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Summary 

The molecular mechanism underlying G1/S checkpoint bypass in mouse embryonic 

stem (ES) cells remains unknown. DNA damage blocks S-phase entry by inhibiting 

the CDK2 kinase through destruction of its activator, the Cdc25A phosphatase. We 

observed high Cdc25A levels in G1 that persist even after DNA damage in mouse ES 

cells. We also found higher expression of Dub3, a deubiquitylase that controls 

Cdc25A protein abundance. Moreover, we demonstrate that the Dub3 gene is a 

direct target of Esrrb, a key transcription factor of the self-renewal machinery. We 

show that Dub3 expression is strongly downregulated during neural conversion and 

precedes Cdc25A destabilization, while forced Dub3 expression in ES cells becomes 

lethal upon differentiation, concomitant to cell cycle remodelling and lineage 

commitment. Finally, knockdown of either Dub3 or Cdc25A induced spontaneous 

differentiation of ES cells. Altogether, these findings couple the self-renewal 

machinery to cell cycle control through a deubiquitylase in ES cells. 
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Highlights (85 character per point) 

 

 Cdc25A persistence upon DNA damage sustains G1/S checkpoint bypass in ES 

cells 

 Dub3 is rapidly downregulated during neural conversion and Cdc25A is 

destabilized 

 Dub3 is a target of Esrrb, a key transcription factor of the self-renewal machinery 

 Dub3 or Cdc25A knockdown induces heterogeneous differentiation in the 

presence of LIF 
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Introduction 

Eukaryotic cells have developed checkpoints to block cell cycle progression upon 

DNA damage or replication stress (Ciccia and Elledge, 2010). Two distinct pathways 

pertain to the G1/S checkpoint by directly reducing CDK2 activity: a) rapid destruction 

of the Cdc25A phosphatase resulting in increased CDK2 phosphorylation (Mailand et 

al., 2000; Sexl et al., 1999), and b) a slower, p53-mediated, transcriptional response 

that activates expression of, amongst others, the potent CDK2 inhibitor p21 

(Brugarolas et al., 1995; Dulic et al., 1994). Importantly, rapid p21 degradation 

observed after exposure to low UV doses may be important for optimal DNA repair 

(Bendjennat et al., 2003; Chen et al., 2004; Lee et al., 2006), while inhibition of CDK2 

activity following Cdc25A degradation is sufficient for cell cycle arrest (Bendjennat et 

al., 2003). Cdc25A protein levels are tightly regulated by two E3 ubiquitin ligases, the 

Anaphase Promoting Complex/Cyclosome (APC/CCdh1) as cells exit mitosis, and the 

Skp1-Cullin1-Fbox (SCFTrCP) during both S and G2 phase and following DNA 

damage (Busino et al., 2003; Donzelli et al., 2002).  

Compared to somatic cells, mouse embryonic stem (ES) cells appear to have 

a relaxed G1/S checkpoint (Aladjem et al., 1998; Hong and Stambrook, 2004; 

Koledova et al., 2010; Prost et al., 1998). The molecular mechanism underlying this 

feature remains unclear. Moreover, mouse ES cell cycle has remarkably short G1 

and G2 phases, with little S phase length variation (Ballabeni et al., 2011; Savatier et 

al., 2002; White et al., 2005). This is underpinned by high CDK2/Cyclin E activity 

(Stead et al., 2002) and reduced APC/C activity leading to limited oscillation in 

substrate levels (Ballabeni et al., 2011). Interestingly, knockdown of CDK2 protein 

was shown to increase G1 length although DNA damage-dependent degradation of 

Cdc25A was reported not to affect CDK2 activity, nor to induce a G1 arrest 
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(Koledova et al., 2010; Neganova et al., 2011; Neganova et al., 2009). In contrast, a 

previous study reported that Cdc25A is not degraded upon -irradiation in ES cells 

(Hong and Stambrook, 2004). 

 Maintenance of pluripotency depends upon expression of pluripotency genes 

under the combinatorial control of a regulatory network of transcription factors such 

as Nanog, Sox2 and Oct4 (Festuccia et al., 2013; van den Berg et al., 2008). 

Differentiation of ES cell induces cell cycle remodelling, including appearance of 

longer G1 and G2 phases, but how this regulation is achieved is unknown. Moreover, 

how the pluripotency regulatory network impacts onto cell cycle control remains 

obscure. Aside from its well-known role in somatic cell cycle, very little is known 

about Cdc25A function in ES cells. In human ES cells, Cdc25A expression was 

shown to be regulated by Nanog (Zhang et al., 2009). A recent report shows that 

Nanog knockdown in mouse ES cells results in G1/S transition delay by an unknown 

mechanism (Chen et al., 2012). Equally, the role of p53 in ES cells G1/S DNA 

damage checkpoint still remains controversial (Aladjem et al., 1998; Sabapathy et al., 

1997; Solozobova et al., 2009). Despite its high abundance, p53 has been proposed 

to be inactive in ES cells due to a predominant cytoplasmic distribution (Solozobova 

et al., 2009). 

In this study we sought to understand the molecular grounds for inefficient 

G1/S DNA damage checkpoint in ES cells. We found that high Cdc25A abundance 

sustains G1/S checkpoint bypass in ES cells. We show that Cdc25A abundance 

depends upon high expression of Dub3, a deubiquitylase that fine-tunes Cdc25A 

steady-state levels (Pereg et al., 2010). Moreover, we identify Dub3 as a novel target 

gene of estrogen-related-receptor-b (Esrrb), a key transcription factor of the self-

renewal machinery (Festuccia et al., 2012; Ivanova et al., 2006; Martello et al., 2012). 
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Strikingly, we observed acute downregulation of Dub3 expression upon differentiation 

and its knockdown induced spontaneous ES cell differentiation. In sum, our data 

interconnect the self-renewal machinery to cell cycle control and highlight the 

importance of deubiquitylases in stem cell and developmental biology.  
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Results 

ES cells arrest in early S phase upon induction of DNA damage in G1 

Circumstantial data suggest an impaired G1/S checkpoint in ES cells (Hong and 

Stambrook, 2004; Koledova et al., 2010; Aladjem et al., 1998; Prost et al., 1998). We 

observed that irradiation of ES cells with increasing doses of UV light induced a 

decrease in the number of G1 cells (Figure S1A). Time course analysis with a single 

UV dose (6 J/m2) resulted in cell cycle delay at the G1/S boundary (Figure S1B, t=2). 

We pulse-labelled nocodazole synchronized cells with BrdU (a nucleotide analogue) 

to allow exact distinction between late G1 (BrdU-negative) and early S-phase (BrdU-

positive, Figure 1A). While analysis of total DNA content suggests a G1 arrest 

(Figure 1B), analysis of BrdU incorporation revealed that both untreated (Mock) and 

UV-irradiated cells (+ UV) entered S phase with very similar kinetics (Figure 1C-D). In 

contrast, synchronized mouse embryonic fibroblasts (NIH-3t3), which are Oct4-

negative differentiated cells (Figure S1C), did not progress to S phase after UV 

irradiation in G1 (Figure 1E), in line with the presence of a stringent G1/S checkpoint.  

