N

N

An improved SAEM algorithm for maximum likelihood
estimation in mixtures of non linear mixed effects
models
Marc Lavielle, Cyprien Mbogning

» To cite this version:

Marc Lavielle, Cyprien Mbogning. An improved SAEM algorithm for maximum likelihood estimation
in mixtures of non linear mixed effects models. Statistics and Computing, 2014, 24 (5), pp.693-707.
10.1007/s11222-013-9396-2 . hal-00916817

HAL Id: hal-00916817
https://hal.science/hal-00916817
Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00916817
https://hal.archives-ouvertes.fr

Statistics and Computing manuscript No.
(will be inserted by the editor)

An improved SAEM algorithm for maximum likelihood
estimation in mixtures of non linear mixed effects models.

Marc Lavielle - Cyprien Mbogning

Received: date / Accepted: date

Abstract We propose a new methodology for maxi-
mum likelihood estimation in mixtures of non linear
mixed effects models (NLMEM). Such mixtures of mod-
els include mixtures of distributions, mixtures of struc-
tural models and mixtures of residual error models.
Since the individual parameters inside the NLMEM
are not observed, we propose to combine the EM al-
gorithm usually used for mixtures models when the
mixture structure concerns an observed variable, with
the Stochastic Approximation EM (SAEM) algorithm,
which is known to be suitable for maximum likelihood
estimation in NLMEM and also has nice theoretical
properties. The main advantage of this hybrid proce-
dure is to avoid a simulation step of unknown group
labels required by a “full” version of SAEM. The result-
ing MSAEM (Mixture SAEM) algorithm is now imple-
mented in the MONOLIX software. Several criteria for
classification of subjects and estimation of individual
parameters are also proposed. Numerical experiments
on simulated data show that MSAEM performs well in
a general framework of mixtures of NLMEM. Indeed,
MSAEM provides an estimator close to the maximum
likelihood estimator in very few iterations and is robust
with regard to initialization. An application to pharma-
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cokinetic (PK) data demonstrates the potential of the
method for practical applications.
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1 Introduction

Mixed effects models are frequently used for modeling
longitudinal data when data is obtained from different
individuals originating from a same population. Indeed,
these models allow to describe both the within subject
variability (the variability within each individual pro-
file) and the between subject variability (the variability
of the individual parameters). One complicating fac-
tor arises when the data is obtained from a population
with some underlying heterogeneity. If we assume that
the population consists of several homogeneous sub-
populations, a straightforward extension of the mixed
effects model is a finite mixture of mixed effects models.

Different types of mixtures of mixed effects mod-
els are considered in the literature, with different esti-
mation algorithms appropriate to each situation. Miz-
tures of distributions assume that non-observed indi-
vidual parameters come from different sub-populations.
Such models are considered for instance in (Frithwirth-
Schnatter 2006; De la Cruz, Quintana, and Marshall
2008). A linear mixed-effects model with heterogene-
ity in the random-effects is considered in (Verbeke and
Lesaffre 1996) and a EM algorithm is proposed for max-
imizing the observed likelihood. The same model is used
by (Proust and Jacqmin-Gadda 2005) but the MLE
is obtained with the Marquardt algorithm. (Ketchum,
Best, and Ramakrishnan 2012) propose to extend this
model to a within-subject mixture model for analyzing
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heart rate variability. The distribution of the residual
errors is also a mixture in this model. (Ng, McLachlan,
Wang, Ben-Tovim, and Ng 2006) consider normal mix-
tures in linear mixed effects models for clustering cor-
related gene-expression profiles. In these different mix-
tures of mixed effects models, extensions of the EM al-
gorithm can be derived for computing the MLE since all
these models are linear. Extensions to non linear mod-
els are much less frequent, mainly due to the fact that
the maximization of the observed likelihood is complex.
(Hou, Li, Zhang, Huang, and Wu 2008) propose a non
linear mixed-effect mixture model for functional map-
ping of dynamic traits. They use a linearization approx-
imation method by using the first-order Taylor expan-
sion to approximate the non linear expectation func-
tion (Lindstrom and Bates 1990). (Wang, Schumitzky,
and D’Argenio 2007; Wang, Schumitzky, and D’Argenio
2009) propose a Monte Carlo EM (MCEM) algorithm
with importance sampling to deal with the intractable
E step of the EM algorithm in non linear mixtures and
avoid any model linearization.

In a non linear mixed effects model, the heterogene-
ity of the structural model cannot be adequately ex-
plained just by the inter-patient variability of certain
parameters. It is therefore necessary to introduce a di-
versity of the structural models themselves (Lavielle,
Mesa, Chatel, and Vermeulen 2010). Between-subject
model mixtures assume that there exist sub-populations
of individuals. Here, various structural models describe
the response of the different sub-populations, and each
subject belongs to one sub-population. One can imagine
for example different structural models for responders,
non responders and partial responders to a given treat-
ment. Within-subject model mixtures assume that there
exist sub-populations (of cells, viruses, etc.) within each
patient. Again, differing structural models describe the
response of the different sub-populations, but the pro-
portions of each sub-population depend on the patient.

Our goal is to propose new methods for maximum
likelihood estimation (MLE) of population parameters
in a very general context of mixtures of NLMEM, in-
cluding mixture of distributions and mixture of struc-
tural models. In the classical NLMEM framework, (Kuhn
and Lavielle 2005) proposed the SAEM (Stochastic Ap-
proximation EM) algorithm which incorporates a sim-
ulation step of the unobserved individual parameters
and a stochastic approximation of several statistics be-
tween the E and M steps. SAEM is recognized as a
very powerful tool for NLMEM, known to accurately
estimate population parameters and also to have good
theoretical properties (Delyon, Lavielle, and Moulines
1999; Kuhn and Lavielle 2004; Allassonniére, Kuhn, and
Trouvé 2010). On the other hand, the EM algorithm is

widely used for "standard" mixtures models, i.e. when
the mixture structure concerns some observed variable.
We refer the reader to (Roeder and Wasserman 1997;
McLachland and Peel 2000; Frithwirth-Schnatter 2006)
and references therein for more details about mixture
models. We then propose to combine the EM algo-
rithm for mixture models, with the SAEM algorithm
for NLMEM. The use of the resulting Mixed SAEM
(MSAEM) instead of the SAEM itself avoids a simu-
lation step of the unobserved group labels and signif-
icantly improves the results in term of stability and
accuracy.

