Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization

Romain Deveaud 1 Florian Boudin 2
2 TALN
LINA - Laboratoire d'Informatique de Nantes Atlantique
Abstract : In this paper we describe our participation in the INEX 2013 Tweet Contextualization track and present our contributions. Our ap- proach is the same as last year, and is composed of three main com- ponents: preprocessing, Wikipedia articles retrieval and multi-document summarization. We however took advantage of a larger use of hashtags in the topics and used them to enhance the retrieval of relevant Wikipedia articles. We also took advantage of the training examples from last year which allowed us to learn the weights of each sentence selection feature. Two of our submitted runs achieved the two best informativeness results, while our generated contexts where almost as readable as those of the most readable system.
Type de document :
Communication dans un congrès
INitiative for the Evaluation of XML Retrieval (INEX), Dec 2013, Valence, Spain. pp.n/a, 2013
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00917956
Contributeur : Florian Boudin <>
Soumis le : jeudi 12 décembre 2013 - 16:47:24
Dernière modification le : jeudi 5 avril 2018 - 10:37:00
Document(s) archivé(s) le : vendredi 14 mars 2014 - 11:30:34

Fichier

CLEF2013wn-INEX-DeveaudEt2013....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00917956, version 1

Collections

Citation

Romain Deveaud, Florian Boudin. Effective Tweet Contextualization with Hashtags Performance Prediction and Multi-Document Summarization. INitiative for the Evaluation of XML Retrieval (INEX), Dec 2013, Valence, Spain. pp.n/a, 2013. 〈hal-00917956〉

Partager

Métriques

Consultations de la notice

476

Téléchargements de fichiers

271