We noticed that upon UV irradiation, BrdU incorporation was slightly reduced 

compared to mock-irradiated cells, confirmed by calculating the mean fluorescent 

signal of BrdU-positive cells (Figure 1E, green boxes), and suggesting DNA 

synthesis slowdown in very early S phase. Analysis of chromatin-bound proteins 

shows that recruitment of both Cdc45 and DNA polymerase-two replication fork-

associated factors, was considerably reduced upon UV irradiation, but not abolished 

(Figure S1D, compare lanes 2-4 with 5-7), suggesting activation of the S phase 

checkpoint preventing late replication origins firing (Karnani and Dutta, 2011). 

Consistent with this possibility, phosphorylated H2AX histone variant (H2AX), an 

ATR substrate, accumulated onto chromatin. Moreover UV-induced DNA damage did 
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not significantly change the transcriptional program driven by E2F transcription 

factors required for S phase entry, as monitored by Cyclin A2 and E1 production 

(Figure S1E). We also observed UV damage-dependent p53 phosphorylation on 

chromatin (Figure S2A), and transactivation (amongst other) of p21 gene expression 

(Figure S2B-D), demonstrating a functional p53 transcriptional response, in line with 

a previous study (Solozobova et al., 2009).  

 

Persistent high levels of Cdc25A in ES cells sustain G1/S checkpoint bypass 

Cdc25A functions as a critical CDK2 regulator by removing an inhibitory 

phosphorylation on Tyrosine 15 (CDK2Y15P) that in turn regulates S phase 

progression. We compared Cdc25A and CDK2 protein abundance between ES cells 

and NIH-3t3 cells (Figure 2A). Strikingly, while CDK2 abundance is marginally higher 

in ES cells, the levels of Cdc25A in asynchronously growing ES cells are exceedingly 

high compared to NIH-3t3 cells. As expected, upon UV-induced DNA damage, 

Cdc25A was degraded in both cell lines (Figure 2A). However, one hour after 

irradiation, Cdc25A level remained about 4-fold higher in ES cells compared to 

unperturbed NIH-3t3 cells (lanes 1 and 7 and Figure S3A), indicating that high levels 

of Cdc25A persist even upon UV-induced DNA damage. Since cell cycle distribution 

of asynchronously growing ES and NIH-3t3 cells is different, we analysed Cdc25A 

abundance in synchronized cells (Figure 2B). We observed that in G1, ES cells 

contained about 7-fold more Cdc25A protein than NIH-3t3 cells (lanes 3 and 11 and 

Figure S3B). Proteolysis of Cdc25A mediated by the E3 ubiquitin ligase APCCdh1 

occurs at mitotic exit (Donzelli et al., 2002). Polyubiquitylated forms appear as a 

polypeptide ladder of higher molecular weight than the unmodified protein. In NIH-3t3 

cells synchronized in G1 and S phase, we could observe such ladders by western 
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blot using a specific Cdc25A antibody (Figure 2B, dark). Strikingly, in synchronized 

ES cells, these isoforms are much less abundant, whereas levels of unmodified 

Cdc25A are 7-fold higher than in NIH-3t3 cells (Figure S3B). Cdc25A 

immunoprecipitation from either ES or NIH-3t3 cells cotransfected with GFP-Cdc25A 

and HA-tagged ubiquitin, confirmed the presence of much more Cdc25A 

polyubiquitylated forms in NIH-3t3 than in ES cells (Figure 2C), corroborating recent 

data (Buckley et al., 2012). 

Next we tested whether incomplete Cdc25A degradation may be due to 

impaired function of the ATR-Chk1 pathway. To this end, we treated cells with a 

Chk1 inhibitor and analyzed Cdc25A protein levels upon UV irradiation. In contrast to 

a previous report in which degradation of Cdc25A was not affected by both Chk1 and 

Chk2 inhibitors (Koledova et al., 2010), we observed that Cdc25A degradation in ES 

cells is entirely dependent on Chk1 activity (Figure 2D). One explanation for this 

discrepancy may be that we analysed Cdc25A protein turnover in presence of 

cycloheximide to inhibit translation, since it is known that Cdc25A abundance is also 

regulated at this level (Gautier et al., 2012).  

Treatment of asynchronously growing ES cells with roscovitine (a selective 

CDKs inhibitor) induced dose-dependent increase of G1 cells and reduced the 

fraction of S phase cells (Figure S3C), demonstrating that, similar to somatic cells, in 

ES cells CDK activity is necessary for the G1/S transition. Inhibitory CDK2Y15 

phosphorylation is mediated by Wee1 kinase and relieved through dephosphorylation 

by Cdc25A (Busino et al., 2004; Malumbres and Barbacid, 2001). We therefore 

analysed changes in protein level of Wee1, Cdc25A, and CDK2Y15P during G1/S 

transition in ES cells, which, according to BrdU uptake experiments, occurs between 

2-3 hours after nocodazole release (Figure 1C). Mitotic exit was monitored by histone 
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H3 phosphorylation at serine 10 (H3S10P), and S phase entry by H3 and Cyclin A 

production. Interestingly, Wee1 levels did not show significant cell cycle-dependent 

variations, while Cdc25A levels decreased and inversely correlated with CDK2Y15P 

abundance (Figure S3D-E), suggesting that in ES cells, cell cycle-dependent 

fluctuation of Cdc25A levels may specifically regulate CDK2Y15P.  

To further pinpoint the specific role of Cdc25A in the G1/S checkpoint, we 

examined whether interfering with Cdc25A levels by RNAi affects S-phase entry 

upon DNA damage (Figure S3F-G). To avoid undesired differentiation of ES cells 

due to G1 phase extension upon Cdc25A downregulation that would interfere with 

the interpretation of this experiment (see below and Figure 6E-F), knockdown was 

performed over a short period (24 hours). Interestingly, Cdc25A knockdown (Figure 

2E) resulted in a significant, UV-dependent, increase of BrdU-negative cells with 2N 

DNA content (Figure 2F) mirrored by increased CDK2Y15P levels (Figure 2E, compare 

lane 3 with lane 6 and Figure S3H). Importantly, the slight increase of CDK2Y15P 

levels between 2 and 4 hours after release (Figure 2E, lane 3), also observed in 

synchronized undamaged cells entering S-phase (Figure S3D), did not result in an 

apparent difference in S phase entry in mock and UV-treated cells transfected with 

control RNAi (Figure 2F). Altogether, these data show that ES cells contain high 

levels of Cdc25A and that its knockdown leads to a UV-dependent G1 delay. 