Section 2 of this paper describes the non linear mixed
effects model for continuous data and different mix-
tures of models, including mixtures of distributions,
mixtures of residual error models and mixtures of struc-
tural models. Section 3 is devoted to a description of the
proposed MSAEM algorithm for maximum likelihood
estimation in a mixture of NLMEM. Several numeri-

cal examples in Section 4 illustrate the performance of
MSAEM.

2 Mixtures in non linear mixed-effects models
2.1 Non linear mixed-effects model

Mixed-effects models can address a wide class of data
including continuous, count, categorical and time-to-
event data. We will focus here on continuous data mod-
els. Modelling such data leads to using NLMEM as
hierarchical models. At a first level, each individual
has its own parametric regression model, known as the
structural model, each identically defined up to a set
of unknown individual parameters. At a second level,
each set of individual parameters is assumed to be ran-
domly drawn from some unknown population distribu-
tion. The model can then be defined as follow:

Yij = [ (®ij; i) + 9 (%455 00, ) €35 (1)
where

e y;; € R denotes the j-th observation for the ¢-th
individual, 1 <i < N and 1 < j < n;. y; = (yi5) is
the vector of observations for the i-th individual.

e N is the number of individuals and n; the number
of observations for the i-th individual.

o 1;; denotes a vector of regression variables (for lon-
gitudinal data, = will generally be time).

e ; is the d-vector of individual parameters of indi-
vidual i. We assume that all the ¢; are drawn from
the same population distribution. We limit ourselves
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to Gaussian models of the form:
i = h(p,ci) + 27, (2)

where h is a function which describes the covariate
model: p a vector of fixed-effects and ¢; a vector of
known covariates, 1; ~;.;.qa N (0, I4) a vector of stan-
dardized random effects and X' the inter-individual
variance-covariance matrix.

e c;; ~ N(0,1) denote the residual errors and are
independent of individual parameters ;.

e f is a function defining the structural model and
g a function defining the (possibly heteroscedastic)
residual error model.

e 0 = (u, X&) is the complete set of population pa-
rameters.

The model is therefore completely defined by the joint
probability distribution of the observations y = (y;)
and the individual parameters ¢ = (;) which admits
this hierarchical decomposition:

P(Yi, pi; 0) = p(yilwi; O)p(pis 0) (3)

Many problems are related with the use of these
models: estimation of the population parameters 6 with
their standard errors, calculation of the likelihood of the
observations for model selection or hypothesis testing
purpose, estimation of the individual parameters (¢;),...

When the model is linear, i.e. when the observations
(yij) are Normally distributed, then the likelihood of
the observations can be computed in a closed form and
the EM algorithm can be used for maximizing this like-
lihood. On the other hand, when the structural model
is not a linear function of the random effects and/or
when the residual error model is not a linear Gaussian
model, then the model of the observations is not linear
anymore and the likelihood cannot be maximized using
EM.

An alternative method consists of taking a first or-
der Taylor expansion of the model function around the
conditional modes of the random effects (Lindstrom and
Bates 1990). Others have proposed the use of Gaussian
quadrature rules (Davidian and Giltinan 1993).

A complete methodology for NLMEM is implemented
in the MONOLIX software, including the Stochastic Ap-

proximation of EM (SAEM) proposed in (Delyon, Lavielle,

and Moulines 1999). This algorithm is becoming a ref-
erence method for maximum likelihood estimation in
NLMEM. Indeed, it is now implemented in NONMEM
(software widely used for PKPD applications), Matlab
(nlmefitsa.m) and R (saemix package).

2.2 Mixtures of mixed effects models

The simplest way to model a finite mixture model is to
introduce a label sequence (z;;1 < z; < N) that takes
its values in {1,2,..., M} and is such that z; = m if
subject ¢ belongs to sub-population m.

In some situations, the label sequence (z;) is known
and can then be used as a categorical covariate in the
model. We will address in the following the more chal-
lenging situation where this sequence is unknown. We
therefore consider that (z;) is a sequence of indepen-
dent random variables taking values in {1,2,...,M}.
A simple model might assume that the (z;) are identi-
cally distributed: for m=1,..., M,

P(z; =m) = mpm. (4)

But more complex models deserve to be considered for
practical applications, for instance, the introduction of
covariates for defining each individual’s probabilities.

In its most general form, a mixture of mixed effects
models assumes that there exist M joint distributions
P1,. .., par and M vector of parameters 64, .. .60 such
that the joint distribution defined in (3) now decom-
poses into

M
Pi 0i30) = > P (20 = m) pon (i, 0, Om) ()

m=1

The mixture can then concern the distribution of
the individual parameters p(yp;;6) and/or the condi-
tional distribution of the observations p(y;|p:;6) . Let
us see some examples of such mixtures models:

i) A latency structure can be introduced at the level
of the individual parameters assuming a Gaussian mix-
ture model. This mixture model assumes that there ex-

ist puq, X1, ..., par, 2 such that
M
Y; = Z ]121'=77Lh‘(,uma Ci) + 27;1/2?7@- (6)
m=1

The shape of the mixture depends on the structure
of the variance-covariance matrices X,,. In the stan-
dard case of Gaussian mixture models, h(tin,, ¢;) = tim.
Then, p (i30) = Yooy Tm® (4 fim, Zim), Where & de-
notes the d-dimensional Gaussian probability distribu-
tion function (pdf). We refer to (Banfield and Raftery
1993) or (Celeux and Govaert 1995) for a detailed pre-
sentation of such models. Gaussian mixture models are
widely used for supervised and unsupervised classifica-
tion in many applications. But even if the model itself
is standard, its use in the context of NLMEM requires
particular attention since the individual parameters are
not observed. In other words, we aim to create clusters
of non observed parameters.
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i1) A latency structure can also be introduced at the
level of the conditional distribution of the observations

(yij):
Yij = [ (%ij; 0i» 2i) + 9 (ij; 0i5 2, §) €ij- (7)

A mixture of conditional distributions therefore reduces
to a mixture of residual errors and/or a mixture of
structural models.

