — vAE| AT (12)

Or

At gy =
Alsw =/,

Stsw = Sto + €0; — |Alsw (i + vi) (13)

o,
‘Ai‘RW = € — StRW = Sto + EQUZ' — ’A‘Rw(,uz) (14)
Where Sty = \id/(27Up). In terms of trajectory, while RW and SW respectively
correspond to an helical and a Zig-Zag path. The coefficients of (12) have been
computed for discs of different thickness, A denoting the inclination of the disc.

3.3.1 Case 1l: x =3, p=0.99

The vertical rise is linearly unstable at Ar.; = 44.98 via a Hopf bifurcation and we
obtain o1 = 69.62 4 i39.873, u; = 11.02 +i0.084 and vy = 6.11 4 i7.703. Therefore,
according to the aforementioned criteria the branch SW will be selected at Ar.; in
agreement with DNS and experimental data where the flutter motion is observed
for Ar = 45. More quantitatively, figure 4(a) shows that the prediction given by
Eq. (13) correctly matches the amplitude of the disc inclination in the ZZ regime.
Regarding the frequency of the flutter, we empirically find that experimental and
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numerical data are best approached by Stz which is a modified expression of Sty
obtained by replacing in that of Eq. (14) the amplitude |A|zw by |A|sw. Figure
4(a) shows that the amplitude of oscillations predicted by the WNA is still accurate
for Ar where the assumption € < 1 fails, contrary to the frequency shown on figure
4(b) which renders a more expected picture.

35 T T T T T 0.2

0.18-

0.16/
= 20
< $0.14f
& 15

0.12

0.1r

0.08

20 60 80 100 120

Figure 4: Case of a thin cylinder y = 3. The open circles are from experiments[8] and
the filled squares from DNS [2]. (a) Inclination: the solid (dashed) line corresponds to
& = 2|A|sw (® = |A|grw). (b) Frequency of the limit cycle: the solid line corresponds to
Strw (see text) while the dashed line is Stgyy .

3.3.2 Case 1l: x =6, p=10.99

The primary instability occurs at Ar. = 41.78 through a Hopf bifurcation and the
coefficients of the normal form are o, = 70.07 + i26.97, py = 11.57 — i8.603 and
vy = 14.54417.17. This implies that the RW is the stable branch in agreement with
experimental observation by Fernandes et al. who reported that for the disc x = 6,
there is a transition at Ar ~ 43 to an helical regime which then leads to the flutter
motion at higher Ar[8]. Note that in practice, neither is the ZZ perfectly planar
nor the helical path an exact circular helix. Therefore, one segregates between these
regimes by defining the ratio n = Z/g of the amplitudes of the horizontal body
displacements such that 7 = 0 (resp. n = 1) for the plane ZZ (resp. circular helix).
The red line in figure 5(a) shows the experimental limit 7, ~ 0.7 at Ar, ~ 54
between a rather spiral path close to Ar. and a rather planar ZZ far from it. The
WNA proves again here to be valid since the branch |A|gw and Stry capture well
the experimental and numerical amplitude and the frequency of the oscillations
in the vicinity of the threshold. Last, note that despite being unstable, the SW
branch provides rather good prediction for the ZZ regime undergone by the disc for
Ar > Ar;. However, we find that in this range, Stry fits unexpectedly better than
Stsw the reported frequency up to Ar ~ 70. These results are still unexplained at
this stage of our investigations.

3.3.3 Towards a unique law for the flutter of finite thickness discs

For thin cylinders of aspect ratio x > 8 initially in the SV regime, the flutter motion
is observed after at least intermediate two bifurcations|2, 4]. However, though the
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Figure 5: Case of a thin cylinder y = 6. The open circles are from experiments[8] and
the filled squares from DNS [4]. (a) Inclination: the solid (dashed) line corresponds to
® = |Algw (P = 2|A|lsw). The red dos-dashed line separates the spiral and flutter
regimes. (b) Frequency of the limit cycle: the solid (dashed) line corresponds to Strw

(StSW).

transition sequence is different, Fernandes et al. evidenced for x € [2,10] that
once the ZZ is reached, it could be characterized by one single empirical law for
its amplitude and another one for the frequency (see figures 18-20 in [8]). For this
matter, some quantities must be rescaled. Specifically, St is replaced by St* =
St(2/Cp)/?>x~1/? and Ar by the control parameter Re* = V,d/v where V,, is the
maximum velocity of the recirculation bubble in the lee of the disc. Re* has the
advantage of yielding a x-independant threshold for the transition SV-to-ZZ, due
to the fact that Re* = 0.62(1 + x ' Re,,) where Re,, is the Reynolds number based
on the time-average settling/rise body velocity[8]. Moreover, since Ar ~ 0.34Re,,
for the whole range of x < 10 as shown in[8], we are able to relate Ar to Re* and
compare our WNA prediction to experimental data. Figure 6(a) and (b) respectively
show the |A|sw and Stgy branches for y =2 and y = 3.