 

 

ES cells express high Dub3 deubiquitylase  

Elevated Cdc25A protein levels can be explained by increased gene expression, 

increased translation or reduced protein degradation. We analysed protein turnover 

in the presence of cycloheximide to inhibit de novo protein synthesis (Figure S4A-B). 
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Using this approach, we found a 3-fold longer half-life of Cdc25A in ES cells  (t1/2= 24 

min) compared to NIH-3t3 cells (t1/2= 8 min). Of note, since unsynchronized cells 

were used, we cannot exclude that the observed difference is partly due to distinct 

cell cycle distribution of both cell types. However, this data strongly suggests 

alterations in protein stability that, according to data shown in Figure 2B-C, might 

reflect differences between polyubiquitylation and ubiquitin removal by hydrolysation 

(deubiquitylation). To address this point, we compared gene expression of Cdc25A, 

Cdh1, -TrCP and that of the recently described Dub3 deubiquitylase (Pereg et al., 

2010), between ES and NIH-3t3 cells. Whereas mRNA levels of Cdc25A, Cdh1 and 

TrCP in ES cells hardly differ from NIH-3t3 cells, Dub3 mRNA level was 4-fold 

higher in ES cells (Figure 3A). Moreover, RNAi-mediated knockdown of Dub3 in ES 

cells (Figure 3B) did not affect Cdc25A mRNA level (Figure 3C) but resulted in 3-fold 

reduction of Cdc25A protein abundance (Figure 3D). These data are consistent with 

previous work in human cells (Pereg et al., 2010) and indicate that Dub3 function in 

regulating Cdc25A protein stability is analogous in mouse ES cells. In addition, we 

also observed a role of Dub3 in Cdc25A stability in unperturbed and damaged NIH-

3t3 cells (Figure S4C-D). Of note, GFP-tagged Dub3 shows an exclusive nuclear 

localization (Figure 3E) as previously observed for Cdc25A in ES cells (Koledova et 

al., 2010). Finally, to address the role of Cdh1 and -TrCP in regulating Cdc25A 

levels in ES cells, we performed RNAi-mediated knockdown experiments. In contrast 

to Dub3 knockdown neither Cdh1, nor -TrCP downregulation affected Cdc25A 

mRNA expression nor did significantly alter Cdc25A stability (Figure S4E-F). These 

observations are consistent with a previous study showing that APC/Cdh1 activity is 

attenuated in ES cells by high levels of the Emi1 inhibitor (Ballabeni et al., 2011). 
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Orphan receptor Esrrb regulates Dub3 gene expression  

Based on previously described consensus sequence for binding motifs of key 

transcription factors involved in reprogramming (Chen et al., 2008; Thomson et al., 

2011), we analyzed the proximal promoter (6 kb) of the Dub3 gene. Strikingly, while 

no Oct4, Nanog, Klf4, Smad1, Stat3, c-Myc nor n-Myc consensus sites could be 

detected, we originally (NCBI37/mm9) found up to seven estrogen-related-receptor-b 

(Esrrb) putative binding motifs (consensus: 5’-TNAAGGTCA-3’)(Deblois et al., 2009) 

and two Sox2 putative response elements (consensus: 5’-CATTGTT-3’). However 

the latest update of this genomic sequence (GRCm38/mm10) displays only three 

Esrrb sites (Figure 4A, Esrrb-RE). Esrrb is a nuclear receptor belonging to the 

superfamily of nuclear hormone receptors. Together with Sox2, it is part of the core 

self-renewal machinery (Festuccia et al., 2012; Ivanova et al., 2006; Martello et al., 

2012). Esrrb knockdown using a previously validated RNAi sequence (Feng et al., 

2009) resulted in significant decrease of endogenous Dub3 transcript level (Figure 

4B), to a similar extent than the previously described Esrrb target gene Nanog (van 

den Berg et al., 2008). Inversely, ectopic expression of Esrrb in ES cells, and not of 

its C-terminal truncated form (∆-Cter) lacking the activation function 2 (AF2) domain, 

led to significant increase in endogenous Dub3 mRNA level (Figure 4C). Moreover, 

treatment of ES cells with increasing dose of DY131, a previously described selective 

Esrrb and Esrrg agonist (Yu and Forman, 2005), boosted Dub3 gene expression and 

increased Cdc25A protein abundance without affecting Cdc25A transcript level 

(Figure S5A-B). Inversely, Esrrb knockdown resulted in a 40% decrease of DY131-

mediated Dub3 transcription (Figure S5C), while Sox2 knockdown using a previously 

published RNAi sequence (Walker et al., 2007) did not strongly affected Dub3 

expression, though slightly increased it (our unpublished observations).  
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Next we performed chromatin immunoprecipitation (ChIP) experiments to map 

Esrrb and Sox2 binding to Dub3 promoter in ES cells. To this end, we designed five 

primer pairs (Figure 4A, pp) separated by approximately 1kb to scan promoter 

occupancy by Esrrb and Sox2 within the 6kb upstream of the start codon (ATG+1). 

Sonication of chromatin resulted in fragments under 500 bp, limiting signal overlap 

between primers (Figure S5D). ChIP analysis with an anti-Esrrb antibody (Figure 

S5E) shows that Esrrb binds to the proximal Dub3 promoter in regions containing the 

three Esrrb consensus binding motifs (Figure 4D, pp 3-5), while no Esrrb binding was 

observed in an upstream region that does not contain Esrrb binding sites (pp 1-2). 

On the contrary, ChIP analysis with an anti-Sox2 antibody showed high enrichment 

only at one of the two consensus sites in the Dub3 promoter (Sox2-RE2), around 

primer pair 3, while in the region containing the second site (Sox2-RE1, pp4-5) Sox2 

was bound to much lower levels.  

To corroborate abovementioned ChIP data, we cloned the Dub3 proximal 

promoter (3,2 kb) and analyzed its transcriptional activity in a reporter assay using 

luciferase activity as readout. For this purpose we used cells that have very low 

expression of endogenous steroid receptors (CV1 cells). As anticipated, we observed 

strong induction of luciferase activity upon Esrrb expression in cells cotransfected 

with the 3.2 kb Dub3 promoter that contains all three Esrrb binding sites (Figure 4E, 

Esrrb, white bars) while only background activity was observed on a region of the 

Dub3 promoter (5’ far) devoid of Esrrb consensus binding sites (Esrrb, black bars). 

Similarly, expression of Esrrb ∆-Cter, resulted in basal promoter activity, comparable 

to that observed by expression of empty vector (EV, Figure 4E and S5F). 

Interestingly, we did not observe stimulation of luciferase activity upon expression of 

Sox2, but a small and significant repression of basal promoter activity (Figure 4E). 
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Importantly, mutation of the unique Esrrb binding site in a 1kb Dub3 genomic 

fragment decreased transcriptional activity (Figure 4F). Altogether these observations 

suggest that Dub3 is a direct Esrrb target gene, having a positive role in regulating 

transcription of the Dub3 gene, while Sox2 on its own is not sufficient to stimulate 

Dub3 transcription.  

 

Developmental regulation of Dub3 expression and Cdc25A stability 

Esrrb is a pluripotency factor highly expressed in ES cells that, unlike Sox2, is 

strongly downregulated upon ES differentiation (Percharde et al., 2012). Since Dub3 

is an Esrrb target, we analyzed expression of Dub3 during neural conversion of ES 

cells in vitro. Plating of ES cells in N2B27 culture medium triggers conversion into 

neuroepithelial precursors (Ying et al., 2003) microscopically visible as rosette 

conformations (Figure 5A, day 7). Loss of pluripotency was monitored by expression 

analysis of specific markers such as Oct4, Nanog, Klf4, and acquisition of neural 

identity was monitored by Nestin and Sox1 expression. Specificity was controlled by 

analysis of Sox7 expression, a well-established endoderm marker (Figure S6A-B). 