A mixture of residual error models has the general
form:

M
g (xuv Pi, Zu Z ]121—7ngm Liji Pis grn) . (8)
m=1

As an example, a mixture of constant error models as-
sumes that
M
vij = f(@ij; o) + D Daimmémeij- (9)
m=1
Between subject model mixtures (BSMM) assume
that the structural model is a mixture of M different
structural models:

Z ]lzl—mfm @i) . (10)

4/7“21

This model is relevant for example to distinguish dif-
ferent types of response to the same treatment. See
(Lavielle, Mesa, Chatel, and Vermeulen 2010) for an
application to HIV where different viral kinetics mod-
els are used to classify treated patients into responders,
non-responders and rebounders on the basis of their vi-
ral load profiles.

2.3 Log-likelihood of mixture models

The completed data is (y, ¢, z), where y and (¢, z) are
respectively the observed and unobserved data. The
complete log-pdf for subject 7 is

C(Yi, @i, 2i30) = (11)

anl —m

b, (yia ©i; 0m) being the log-pdf of the pair of variables
(i» i) in group G, defined by

m (Ui 0i;0m) +10gP (z; =m)),

G ={4,1 <i < N such that z; = m}.

In the case of a mixture of Gaussian distributions
as described in (6), 0., = (&, pom, Xm) and the complete
log-pdf becomes

Loy (Y, 005 0m) = L (Yil0i; &) + L (@i foms X)) -

For the mixture of structural models (BSMM) defined
in ( )7 Om = (ghua 2) and

Crn (Yir 033 0m) = L (Yilpis &) + £ (053 1, X)),

while for the mixture or error models defined in (8),
Om = (&, p, X)) and

Lo (Yi 033 0m) = £ (yilpis Em) + £ (pis p, ) -

The pdf associated to any combination of these different
mixture models is straightforward to derive.

In the following, for the sake of clarity, we will make
the assumption that the pdf ¢, belongs to the expo-
nential family: there exists a function ¢ of 6, and a
minimal sufficient statistic T'(y;, ¢;) such that

U (Y, 035 0m) = (T (Y, ©i) s Om) — Y (Om) - (12)

According to (4), if we assume that m,, = P (z, = m),
then

< zi=m Z yz,% s > + IOg(Wm) - (em)> .

Then, the pdf of (y, ¢, z) also belongs to the exponential
family:

E(y,gp,z;@) = <S(y790’z)79> _¢(9)’ (14)
where
S(y,p,2) = (15)

n n
(Z Loimmy 3 LT (yirpi) ;1 <m < M) :
=1 =1

We will take advantage of this representation for our
description of the proposed stochastic EM-like algo-
rithms. Indeed, computing any (conditional) expecta-
tion of 4 (y,p, z;0) reduces to computing the (condi-
tional) expectation of S (y, ¢, 2).

Some statistical properties of the MLE for NLMEM
can be derived (Online Resource).

3 Algorithms proposed for maximum likelihood
estimation

We aim to estimate 6 by maximizing the likelihood of
the observations (y;). As mentioned above, we are in the
general framework of incomplete data where EM-type
algorithms are known to be efficient.

First of all, we assume that the complete likelihood
L(0;y, ¢, z) can be maximized when the complete data
is observed. In other words, there exists a function 0
such that for any (y, ¢, 2),

0(S(y, ¢, 2)) = argmax {(S (y,,2).0) =¥ (0)} . (16)
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3.1 The EM algorithm

Since ¢ and z are not observed, the EM algorithm re-
places S(y, ¢, z) by its conditional expectation (Demp-
ster, Laird, and Rubin 1977). Then, given some ini-
tial value 09, iteration k of the EM algorithm updates
6%*=1 into 6% with the two following steps:

e E-step : evaluate the quantity
sk =E (S (y,,2) y; 6’(’“1)) :

e M-step: with respect to (16), compute

00 — d(sy).

Unfortunately, in the framework of non linear mixed-
effects models, there is no explicit expression for the E-
step since the relationship between observations y and
individual parameters ¢ is non linear. Several authors
have proposed stochastic versions of the EM algorithm
which attempt to solve the problem. (Wei and Tanner
1990) proposed the Monte Carlo EM (MCEM) algo-
rithm in which the E-step is replaced by a Monte Carlo
approximation based on a large number of independent
simulations of the missing data. In recent work, (Wang,
Schumitzky, and D’Argenio 2007; Wang, Schumitzky,
and D’Argenio 2009) also proposed an MCEM algo-
rithm with importance sampling.

Another EM type algorithm for mixtures of mixed
effects models was proposed in (De la Cruz, Quintana,
and Marshall 2008). They use an extensive Monte-Carlo
integration procedure during the E step for computing
the marginal distribution of the observations in each
cluster. Unfortunately, the computational effort required
by this method is prohibitive for most practical applica-
tion since the structural model f needs to be evaluated
T times (here T is the Monte-Carlo size), at each itera-
tion of the algorithm and for each patient. Furthermore,
the authors claim that their procedure converges if con-
ditions that ensure the convergence of EM are fulfilled.
This is true in “theory”, with an infinite Monte-Carlo
size, but nothing can be said in realistic conditions.

We will see in the next sections that the proposed
modified SAEM algorithm offers appealing practical and
theoretical properties. Indeed, convergence of the algo-
rithm is demonstrated under general conditions. More-
over it is extremely fast and can be used for complex
problems.

3.2 The SAEM algorithm

The stochastic approximation version of the EM al-
gorithm, proposed by (Delyon, Lavielle, and Moulines

1999), consists of replacing the E-step by a stochas-
tic approximation obtained using simulated data. Given
some initial value #(9) iteration k of SAEM consists of
the three following steps:

e S-step: draw (z(k),go(k)) with the conditional dis-
tribution p (2, p|y, 0¢~1).
e AE-step: update s; according to

Sk = Sk—1 + Ok (S (y,go(k),z(k)) — sk,l) ) (17)

e M-step: compute 8% = 4(sy,).