0.15

+ 3
30F o+ . &t f
+ _ o
250+ P T By 0
o Gt 01 (A %
20r 8 B
oS+ P * ©
e =) x 4 o a * x
x & Ju ! “ o
£ o

:,‘E ox =2 -~ X =2
Z X=3 “ 4 xX=3
& 15¢ ax=6 « X=6
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+y =10 +y =10
5t —SW,_» —MF,_,
& . L e ‘ ‘ —SWy—s A b 4 ‘ ‘ ‘ =MFy—s
o 80 100 120 e 140 160 180 200 o 80 100 120 e 140 160 180 200
€ €

(a) (b)

Figure 6: (a)Inclination |®|sy and (b)Strouhal Stpy as function of Re*. The symbols
for x < 10 are from experiments[8] and those at y = 10* from DNS[2]. The red (green)
line is the WNA model for x = 3 (x2)

The WNA applied to both discs provide a good estimation of the amplitude and the
frequency of oscillations in the flutter regime for y < 10. The fact that the branches
do not superimpose may imply that even the choice of Re* as the control parameter
does not allow to completely get rid of the aspect ratio. This idea is supported by
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the non-negligeable scatter of the experimental data.

The flutter motion of thin cylinders at moderate Reynolds number is thus a super-
critical Hopf bifurcation which obeys a unique law ® = Pj(Re* — Re¥)'/? for its
inclination and St* = 0.103 4+ S;(Re* — Re’) where P;,S; and S, are constant. We
obtain 7 = 3.86&P; = 0.049 for x = 2 and S; = 4.89&P; = 0.061 for xy = 3
in agreement with PEXF = (0.058 obtained by a best-fit of experimental datal8].
However, this behavior fails for x — oo as illustrated here for an extremelety thin
disk x = 10%. This failure has a two-fold explanation. On one hand, the ZZ of an
infinitely thin disc has a subcritical nature [2, 4] for p = 0.99 and can thus exhibit
large amplitudes before the linear stability threshold as seen on figure 6 (a). On
the other hand, the expression St* ~ (Cpx)~'/? goes to zero when Y — oo given
that Cp ~ O(1). Therefore, it is inconsistent with the flutter of a disc which is
a high-frequency unsteady motion. This suggests the existence of a cut-off aspect
ratio between 10 and 10* below which the transition to ZZ is supercritical and the
frequency obeys St* ~ 0.1.

4 Conclusions

We dealt in this study with the stability of a buoyancy-driven thin cylinder of as-
pect ratio y, initially in a steady vertical motion. We carried out a weakly nonlinear
analysis (WNA) of this configuration derived for control parameters in the vicin-
ity of criticality, where the coupled fluid+disc system is linearly unstable. It was
found that for x < 8, the SV regime becomes unstable at an almost constant thre-
hold Ar. and bifurcates via a Hopf bifurcation to the ZZ regime except for y = 6
where an helical motion is undergone in a small range of Ar > Ar. before leading
eventually leading to the ZZ. Although the route to the flutter is more complex for
thinner cylinders, it was shown that a unique law A ~ (Re* — Re*) and St* ~ 0.1
which is the signature of supercritical Hopf bifurcation characterizes well the ZZ
oscillations of bodies with y < 10, Re* being a Reynolds built on the recirculation-
eddy maximum velocity. Systematic comparisons with experiments and DNS have
proved that the amplitude and the frequency (Strouhal) of the flutter motion are
accurately predicted by a third order weakly nonlinear expansion which leads to
a complex Landau equation. The failure of the approach for extremely thin discs
suggests the existence of a cut-off value x; between 10 and 10* beyond which the
unique laws are no more valid. We aim in future investigations to determine y
with more precision. All the results presented here were obtained for p = 0.99.
Therefore, a next step will be to modify the inertia of the disc. More precisely, since
codimension-two bifurcation points were observed for higher masses[14], we plan to
tackle the steady/Hopf and Hopf/Hopf mode interactions in the vicinity of that kind
of points. This would generalize such similar work recently performed on the wake
of fixed discs and spheres[3, 5].
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