Importantly, Nestin was detectable in just about each individual cell of the 

differentiating population at day 6, indicating homogenous neural conversion. Acute 

(within 24 hours) decrease of Esrrb mRNA expression preceded in time a marked 

and dramatic decrease of Dub3 expression (Figure 5B). Expression of Sox2 also 

decreased after 24 hours, however of only 50% and increased afterwards. In 

contrast, neither Cdc25A nor Cdh1 or -TrCP transcript levels significantly changed 

during differentiation (Figure 5B, middle panel). Expression analysis of three other 

deubiquitylases implicated in Cdc25A stability, USP13, 29 and 48 (Pereg et al., 2010) 

revealed a decrease of only USP48 within 24 hours after differentiation (Figure 5B, 
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lower panel) that mirrored Sox2 expression. Importantly, we could not find any 

consensus Esrrb binding sites within the USP48 proximal promoter. In contrast, 

USP13 gene expression did not significantly change during differentiation, while 

USP29 expression strongly increased during neural conversion. 

To analyze Dub3 protein levels we raised a specific antibody recognizing, as 

expected, a 60 kDa polypeptide in SDS-PAGE (Figure S6C-D). Dub3 protein levels 

dropped massively very early during differentiation, much earlier than Oct4, finely 

correlating with Dub3 mRNA levels (Figure 5C). Strikingly, lineage commitment 

between days 2-3, as monitored by Sox1 expression, led to a marked and continuous 

decrease of Cdc25A protein level, while the protein level of the two other Cdc25 

family members, Cdc25B and Cdc25C, remained constant during differentiation 

(Figure S6E). We further analyzed expression of two additional Dub3 substrates 

during differentiation, RhoA (de la Vega et al., 2011) and Suds3 (Ramakrishna et al., 

2011), and observed no significant variations in gene expression (Figure S6F), nor in 

protein stability (Figure 5C), although a small decrease in Suds3 level was seen at 

day 7 after differentiation. Finally, we found very low expression of Esrrg (another 

member of the subfamily) in ES cells that further increased during differentiation 

(Figure S6F), corroborating the specificity of Dub3 gene regulation by Esrrb. 

Altogether, these findings suggest that reduced Cdc25A protein abundance during 

neural differentiation is likely governed at the post-translational level.  

While retaining self-renewal properties, neural stem cells (NSC) are 

multipotent stem cells derived from ES cells, isolated and amplified at day 7 following 

differentiation. Quantification of Cdc25A abundance revealed 8-fold more Cdc25A in 

asynchronously growing ES cells compared to NSCs (Figure 5D). Similar to NIH-3t3 

cells, we detected very low Dub3 transcript levels in NSCs (Figure S6G). Finally, we 
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isolated and analyzed three different genomic fragments of the Dub3 promoter and 

compared basal transcriptional activity in NIH-3t3 versus ES cells. We observed 

strong transcriptional activity of all three promoter sequences in ES cells, about 10-

fold higher than in NIH-3t3 cells (Figure 5E), further corroborating mRNA expression 

during differentiation (Figure 5B).  

 

Dub3 expression is important for maintenance of pluripotency and cell cycle 

remodelling during differentiation 

Stable transfection of Esrrb in ES cells has been shown to be sufficient to sustain 

pluripotency in absence of LIF (Zhang et al., 2008). We therefore addressed whether 

forced Dub3 expression in ES cells could substitute Essrb function in maintaining 

pluripotency in absence of LIF. To this end, we generated a stable ES cell line, 

expanded from a single ES colony, expressing eGFP-Dub3 under control of a 

constitutive strong promoter (Figure 6A). Remarkably, while Pereg et al. (2012) 

reported that high Dub3 expression induces S-G2/M arrest in human somatic U2OS 

cells, ES cells overexpressing Dub3 could be propagated without significant 

differences in cell cycle distribution compared to a control cell line, indicating that in 

ES cells constitutive Dub3 expression is not toxic (Figure S7A-B). Removal of LIF led 

to an apparent highly similar morphological differentiation program in both cell-lines, 

but unexpectedly resulted in massive death of eGFP-Dub3-expressing ES cells two 

days after, microscopically visible as detached cells with retracted nuclei (Figure 6B, 

arrows). Of note, five days following LIF withdrawal, hardly any cell survived in the 

eGFP-Dub3 expressing cell-line. Caspase-3 activity, essential for proper 

differentiation (Fujita et al., 2008), was higher at days 3-4 in eGFP-Dub3 expressing 

cells compared to empty vector, strongly indicative of apoptosis (Figure 6C and 
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Figure S7C). Finally, whereas mRNA and protein levels of pluripotency and 

differentiation markers were highly comparable in both cell lines, we observed 

elevated expression of the apoptotic marker Noxa at day two and afterwards in 

eGFP-Dub3 expressing cells (Figure S7D).  

Remarkably, 2-3 days upon LIF removal, a strong reduction of eGFP-Dub3 

protein level was evident (Figure 6C), suggesting an additional control at post-

transcriptional level, very likely proteolysis, occurring during differentiation. A similar 

phenotype was observed upon N2B27-mediated neural conversion, and a similar 

result was also observed with a ES cell line expressing HA N-terminal-tagged Dub3 

(Figure S7E-F), ruling out a non-specific effect of the GFP tag or of the differentiation 

protocol used. Onset of apoptosis, was equally observed by FACS analysis (Figure 

6D), that showed the presence of subdiploid (less than 2N) cell debris starting from 

day three during differentiation and being predominant at day four. Interestingly, 

appearance of the sub-G1 cell population in ES cells expressing eGFP-Dub3 was 

concomitant to cell lineage commitment, as monitored by Sox1 and Nestin 

expression (Figure S6A) and cell cycle remodelling which started at day three in the 

control cell line (empty vector), resulting in lengthening of the G1 phase (Figure 6D). 

Altogether these results strongly suggest that high Dub3 expression is lethal during 

differentiation at the time when cell cycle remodelling occurs.  

Finally we analyzed the effect of Dub3 or Cdc25A knockdown in ES cells. 

Interestingly, prolonged (7 days) RNAi mediated Dub3 knockdown, resulted in an 

increase of alkaline phosphatase (AP)-negative colonies, as well as heterogeneous 

morphological differentiation of ES cells even in the presence of LIF, suggesting that 

Dub3 expression is important for maintenance of pluripotency (Fig 6E-F). A very 

similar result was also observed upon prolonged Cdc25A knockdown. In sum, these 
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data couple the self-renewal machinery of ES cells through Essrb to the master cell 

cycle regulator Cdc25A and remodelling of the cell cycle during differentiation 

through modulation of Dub3 expression. 
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Discussion 

In this study we dissected the G1/S checkpoint signalling pathway in ES cells. We 

found that ES cells maintain high levels of the Cdc25A phosphatase in G1 that 

persists even after DNA damage. Knockdown of Cdc25A expression resulted in a G1 

delay and increased CDK2Y15P after UV damage within 24 hours post RNAi treatment 

(a condition required to avoid natural G1 phase expansion due to differentiation of ES 

cells). Indeed, prolonged Cdc25A downregulation (or Dub3), resulted in cell 

differentiation in the presence of LIF, in line with the notion that lengthening of the G1 

phase and deregulation of CDK2 activity is linked to differentiation (White et al., 

2005). These findings provide an explanation for absent regulation of CDK2 activity 

upon DNA damage in ES cells (Koledova et al., 2010). This model is also in line with 

existing evidence linking elevated Cdc25A expression with impaired G1/S arrest 

followed by radioresistant DNA synthesis in cancer cells (Falck et al., 2001). 