Here, (dx) is a decreasing sequence. In the case of
NLMEM, the simulation step cannot be directly per-
formed, and a MCMC procedure can be used ((Kuhn
and Lavielle 2004)). Convergence of the parameter se-
quence (%)) toward a (local) maximum of the like-
lihood is ensured under general conditions (Delyon,
Lavielle, and Moulines 1999; Kuhn and Lavielle 2004;
Allassonniére, Kuhn, and Trouvé 2010).

This version of SAEM for mixtures of NLMEM was
first implemented in the MONOLIX software. We have
noticed that the algorithm tends to become unstable
and produces poor estimations when the problem be-
comes difficult: small sample sizes, heteroscedastic mod-
els, overlap between mixture components, etc. This poor
behavior is mainly due to the fact that the S-step of
SAEM requires simulation of the categorical variable
(2;), which then impacts the M-step, leading to infer-
ence problems. Due to the well known label-switching
phenomenon, as pointed out by (Celeux, Hurn, and
Robert 2000), uniform ergodicity of the Markov chain
((p(k), z(k)) is no longer guaranteed and convergence of
SAEM can not be ensured. We also have noticed that
some components of the mixture can disappear during
iterations, mainly when these components are not well
separated. In the next section, we propose a method-
ology that avoids simulation of these latent categorical
covariates and exhibits improved practical behavior.

3.3 The MSAEM algorithm

We have seen that the E-step of the EM algorithm re-
quires evaluating E (S (y, ¢, 2) |y; 9(’“*1)). We have the
following relation:

E (S (y,0,2) ly;0) =E(E (S (y,,2) [y, ,0) ly;0) .
Then, by setting
H (y,,0) =E(S(y,,2) ly,,0),

the E-step of the EM algorithm at iteration k reduces
to calculating

E (H (y,(p,e(k_l)) |y;9(k_1)) .

(18)
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The underlying idea in this operation is to use a condi-
tional distribution that only depends on ¢ and y but not
the latent categorical covariates z. Then, ¢ becomes the
only unobserved variable of the model. Nevertheless,
introduction of the latent categorical variable remains
very useful since it allows one to derive a manageable
expression of the complete likelihood. Then, iteration k
of MSAEM requires us to calculate H (y, ©; 9(]“_1)):

e S-step: draw ¢(*) with the conditional distribution
p (ly,00D).

o E-step: compute H (y k), glk— 1)) using (18).

e AE-step: update s accordlng to

Sk = Sk_1 + Ok (H (y go(k),(g(k_l)) _ sk_1> . (19)

e M-step : compute 0% = d(sy,).

The simulation step of the MSAEM algorithm at
iteration k consists of a few MCMC iterations with
p(ply; 0F)) as the stationary distribution. More pre-
cisely, we propose to use the Hasting-Metropolis algo-
rithm, with various proposed kernels. Here, the N sub-
jects are assumed to be independent and the same pro-

cedure is used for the IV subjects, i.e., fori =1,2,..., N.

A first kernel consists in using the marginal distri-
bution p(p;) for generating a candidate $. Then, the
probability of acceptance, i.e., the probability to move
from ¢; to ¢f, reduces to

p (yles; 0%) )

p (ylpi; 60)

Another possible kernel is the random walk:
PN (=1 2), where 2 is a diagonal matrix
which is adaptively adjusted in order to reach a given
acceptance rate (typically 0.3). Different directions can
be used by setting different elements of the diagonal
of 2 to 0 during iteration. Here, the probability of
acceptance is

(SO'U @Z) - mln (17

c. g(k)
a((pu@f):mln (171)(11/790179 ))

p (v, i 00)

Practical implementation of this algorithm requires to
compute p(¢;) and p(y|e;). Depending on the type
of mixture model considered (mixture of distributions,
mixture of structural models, mixture of residual error
models,etc.), these two terms can easily be computed
in a closed form.

Certain parameters need to be well chosen to im-
prove the convergence of the algorithm, such as the to-
tal number of iterations K, the number of iterations of
the MCMC procedure during the S-step, and the step-
size sequence (Jx). We remark that selection of the var-
ious settings of the algorithm is not a problem related

to the particular extension of SAEM to mixture models
considered here, but a general issue for practical imple-
mentation of SAEM. We will give some leads, but an
in-depth discussion of the choice of these settings is be-
yond the scope of the paper.

Sequence (Jy) has a strong impact on the speed of
convergence of the algorithm. Fast convergence towards
a neighborhood of the solution is obtained with a con-
stant sequence d; = 1 during the first K; iterations of
SAEM. Then, the M-step of SAEM reduces to maxi-
mizing the complete log-likelihood: for k =1,..., K,

ok —= arg max L (0; Y, gp(k)> .

Thus, if we consider a mixture model, the M-step con-
sists of estimating the components of the mixtures using
the observations y and the simulated individual param-
eters ©®). An EM can be used at iteration k for com-
puting %), After converging to a neighborhood of the
MLE, a decreasing step-size sequence (dy) will permit
almost sure convergence of the algorithm to a maximum
of the observed likelihood (Ounline Resource). For the
numerical experiments presented below, (dy) decreases
as 1/k.

When the number of subjects N is small, conver-
gence of the algorithm can be improved by combining
the stochastic approximation with Monte-Carlo, i.e., by
running R Markov chains in parallel instead of only
one chain. The S-step now consists of generating R se-
quences &1 B and (19) becomes

R
1
Sk = Skp_1 + Ok <R ZH (y7¢(k,r)79(k—l)) _ 5k1> _
r=1

For the numerical experiments, we have set R = 5 with
N =100.

3.4 Some examples
8.4.1 Miztures of Normal distributions

We consider here that the distributions of the individual
parameters is a mixture of normal distributions

©i ~iid Z 7Tm Mm7 m)

Let P = (p17"'7pM)7 Ho= (:ula"'a/-l/M) and X =
(X1,...,2). Then, the conditional log-pdf of the in-

dividual parameters ¢ is given by
M

1 N
Clplzsm D) = =5 D TLam

i=1 m=1

1 N M
5 Z Z ]121—’% (Y253 Mm)lz;zl((pz - ,um)a

i=1 m=1

m (dlog(27) + log | X))
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and the log-pdf of the labels z is:

N M
= Z Z 1.,—m log(mm). (20)

i=1 m=1

On the other hand, we consider a proportional residual
model:

Yij = [ (®ig, i) + Ef (@ij, i) €i-

Then, the conditional log-pdf of the observations y is
given by

Ntot

= D108 (6 (@i 1)) -

4,7
2
252 Z <y2] xz]ir:;l’)sol)) 7 (21)

where Ny = vazl n; is the total number of observa-
tions. Sufficient statistics of the complete model are:

C(yle, z:€) = log (2r)

S = (S1,m,52,m:S3,m, ;1 <m < M),

where
N

Stn =D Lamm (22)
i=1
N

SQ,m = Z ]lz,-=m§0i (23)
i=1
N
N n;

Sy = ZZ Wi/ f (i 00) — 1), (25)

i=1 j=1

and the function @ is given by:

Fn(S) = S1m/N (26)

,[Lm(S) = S2,m/SLm (27)

= SS,m S2,m SZ,m '

Zm(S) B Sl,m B (Sl,m) <Sl,m> (28)
b(S) = \/S4/Niot.- (29)

At iteration k, SAEM requires using simulated se-
quences p(®) and z(*) for updating the set of statistics
defined in (22-25) using the stochastic approximation
scheme defined in (17).

Instead, at iteration k, MSAEM consists of us-
ing only the simulated sequence ¢*) for computing
H(y,go;ﬁ(kfl)) using (18), and updating the set of
statistics using the stochastic approximation scheme
defined in (19).

The minimal sufficient statistic here is 1,,—,,, and
the E-step of iteration k of MSAEM reduces to the
evaluation of:

’Vz(]:r)z _E< zZ;i=m |yz7 e(k 1)>
( m|y1 (k) a(k 1))

(Z —m|@(k) (k—1) E(k—l)’p(k—l))

LA TR >

%ﬂ_ﬁk—l) (o) =D Eﬁ’“—l))’

where v is the pdf of a Gaussian vector.
The zero-one variable 1,,—,, present in expressions
when applying SAEM is replaced at iteration k in

MSAEM by the probability ]P’(zi :m|<p§k),9(k_1)),
and permits us to tackle the problems mentioned be-
fore. Then, the A-step of MSAEM reduces to:

Sk1,m = Sk—1,1,m + Ok (Z%msk 11m>

=1

N
k k
Sk,2,m = Sk—1,2,m + O (Z Yomel? - 8k1,2,m>

i=1

( ’
Sk,3,m = Sk—1,3,m + Ok ( E m Y Sk—1,3,m

B3\ 2
)> — Sk—1,4

Parameters are then updated using the function 6 de-
fined above.

(
ij Lij,
Sk = Sk—1,4 + O E (yjf( K ](kf’

ij Tij, ;)

3.4.2 Miztures of residual error models

Suppose now a proportional residual model in each group,
given by 9m (m2]7 Pis 5) = gmf (xij7 Lpi)a Where§ = (617 LR
Then, the conditional log-pdf of the observations in
group G, is now:

 (yil i3 )=€(yz-|<m;£m)
Z (yz] ifzg,%))Q
xzja‘Fz)

s
- Z log (ém f (w5, 1)) — 5 log (27),
j=1

On the other hand, if we assume the same normal dis-
tribution for all the individual parameters, then the log-
pdf of the individual parameters is

1 _
iz, X) = =5 (i =) Z70 (@i = )

d 1
— 5 log (2m) — 5 log (17)).
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Here, the E-step requires computing;:
105 = (sl 0,680

m(/@cfng( Lo, <k71>>

Y
k— k—
> e (il e vy
r=

In the A-step, we approximate several minimal suffi-
cient statistics as follows:

(k)
Yi;m T Sk—1,i,1,m

Sk2 = Sg—1,2 + Ok (Z QPz('k) _ sk1,2>
i=1

Sk,3 = Sk—1,m + Ok (Z oM ! B _ Sk—l,m)
=1

Sk, 4,m = Sk—1,4,m

(k) Yij — Im (xija @z('k))
ZV o (xij7(p7(:k)>

In the M-step, we update parameters according to:

Sk,ilm = Sk—1,i,1,m + Ok (

2

— Sk—1,4,m

N
W(k) = izsklinl
m N 14s Yy
=1

(k) _ Sk,2
a N
!/
(k) _ Sk3 <Skx2) (Sﬂ)
N N N
f(k) o Sk,4,m

B
Zi:l NiSk1,i,m

3.5 Estimation of the individual parameters

For a given set of population parameters 6, we use each
individual conditional distribution p(z;, ¢;|y;, ) for es-
timating the latent variable z; and the vector of indi-
vidual parameters ;.

A first estimate is the Maximum a Posteriori (MAP)
which is obtained by maximizing this joint conditional
distribution with respect to (z;, ¢;):

(23, 1) = arg max p(zi, pily, 0) (30)

Such a maximization is not straightforward and re-
quires performing a two-step procedure:
1) For m=1,..., M compute

Pim = argmaxp(yili, z; = m; O)p(pilzi = m;0)  (31)

2) Compute

m; = arg max p(Yi, Pim|zi = m; 0)P (2, = m; 0) (32)

and set

(23, @) = (1vis Pin, ) - (33)

Another estimate of the latent covariate z; maxi-
mizes the marginal conditional distribution:

2, = argmax P (z; = mly;; 0), (34)
where

P(Zi = m‘yue) = ]E(P (Zl = mlyivwiaa) |y1a9)

=K (7i,m|yia 9) ) (35)
which can be estimated using the stochastic approxi-
mation procedure described in Sections and

Instead of maximizing the conditional distribution
for estimating ¢;, an alternative is to compute the con-
ditional mean ¢; = E (¢;]y;; 0).

We remark that

E (pilyi; 0) Z E (@ilyi, zi = m; 0) P (2; = m|y;; 0) .