Interestingly, in addition to Cdc25A, we have also observed down-regulation of 

Cyclin E (Figure S6H), another CDK2 regulator that is rate limiting during the G1/S 

transition and opposes spontaneous differentiation of naïve ES cells (Coronado et 

al., 2012). Moreover, ablation of the SCFFbw7-mediated degradation pathway 

controlling Cyclin E abundance in vivo results in impaired differentiation, genomic 

instability and hyperproliferation (Minella et al., 2008), illustrating the importance of 

Cyclin E regulation in mouse development. Taken together, both reduced abundance 

of Cdc25A and Cyclin E during differentiation of ES cells, likely embody key 

molecular adaptations that control CDK activity and consequent G1 lengthening. 

Importantly, as a result of expanded G1, the p53-dependent response may now 

become more effective in CDK2 inhibition since this requires a slow transcriptional-

dependent induction of the CDK inhibitor p21 protein level. It is anticipated that p21 
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may have virtually no role in CDK2 regulation in ES cells since these cells spend 

most of their time in S phase and p21 is efficiently degraded by the PCNA-dependent 

CRL4Cdt2 ubiquitin ligase throughout S phase, as well as after DNA damage (Abbas 

et al., 2008).  

 We have provided evidence that post-transcriptional regulation of Cdc25A 

abundance in ES cells depends upon the Dub3 deubiquitylase. Expression of Dub3, 

and not Cdh1 or -TrCP, is higher in ES cells compared to differentiated cells, and 

knockdown of Cdh1 or -TrCP did not significantly change the stability of Cdc25A 

since it is already highly stabilized in ES cells. These observations are consistent 

with the finding that ES cells have attenuated APC activity that increases during 

differentiation (Ballabeni et al., 2011). Of the four additional deubiquitylases 

implicated in Cdc25A stability in human cells (USP13, 29, 48 and Dub2A), we found 

that only USP48 mRNA levels significantly decreased during differentiation although 

its expression remained high and increased towards the end of differentiation, 

mirroring Sox2 expression. Hence, although we cannot exclude a redundant role for 

Dub2A and USP48 in Cdc25A stability during differentiation, our data support a key 

role for Dub3 in this process, as previously shown in somatic cells (Pereg et al., 

2010), and suggest that in ES cells the balance of ubiquitylation and deubiquitylation 

activities, which fine-tunes the steady-state level of Cdc25A, is shifted towards 

deubiquitylation due to high Dub3 expression. 

We showed that downregulation of Esrrb negatively affected the endogenous 

expression of the Dub3 gene, to a similar extent than a previously characterized 

Esrrb target gene, Nanog (van den Berg et al., 2008). However, expression of Oct4, 

another Esrrb target (Zhang et al., 2008) was not found to be much affected by Esrrb 

knockdown (van den Berg et al., 2008). These differences likely exist because in ES 
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cells, expression of pluripotency genes is under the combinatorial control of 

transcription factors of the pluripotency gene regulatory network (van den Berg et al., 

2008). This transcriptional control appears to be very complex, gene-specific and 

remains to be further clarified. 

We observed that while forced Dub3 expression could not inhibit differentiation 

upon LIF withdrawal, unexpectedly it induced massive apoptosis during 

differentiation concomitant to lineage commitment and cell cycle remodelling, such as 

lengthening of the G1 phase. These observations are in line with the recent finding 

that expression of non-degradable Cdc25A mutants leads to early embryonic lethality 

in mice (E3.5) showing the importance of fine-tuning the expression level of Cdc25A 

already at the oocyte and morula stages (Bahassi el et al., 2011). Although we have 

shown that Cdc25A is a critical Dub3 substrate in ES cells, we cannot exclude the 

implication of other Dub3 substrates (de la Vega et al., 2011; Ramakrishna et al., 

2011) in the toxicity observed by forced Dub3 expression during differentiation. The 

importance of tight Cdc25A regulation during embryogenesis is also underscored by 

its function in regulation of pluripotency versus differentiation of ES cells since 

Cdc25A is expressed in progenitor cells undergoing proliferative self-renewing 

divisions (Peco et al., 2012). We speculate that this developmental regulation might 

be governed by Dub3 to modify cell cycle dynamics under control of Esrrb.  

In conclusion our results couple the Cdc25A-CDK2 cell cycle signalling 

pathway to the self-renewal machinery through Esrrb-dependent regulation of Dub3 

in ES cells, and highlight the importance of deubiquitylases in stem cell and 

developmental biology. Since cell cycle regulation is a rate-limiting step in 

reprogramming processes, these findings put Dub3 and Cdc25A as interesting 

candidate genes in cell reprogramming. 
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Experimental Procedures 

Cell extracts, western blotting and antibodies 

Cells were rinsed once in PBS and incubated in lysis buffer. Whole cell extracts were 

clarified by centrifugation at 12000 g for 10 min at 4°C. Protein concentration of was 

estimated by BCA (Pierce; see Supplemental information).  

 

Cell culture and transfection 

ES cells (CGR8) were cultured on gelatin-coated dishes in the absence of feeder 

cells with 1,000 U LIF per ml (Millipore). Cells were grown in a humidified 

atmosphere of 5% CO2 at 37°C. For transient expression both NIH-3t3 and ES cells 

were transfected using X-tremeGENE 9 DNA (Roche), and CV1 with JetPEI 

(Polyplus), according to manufacturer's directions. For infection, retroviral particles 

were generated by transfecting Platinum-E ecotropic packaging cell line with 

retroviral expression vector (pLPC) encoding Myc6-Dub3 variants using home-made 

PEI reagent.  

 

Cell synchronization 

ES cells were arrested in prometaphase by nocodazole (Sigma) for 4-8 hours. After 

mitotic-shake off cells were washed 3 times in ice-cold PBS and dissolved in full ES 

growth medium. Cells were incubated in a humidified atmosphere of 5% CO2 at 37°C 

for 45 minutes and placed at 30°C for 1 hour to reduce S phase entry. Cells were 

mock- or UV-irradiated (6 J/m2) and incubated at 37°C prior collection. To 

synchronise NIH-3t3 cells in G0 cells were grown to confluence and incubated for 2-3 

days. Next, cells were washed, resuspended and split at 30% confluency. Six hours 

after release, cells were UV-irradiated.  
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UV-induced DNA Damage and Drugs 

UV-C irradiation at 254nm was performed with microprocessor-controlled crosslinker 

(BIO-LINK ®) or with a UV-lamp (Hanovia). Cycloheximide and DY131 (GW4716) 

were from Sigma and Chk1 inhibitor SB218078 from Calbochiem. 