Then, estimating the conditional expectation of the in-
dividual parameters requires estimating the conditional
probabilities P (z; = m|y;; 6) and the conditional means
in each group, E (v;i|y:, zi = m;6).

We have seen above how to estimate P (z; = m|y;; 0)
using stochastic approximation. On the other hand,
E (¢;|yi, zi = m;0) can easily be estimated by MCMC.

4 Numerical experiments

A simulation study was conducted to evaluate the per-
formance of the proposed algorithm for estimating the
parameters of the different non linear mixed-effects mix-
ture models. We used a pharmacokinetics (PK) model
for these numerical experiments. The vector of individ-
ual PK parameters of subject i is

= (log(kai),log(V;),log(Cl)) , (36)

where V; is the volume of distribution, Cl; the clear-
ance and ka; the absorption rate constant of the sub-
ject. We define ¢; as the set of log-parameters, since
log-normal distributions will be used for describing the
inter-subject variability of these PK parameters.

The structural model is an oral administration PK
model with one compartment, first order absorption
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and linear elimination. The plasmatic concentration of
drug predicted by the model is:

Dik‘ai

_Clig,
fleiyaij) = —F———— (e vi " e"““f‘xiﬂ') :
Vi (kai — S5

Vi
(37)

Here, (x;;) are the measurement times of subject ¢, and
D; the dose administered at time 0. We use the same
amount of drug D; = 1000mg and the same measure-
ment times for the N subjects (times are in hours):

z; = (0.25, 1, 2.5, 6, 16, 26, 72)

For each of the four examples considered, L = 100
datasets were simulated and the parameters were esti-
mated using MSAEM. Let 6* be the parameter used
for the simulation and 6, be the estimated parameter
obtained with the ¢-th simulated dataset. The following
quantities were computed:

— the relative estimation errors (in %): for 1 < ¢ < L,
0 —
0*

— The relative root mean square error (in %):

\/% Z(%:l(éi - 9*)2
0*

*

x 100.

REE, =

RRMSE = x 100.

4.1 Mixtures of distributions

We assume a proportional error model for the observed
concentration:

Yij = f (piswij) + £f (@i, i) €45, (38)
where g;; ~ N (0,1) and { = 0.2. We assume that ka;
and C1; are log-normally distributed:

log (ka;) ~ N (,ul,af) ,

log (Cll) ~ N (,LL3,(T§) s

with 1 = 1, u3 = 4, 0 = 0.04 and o2 = 0.04. Mixtures
of distributions will be used for V. Scenarios 1 and 2
assume a homoscedastic model:

log (Vi) ~ ;N (Mzhdg) + paN (M22,0§) )

with the following numerical values

S1: po = 0.7, pg1 = 30, pae = 70, 03 = 0.04,

S2: pg = 0.7, por = 30, po2 = 50, J% = 0.04.

The difference between the two means is significantly

reduced in Scenario 2 compared to Scenario 1.
Scenario 3 assumes an heteroscedastic model:

log (Vi) ~ piN (p21,031) + peN (p22,03,)
with

S3: po = 0.7, p21 = 30, pgee = 50, a%l = 0.08, 052 =
0.04.

Fig. 1 displays the probability distribution functions
of log(V;) under the three scenarios. The distributions
are well separated in Scenario 1. The overlapping be-
tween the two distributions increases in Scenario 2 since
the two distributions become closer. Increasing one of
the variances in Scenario 3 further increases this over-
lapping.

Fig. 2 displays the distribution of the observed con-
centration in both groups under each scenario. Medians
and 90% confidence intervals are used to summarize
these distributions.

Results obtained with the MSAEM algorithm are
displayed in Fig. 3. We show the distribution of the
relative estimation errors (REE,) for each parameter
under each scenario, with N = 100 and N = 1000 sub-
jects. Relative root mean square errors are presented
in Table I. These are compared with those obtained in
differing situations, i.e., when ¢ and/or z are known.

Results obtained with scenario S1 are very similar
whether or not z is known. Indeed, the two components
of the mixture are well separated here, and the condi-
tional probabilities of belonging to each class are close
to 0 or 1. The results deteriorate with scenarios S2 and
S3 for the parameters of the mixture which are much
less-well estimated when z is unknown. It is also inter-
esting to notice that the other model parameters are
little affected by knowledge of z.

Lastly, we remark that the differences when individ-
ual parameters (p;) are known or not have little impact
on the estimation of the parameters of the mixture. The
most difficult parameter to estimate when (p;) is un-
known is the variance of log(ka;). This is a purely statis-
tical issue related to the quantity of information in the
data, and independent of the mixture model: few obser-
vations are available during the absorption phase which
makes it difficult to estimate the absorption rate con-
stant ka. The boxplots confirm that parameters are bet-
ter estimated with N = 1000, but even with N = 100,
we do not see any bias in the estimation of the parame-
ters, with the exception perhaps of the variances of the
mixture in scenario S3, which are poorly estimated.

Fig. 4 provides a graphical illustration of the proba-
bility of correct classification in both groups for the dif-
ferent scenarios and N = 1000 subjects. For each of the
K =100 runs, the probabilities of correct classification
were ranked in increasing order and the median of these
K = 100 ranked sequences was computed. The same
procedure was then repeated, but assuming that the in-
dividual parameters (y;) were known. Fig.4 compares
these two medians. As expected, for each scenario, the
probabilities of correct classification are greater when
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Fig. 1: Probability distribution function of the log-volume, (a) scenario S1: 1 = 30, pg = 70, 03, = 035 = 0.04;
(b) scenario S2: iy = 30, ug = 50, 03, = 035 = 0.04; (c) scenario S3: 1 = 30, pe = 50, 03, = 0.08 , 03, = 0.04.
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Fig. 2: Median (solid

line) and 90% prediction interval (dotted line) of the observed concentration in different

groups: (a~c) group 1, (d-f) group 2, and with different scenarios:

(a)&(d) S1, (b)&(e) S2, (c)&(f).
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Fig. 3: Empirical distribution of the relative estimation errors (REE,) with different sample sizes: (a-c) N = 100,
(d-f) N = 1000, and different scenarios: (a)&(d) S1, (b)&(e) S2, (c)&(f) S3. The estimated parameters are 1: po;
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N=100 N=1000

0 0" z known  z unknown z known z unknown z known  z unknown z known z unknown

¢ known ¢ known ¢ unknown ¢ unknown || ¢ known ¢ known @ unknown ¢ unknown
P2 0.7 6.74 6.95 6.07 6.87 2.04 2.17 2.19 2.21
“1 1 1.98 1.98 2.67 2.96 0.68 0.68 1.07 0.93
H21 30 3.30 3.95 4.25 5.35 1.24 1.40 1.50 1.73
122 70 2.26 2.42 2.57 3.19 0.75 0.78 0.91 0.95
n3 4 1.75 1.75 2.13 2.24 0.62 0.62 0.69 0.65
o2 0.04 15.80 15.80 38.93 40.46 4.18 4.18 12.80 11.44
o3 0.04 13.48 13.99 14.67 18.91 5.51 5.95 5.09 5.38
o3 0.04 13.88 13.88 19.93 16.07 4.45 4.45 6.93 6.38
b 0.20 2.58 2.58 3.87 4.00 0.91 0.91 1.23 1.22

Table 1 Relative Root Mean Square Errors (RRMSE) in % of parameter estimates in Scenario 1, with N = 100 and N = 1000,
assuming that ¢ and/or z are known or unknown.

N=100 N=1000
0 0" z known  z unknown z known z unknown z known  z unknown z known z unknown
¢ known ¢ known ¢ unknown ¢ unknown || ¢ known ¢ known ¢ unknown ¢ unknown
P2 0.7 7.06 10.84 6.07 12.34 1.88 3.06 2.19 3.73
“1 1 1.92 1.92 2.64 2.98 0.56 0.56 1.11 1.08
H21 30 3.83 6.32 4.15 7.91 1.13 1.83 1.53 2.33
w22 50 2.63 3.83 2.45 4.91 0.71 1.04 0.93 1.65
“3 4 1.91 1.91 2.15 2.29 0.59 0.59 0.69 0.66
o2 0.04 14.23 14.23 37.85 38.09 4.48 4.48 12.48 11.34
o3 0.04 15.56 21.64 19.57 26.54 5.02 6.62 5.17 9.37
o2 0.04 13.91 13.91 14.92 16.11 4.64 4.64 6.57 5.18
b 0.20 2.59 2.59 3.88 4.08 0.84 0.84 1.23 1.28

Table 2 Relative Root Mean Square Errors (RRMSE) in % of parameter estimates in Scenario 2, with N = 100 and N = 1000,
assuming that ¢ and/or z are known or unknown.

N=100 N=1000
0 0" z known  z unknown z known z unknown z known  z unknown z known z unknown
¢ known o known @ unknown ¢ unknown || ¢ known @ known @ unknown ¢ unknown
D2 0.7 0.00 18.81 6.06 32.17 0.00 10.76 2.18 17.30
1 1 1.95 1.95 2.55 3.27 0.60 0.60 1.05 1.02
H21 30 6.01 15.77 5.75 22.80 1.62 8.34 1.98 12.12
22 50 2.56 4.80 2.44 7.85 0.74 1.96 0.92 2.61
“3 4 1.85 1.85 2.16 2.24 0.63 0.63 0.70 0.74
o2  0.04 14.15 14.15 35.05 36.90 4.58 4.58 12.52 9.94
o2, 0.08 24.62 53.45 30.95 64.80 8.18 24.84 11.14 34.71
055 0.04 23.93 34.14 21.22 60.60 7.34 13.01 7.49 20.75
U% 0.04 15.77 15.77 14.64 15.20 4.02 4.02 5.32 5.96
b 0.20 3.07 3.07 3.82 3.30 0.78 0.78 1.27 1.17

Table 3 Relative Root Mean Square Errors (RRMSE) in % of parameter estimates in Scenario 3, with N = 100 and N = 1000,
assuming that ¢ and/or z are known or unknown.

(p;) is known, but it is interesting to notice that the
difference is relatively small. As already mentioned, the
difficulty of the estimation problem increases from Sce-
nario 1 to Scenario 3. We can see that the difficulty of
the classification problem also increases: it is obviously
much more difficult to correctly classify the subjects
under Scenario 3, where there is a lot of overlap, than
under Scenario 1, where the two distributions are well
separated.

4.2 Mixtures of error models

We still use the same PK model, but assuming now a
mixture of residual error models:

if zi =1, wij = f(pizij) + &S (0is i) €ij,
if 2, =2, wij = f(pi,ziz) + & f (0isTij) €35,
with P (z; = 1) = 0.3 and & = 0.1, & = 0.2.
We assume that ka;, V; and CI; are log-normally
distributed:

log (ka;) ~ N (p1,0%)
log (Vi) ~ N (p2, 03)
log (Cl;) ~ N (p3, 03) .
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Fig. 4: Medians of the probabilities of correct classification ranked in increasing order in both groups for the
different scenarios and N = 1000 subjects: (a) scenario S1 ; (b) scenario S2 ; (c¢) scenario S3. Group 1 is in
blue (left) and group 2 in green (right). Solid line: the individual parameters (¢;) are unknown ; dotted line: the

individual parameters (p;) are known.

with gy = 1, po = 30, p3 = 4, 07 = 0.04, 02 = 0.04 and
o3 = 0.04.

Numerical results are summarized in Table 4. The
comments we can make about these results are similar
to those for the previous examples: the fact that z is
known or unknown affects mainly the estimation of pa-
rameters of the mixture model: proportions p; and ps
and standard deviations &; and &s.

5 An application to PK data

A drug X was orally administered to 199 patients. Each
patients received one dose per day, during a period that
varies between 1 and 14 days. The pharmacokinetics
model that was shown to better describe the process
is a 2 compartments model with linear absorption and
linear elimination:

Ad (t) = _kaAd (t)

Ac(t) = kaAd(t) - k‘eAc(t) — klgAc(t) + kglAp(t)
Ap(t) = k12 Ac(t) — ka1 Ay(t)

where Ay is the amount of drug in the depot compart-
ment, A. the amount in the central compartment and
Ap the amount in the peripheral compartment. There is
no drug in any compartment before the administration
of the drug: for any ¢t < 0, A4(t) = Ac(t) = Ap(t) =0.
If an amount D of drug is administrated at time 7, then
Ad(’7'+) = Ad(T_) + D.