 

Flow cytometry 

Single-cell suspensions were prepared by trypsinisation and washed once in PBS. 

Cells were fixed in ice-cold 70% ethanol (-20°C) and stored at -20 °C overnight. 

Following RNAse A treatment, total DNA was stained with propidium iodide (25 

µg/ml). For BrdU uptake analysis, ES cells and NIH-3t3 cells were grown in the 

presence of 10 µM BrdU for respectively 10 and 30 minutes. The BrdU content was 

determined by reaction with a fluorescein isothiocyanate (FITC)-conjugated anti-BrdU 

antibody (BD Biosciences). Cells were analyzed with a FACScalibur flow cytometer 

using CellQuestPro software. 

 

RNA extraction, reverse transcription and quantitative real-time PCR 

Total RNA was isolated with TRIzol reagent (Invitrogen). Reverse transcription was 

carried out with random hexanucleotides (Sigma) and Superscript II First-Strand 

cDNA synthesis kit (Invitrogen). Quantitative PCRs were performed using Lightcycler 

SYBR Green I Master mix (Roche) on Lightcycler apparatus (Roche). All primers 

used were intronspanning (primer sequences available upon request). The relative 

amount of target cDNA was obtained by normalisation using geometric averaging of 

multiple internal control genes (ACTB, HPRT, HMBS, GAPDH, SDHA). 
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Chromatin Immunoprecipitation 

ES cells were formaldehyde cross-linked and sonicated using a Misonix sonicator S-

4000. Cells were lysed in ice-cold lysis buffer (Supplemental Information). Primer 

pairs for promoter scanning (6 kb upstream of transcription start site, TSS) of the 

Dub3 murine promoter were designed approximately every 1 kb. 

 

Monolayer differentiation of ES cells into neurectodermal precursors 

This protocol was as previously described (Ying et al., 2003). (see also Supplemental 

information).  

 

Isolation and amplification of NSC cells from CGR8 ES cells 

ES cells were induced to differentiate into NSC following the protocol described 

above. At day 6, cells were dissociated in 0.01% Trypsine-EDTA and plated onto 

Poly-L-Ornithine/Laminin coated dishes in DMEM/N2 medium with 10 ng/ml of both 

EGF and bFGF (Biosource). For the preparation of Poly-L-Ornithine/Laminin plates, a 

0.01% solution of poly-L-ornithine (Sigma) was added to plates for at least 20 min. 

The solution was removed and plates were washed 3 times with PBS. A 1 µg/ml 

solution of laminin in PBS (Sigma) was then applied and incubated at 37°C for at 

least 3 hrs. Cells can then be cultivated and amplified under these conditions for 

several subpassages without loosing neural stem cells properties. 

 

Establishment of a monoclonal eGFP-Dub3 expressing ES cells 

Wild-type ES cells were transfected with pcDNA3-eGFPDub3, plated at clonal 

density and selected with G418 (Sigma). eGFP-Dub3 positive clones were expanded 
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in continuous presence of G418 and validated by immunofluorescence and western 

blotting. 
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Figure Legends 

Figure 1: DNA damage in G1 induces transient ES cell cycle arrest in early S-phase 

and not at the G1/S transition.  

(A) Schematic overview of the experimental design. Arrows indicate time points at 

which cells were collected.  

(B) FACS analysis of ES cells released from nocodazole arrest, mock (left panel) or 

exposed to 6 J/m2 UV light (right panel) in G1. Analysis of total DNA content stained 

by propidium iodide at indicated time points.  

(C-D) Kinetics of S phase entry of synchronised ES cells, mock and UV-irradiated (6 

J/m2) in G1. Cell cycle distribution was measured by BrdU incorporation followed by 

FACS analysis.  

(E) Representative FACS analysis of S-phase entry by analysis of BrdU 

immunoreactivity of ES and NIH-3t3 cells exposed respectively to 6 and 10 J/m2 UV 

light in G1. Box indicates region were differences in total events was observed. Mean 

fluorescence intensity of BrdU-positive cells is shown. (see also Figure S1). 

 

Figure 2: Persistence of Cdc25A upon DNA damage in G1 sustains G1/S checkpoint 

bypass in ES cells. 

(A) Asynchronously growing ES and NIH-3t3 cells were exposed to 10 J/m2 of UV-

light, collected and analyzed by western blotting at the indicated times. For Cdc25A, 

a dark and light exposure is shown. 

(B) Abundance of Cdc25A in ES and NIH-3t3 cells synchronized in G1 and passing 

through S phase. ES cells were synchronized by nocodazole and collected upon 

release at indicated time points. NIH-3t3 cells were synchronized by confluence, 

released and collected at 6 hours (G1) and 18 hours (S) after release. To observe 
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posttranslational modifications (PTM) of Cdc25A, dark and light western blot 

exposure is shown. 

(C) Western blot analysis of Flag-immunoprecipitated, ectopically expressed Flag-

Cdc25A cotransfected with HA-ubiquitin in ES (lane 1) and NIH-3t3 cells (lane 2) 

after MG132 treatment for 1 hour. IgGs indicates immunoglobulins. 

(D) Rapid Cdc25A destruction upon DNA damage is Chk1-dependent in ES cells. 

Cells were UV-irradiated and incubated with cycloheximide (Cx) in absence or 

presence of Chk1 inhibitor SB218078, collected at the indicated times (min) and 

analyzed by western blotting.  

(E) Downregulation of Cdc25A expression by RNAi results in increased inhibitory 

CDK2Tyr15 phosphorylation upon DNA damage in G1. RNAi-transfected cells were 

released from nocodazole and exposed to UV-light in G1. Samples were collected at 

the indicated times and analyzed by western blotting with the indicated antibodies. 

(F) Cdc25A downregulation results in G1 delay upon DNA damage. RNAi-transfected 

cells were released from nocodazole and exposed to UV light in G1 (t=2) and 

collected 2 hours (t=4) after UV- or mock-irradiation. Prior to collection cells were 

pulse-labelled with BrdU. Fraction (expressed as %) of diploid BrdU negative cells is 

plotted (data are represented as mean  SD). Statistical differences is indicated with 

a single asterisk (*) for P < 0.05. (see also Figure S3). 

 

Figure 3: Elevated deubiquitylase Dub3 in ES cells increases Cdc25A abundance. 

(A) qPCR quantification of Oct4, Cdc25A, Cdh1, -TrCP and Dub3 mRNA 

normalized to multiple reference genes in ES and NIH-3t3 cells. Data are expressed 

as mean  SD (error bars) of multiple observations. Statistical differences is indicated 

with an asterisk P < 0.05. 
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(B) qPCR quantification of Dub3 mRNA normalised to multiple reference genes. ES 

cells were transfected with control (Crtl), Dub3 or Cdc25A RNAi sequences. 

(C) qPCR quantification of Cdc25A mRNA normalised to multiple reference genes. 

ES cells were transfected with control (Crtl), Dub3 or Cdc25A RNAi sequences. 

(D) Western blot analysis of ES cells transfected with Dub3, Cdc25A or control (Crtl) 

RNAi sequences.  

(E) Cellular localisation of pcDNA3-eGFP-Dub3 in ES cells. Nuclei were 

counterstained using DAPI. Scale bar 10 µM. (See also Figure S4). 

 

Figure 4: Dub3 is a target gene of the orphan receptor Esrrb. 

(A) Schematic overview of the Dub3 proximal promoter in mouse (6kb). Esrrb 

(shaded boxes) and Sox2 (green boxes) consensus binding sites (RE) are indicated. 

(B) qPCR quantification of Esrrb, Dub3 and Nanog mRNA normalised to multiple 

reference genes expressed as % of control. ES cells were transfected with control 

(Crtl) RNAi (white bars) or Esrrb specific RNAi sequence (black bars). Data are 

expressed as mean  SD (error bars) of multiple observations. Statistical differences 

is indicated with a single asterisk (*) for P < 0.05, not significant is indicated as (ns). 

(C) qPCR quantification of endogenous Dub3 expression in ES cells transfected with 

empty vector (EV), Esrrb or Esrrb-Cter expressing plasmids. Data are expressed as 

mean  SD (error bars) of multiple observations. Statistical differences is indicated 

with a single asterisk (*) for P < 0.05. 

(D) ChIP of Esrrb and Sox2 on Dub3 promoter. Primer pair location along the 6 kb 

proximal promoter (Figure 4A) for scanning of Dub3 promoter for Esrrb and Sox2 

occupancy. Data are expressed as mean  SD (error bars) of multiple observations. 
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Amylase serves here as a control. Statistical analysis using two-way ANOVA was 

performed. 

(E) Dub3 promoter activity using luciferase assay in CV1 cells. Cells were 

cotransfected with promoter construct and the indicated genes, and assessed for 

luciferase activity 48 hours post-transfection. Bars represent the fold induction  SD 

of multiple observations. Statistical differences is indicated with a single asterisk (*) 

for P < 0.05 and (**) for P < 0.001. 

(F) Basal transcriptional activity of a 1 kb proximal promoter and a mutated sequence 

in ES cells. Three mutations were introduced in the Esrrb consensus binding site. 

TCAAGGTCA was mutated to TCATTTTCA. Data are expressed as mean  SD 

(error bars) of multiple observations (see also Figure S5).  

 

Figure 5: Developmental regulation of Cdc25A protein abundance correlates with 

Dub3 expression. 

(A) N2B27-induced neural conversion of ES cells. Phase-contrast photos at indicated 

days of differentiation.  

(B) qPCR quantification of indicated mRNA normalised to multiple reference genes 

during N2B27-induced neural differentiation. Values represent mean  SD of multiple 

observations. 

 (C) Western blot analysis of cell extracts collected throughout differentiation of ES 

cells into neural stem cells (NSC) immunoblotted with the indicated antibodies. 

(D) Western blot analysis of asynchronously growing ES and NSC. Cells were 

exposed to 6 J/m2 UV-light and collected at indicated times. 
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(E) Basal transcriptional activity of three different promoter lengths of the Dub3 gene 

analysed in NIH-3t3 cells and ES cells. Data are expressed as mean  SD (error 

bars) of multiple observations (see also Figure S6). 

 

Figure 6: Constitutive Dub3 expression leads to massive apoptosis concomitant to 

differentiation-induced cell cycle remodeling. 

(A) Immunofluorescence detection of empty vector (EV) or eGFP-Dub3-expressing 

cells. All ES cells express eGFP-Dub3 at comparable levels. DNA was visualized by 

DAPI staining. 

(B) Phase-contrast photos of empty vector (EV) or eGFP-Dub3-expressing ES cells 

after LIF removal at the indicated days of differentiation. Arrows indicate detached 

cells with apoptotic morphology. 

(C) Western blot of cell extracts prepared every day after LIF withdrawal from empty 

vector or eGFP-Dub3-expressing ES cells. (*) indicates a non-specific band. High 

caspase 3 activities in eGFP-Dub3 expressing cells indicate apoptosis.  

(D) Differentiation-induced cell cycle remodelling. Cells were collected at the 

indicated days and analyzed by FACS following propidium iodide staining. Cell death 

is illustrated by cells with subdiploid DNA content (Sub-G1). 

(E) Clonogenic assay of ES cells upon prolonged control or Dub3 targeting RNAi 

sequence. Cells were plated at clonal density in LIF-containing serum and stained for 

AP after 7 days. Columns show the percentage of AP positive (Pos.) or negative 

(Neg.) colonies. At least 150 colonies were scored.   

(F) Representative pictures of cells transfected with control or Dub3 targeting RNAi 

sequence and assayed for AP activity (see also Figure S7). 
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Supplemental information: 

 

Seven Supplemental Figures, Figures legends and Supplemental experimental 

procedures. 

 

Figure S1 (related to Figure 1). Shows additional information providing evidence for an 

arrest of mouse embryonic stem cells in early S phase and not in G1 upon UV damage. 

 

Figure S2 (related to Figure 1). Shows that the p53 transcriptional response is functional 

in mouse embryonic stem cells upon UV damage. 

 

Figure S3 (related to Figure 2). Provides additional information showing that Cdcd25A is 

more abundant in mouse embryonic stem cells than in differentiated NIH-3T3 cells and 

that the G1/S transition in mouse embryonic stem cells requires CDK2 activity. It also 

shows that fluctuation of Cdc25A levels correlate with changes in CDK2 tyrosine 15 

phosphorylation which is increased following Cdc25A downregulation upon UV damage. 

Inventory of Supplemental Information



 

Figure S4 (related to Figure 3). Provides evidence that Cdc25A half-life is higher in 

mouse embryonic stem cells than in differentiated NIH-3T3 cells. Moreover it provides 

supplementary evidence that Dub3 and not Cdh1 nor b-TRCP regulates Cdc25A stability 

in mouse embryonic stem cells. 

 

Figure S5 (related to Figure 4). Shows that the Esrrb and Esrrg agonist DY131 boosts 

Dub3 expression in mouse embryonic stem cells. It also provides important controls for 

the Chip experiments. 

 

Figure S6 (related to Figure 5). Provides additional data essential to control the 

differentiation of mouse embryonic stem cells into neural stem cells (NSCs), essential to 

interpret the results shown in Figure 5. It also shows the specificity of the mouse Dub3 

antibody. 

 

Figure S7 (related to Figure 6). Provides additional information for the cell death 

observed in mouse embryonic stem cells expressing eGFP-Dub3 and undergoing 

differentiation. It also shows that a similar phenotype is observed in cells expressing HA-

Dub3. 