The concentration of drug Cc = A./V is measured
in the central compartment, where V' is the volume of
the central compartment.

Here, the individual PK parameters (kq, V, ke, k12, k21)

are log-normally distributed. Then, the Gaussian vec-
tor ; is the vector of log-parameters. The variance-
covariance matrix of ¢; is assumed to be diagonal.

The measured log-concentration is assumed to be
normally distributed with a constant error model:

log(yi;) = log(Cel(tis; ¢i)) + agij.

We first used MONOLIX to fit this NLMEM to the
PK data. Observed concentration data from 4 patients
with their concentrations predicted by the model are
displayed Figure

We then used a mixture of two log-normal distribu-
tions for modelling the distribution of the PK parame-
ters. We used a forward strategy for selecting the best
mixture model: we first assumed that only one of the
five PK parameter distributions was a mixture of two
distributions and we compared the five possible models
with only one component modelled as a mixture. The
model with the highest likelihood value was selected (k.
was selected). We then looked for a second parameter
among the four remaining ones (k12 was selected), then
a third parameter among the three remaining ones (V'
was selected), and lastly the best combination of four
mixtures (k, was selected). We then used the BIC cri-
teria for comparing the six selected models, including
the model without any mixture component and the one
with all the parameters modelled with mixtures. All
the results are summarized Table 5. The final model
was a model assuming that the distributions of V', k.
and kq2 are mixtures of log-normal distributions. The
five estimated distributions of the five PK parameters
are displayed Figure

6 Discussion

There exist very few methods available for maximum
likelihood estimation in mixtures of non linear mixed
effects models. Methods implemented in the nlme R
package and in NONMEM are based on a linearization
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N=100 N=1000

0 0* z known  z unknown z known z unknown z known  z unknown z known z unknown
@ known ¢ known @ unknown ¢ unknown || ¢ known ¢ known ¢ unknown ¢ unknown

P2 0.3 6.73 11.76 6.06 20.97 2.01 2.93 2.18 4.80

“1 1 1.94 1.94 2.70 2.92 0.60 0.60 0.96 0.87

o 30 1.98 1.98 2.28 2.29 0.64 0.64 0.72 0.73

03 4 1.84 1.84 2.18 2.23 0.56 0.56 0.67 0.65

o2 0.04 15.94 15.94 26.00 36.91 4.67 4.67 10.66 9.33

o2 0.04 12.36 12.36 14.21 13.62 4.80 4.80 5.89 5.26

o3 0.04 15.38 15.38 15.23 16.07 4.74 4.74 4.95 4.57

b1 0.10 5.36 9.41 6.38 19.60 1.84 2.55 2.49 5.08

ba  0.20 3.17 4.05 4.28 14.35 0.96 1.14 1.30 1.97

Table 4 Relative Root Mean Square Errors (RRMSE) of parameter estimates in Scenario 3, with N = 100 and N = 1000,

assuming that ¢ and/or z are known or unknown.
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Fig. 5: Observed concentration data from 4 patients with their concentrations predicted by the model.

Parameters with a mixture distribution BIC

- 1586.4
ke 1559.4
(ke, k12) 1534.2
(ke, k12, V') 1372.2
(ke, k12, V, ka) 1376.4
(ke, k12, V, ka, ka1) 1391.4

Table 5 The six best models obtained for different number of mixture distributions and the corresponding Bayesian Infor-

mation Criteria.

of the likelihood. These methods are known to pose real
practical problems in several situations (bias, strong in-
fluence of the initial guess, poor convergence,...). More-
over the theoretical properties of the estimates obtained
with these methods are unknown in most situations.

Some EM-types methods were developed for mixed
models, including mixtures of NLMEM. These meth-
ods usually intend to approximate the E step of EM by
a Monte-Carlo integration. The MCEM algorithm uses
this Monte-Carlo integration for computing the condi-
tional distribution p(p|y;@) while the procedure pro-
posed in (De la Cruz, Quintana, and Marshall 2008)

aims to integrate the joint distribution p(y,y;0) for
computing the marginal distribution of y in each clus-
ter. These methods can be drastically time-consuming
when the structural model is complex, which is the case
for most PKPD applications for instance.

We have proposed an extension of the SAEM algo-
rithm for mixtures of mixed effects models. The model
is very general, including mixtures of distributions, mix-
tures of residual error models and mixtures of struc-
tural models. Convergence of MSAEM toward a (local)
maximum of the observed likelihood is obtained under
very general conditions. The algorithm is fast mainly
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Fig. 6: Probability distribution functions of the five PK parameters. Distributions of V', k. and ki are mixtures
of log-normal distributions ; distributions of k, and ks; are log-normal distributions.

because the Monte-Carlo integration is replaced by a

ported by contributions from Academic and SME part-

Stochastic Approximation. Indeed, only one Markov Chain ners.

needs to be drawn since the integration is performed
over the iterations of the algorithm and not over the
chains. Moreover, it exhibits very little sensitivity to
the initial value, which is a very valuable property for
practical applications. This algorithm for mixtures of
NLMEM is now implemented in the MONOLIX soft-
ware. MONOLIX is free for academic research and for
students. Several demo examples including mixtures of
NLMEM are available with the software.

Several extensions of the proposed method would
be of particular interest. First, an optimal strategy for
model building would be very useful, for selecting both
the mixture structure and the number of clusters. Some
specific tools for model assessment are also required
for demonstrating that the selected model is capable
to generate data similar to the observed ones. Lastly,
we have only considered here the Maximum Likelihood
approach for these models. Estimation in a Bayesian
framework can also be done using posterior simulation
via Markov chain Monte Carlo (MCMC) methods, see
for example (Frithwirth-Schnatter 2006; De la Cruz,
Quintana, and Marshall 2008).
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