 

 



A B

D
NIH-3t3 ES cells

DAPI

Oct4

C

Hours after Nocodazole release

E

2n
4nPI fluorescence

(DNA content)

 C
el

l n
um

be
r

mock

10 J/m2

2 J/m2
4 J/m2

8 J/m2
6 J/m2

+ UV

Cyclin A

Chromatin Soluble
2  3 4 8 3 4 8 2 3 4 8 3 4 8

UV: - - + + +-- - - + + +--

6 7 81 2 3 4 5 9 10 11 12 13 14

hours:

DNA polα

Cdc45

H3

γH2AX

mock

t=6

t=2
t=4

 C
el

l n
um

be
r

2n 4n
+ UV

PI fluorescence(DNA content)

Van der Laan_Figure S1

Supplemental Text and Figures



B

D

C

A

γH2AX

MCM2

Chk1

p53S15P

H3

Chromatin Soluble

0,5 1 2 4 0,5 1 2 40 0 (hrs post UV):

1 2 3 4 5 6 7 8 9 10

Van der Laan_Figure S2



mock

 C
el

l n
um

be
r

PI fluorescence(DNA content)

2n
4n

6 
15

30

Rosco
vitin

e (µ
M)

Cdk2Y15P

Cdc25A

Cyclin A

0 1 2 3 4 6 8
Release 

Wee1

Cdk2

H3S10P

H3

β-actin

6 71 2 3 4 5

(hrs):

M G1 S

G

A

D E

M G1 S

B C

F

ct
rl

Cdc25A

β−actin

RNAi:

(dark)

(light)

1 2

C
dc

25
A

H

Van der Laan_Figure S3



Chk1S345P

 (min post UV):

Myc

β-actin

Cdc25A 

Chk1 

0 5 10 20 30

Myc6Dub3
0 5 10 20 30

E.v.

6 7 81 2 3 4 5 9 10

Cdc25A

β-actin

Myc

Chk1

N
IH

-3
t3

Myc6
Dub

3

E.v.

1 2

Cdc25A

β-actin

0 5 10 20 30Cx (min):

NIH-3t3

1 2 3 4 5

ES cells 
0 5 10 15 20 30 45 60Cx (min):

Cdc25A

β-actin

6 7 81 2 3 4 5

E F

BA

C D

2 31

β-actin

Cdc25A

RNAi: Lu
c

β-
Tr

CP
Cdh

1

Van der Laan_Figure S4



A

D

0,5 

1,5
1 

2
3
4 

1 2

IP
 in

pu
t

ge
n.

 D
NA

F

C

E

Esrrb

β-actin

IgGs

IP
: E

sr
rb

Flag-Esrrb:
Ev:

- -+ +

in
pu

t

- -++

1 2 3 4

β-actin

Sox2

Flag
Esrrb
Δ-Cter

1 2 3 4

EV Esrr
b

Esrr
bΔ

Cter
Sox

2

2,5 5 200

Cdc25A

β-actin

DY131 (µM):

1 2 3 4

B

Van der Laan_Figure S5



Day 1 Day 6

F

G

A

B

E

H

N2B27-induced neural differentiation (days)

ES   D1   D2   D3   D4   D5   D6   D7

Cdc25A

Oct4

β-actin

Cdc25B

Cdc25C

PCNA

6 7 81 2 3 4 5

C

75
50
37

100
PI EV H

AD
ub

3

EV H
AD

ub
3

(KDa)

1

Dub3 HA

2 3 4 5

IB:

β-actin

Dub3

RNAi: Ctrl Dub3

1 2

D

Van der Laan_Figure S6



DB

E F

0 200 400 600 800 1000
FL3-A

20120918 EV D0

R6

R5

0 200 400 600 800 1000
FL3-A

20120918 GFPD3 D0

R6

R4
R5

72,5%

69,9%

EV

eGFP-Dub3

9,8%
19,6%

17,9
8,6%

C

EV

eGFP-Dub3

GFP-Dub3

Oct4

evGFP-Dub3

0 1 2 3 0 1 2 3

N2B27 
differentiation

(days):

Active
Caspase 3

MCM2

1 2 3 4 5 6 7 8

evHA-Dub3

0 1 2 3 0 1 2 3

N2B27 
differentiation

(days):

HA-Dub3

Oct4

Active
Caspase 3

MCM2
1 2 3 4 5 6 7 8

Active
Caspase 3

Active
Caspase 3

Dapi

Dapi

E
V

Day 0 Day 1 Day 2 Day 3 Day 4

G
FP

D
ub

3

A
Van der Laan_Figure S7



 

Supplemental Information	
  

 
 
High Dub3 expression in mouse ES cells couples the G1/S 

checkpoint to pluripotency  
	
  
 
 
 

 
Siem VAN DER LAAN, Nikolay TSANOV, Carole CROZET and Domenico 

MAIORANO 

 

 

 

 

 



Supplemental Figure legends 

Figure S1 (related to Figure 1): DNA damage in G1 induces transient cell cycle 

arrest in early S-phase and not at the G1/S transition.  

(A) UV-dependent cell cycle changes of ES Cells. Cell cycle profile of 

asynchronously growing ES cells exposed to increasing dose of UV-light (2-10 J/m2). 

Cells were collected 6 hours after UV-irradiation for FACS analysis. 

(B) Cell cycle profile of UV-exposed ES cells in time. Asynchronously growing ES 

cells were exposed to 6 J/m2 UV-irradiation and collected for FACS analysis at 

indicated time points. 

(C) Immunofluorescence detection of Oct4 in ES and NIH-3t3 cells. Nuclei were 

counterstained using DAPI. Scale bar 10 µM. 

(D) Subcellular fractionation of ES cells released from nocodazole arrest, mock or 

UV-irradiated in G1 (2 hours after release) collected at indicated time points. Cells 

were lysed and fractionated into soluble and insoluble (chromatin-bound) fraction as 

described in Materials and methods. 

 (E) qPCR quantification of Cyclin E1 and Cyclin A2 mRNA normalised to multiple 

reference genes from ES cells released from nocodazole arrest mock or UV-

irradiated in G1 and collected at indicated time points. Dotted line represents levels in 

G1. Data are expressed as mean ± SD (error bars) of multiple observations.   

 

 

 

 

 



Figure S2 (related to Figure 1): p53 is transcriptionally active in ES cells upon DNA 

damage. 

(A) Subcellular fractionation of ES cells UV-irradiated and collected at indicated time 

points. Cells were lysed and fractionated into soluble and insoluble (chromatin-

bound) fraction as described in Materials and methods.  

(B) ES cells transfected with pG13-luc promoter (containing p53 response elements) 

were mock or UV-irradiated and processed for luciferase activity. Bars represent the 

mean ± SD of triplicate observations. 

(C) ES cells transfected with p21-luc and p21-ΔREp53-luc (lacking p53 response 

element) were mock or UV-irradiated and processed for luciferase activity. Bars 

represent the mean ± SD of triplicate observations. 

(D) qPCR quantification of p53, p21 and Mdm2 mRNA normalised to multiple 

reference genes. Wild-type (wt) and p53 knockout (p53-/-) ES cells were UV-irradiated 

and collected at indicated time points for analysis of mRNA expression of main p53 

target genes. Bars represent the mean ± SD of triplicate observations. 

 

Figure S3 (related to Figure 2): Persistent Cdc25A phosphatase upon DNA 

damage in G1 inhibits G1/S checkpoint in ES cells. 

(A) Quantification of western blotting signals shown in Fig. 2A Western blot signals 

(lane 1 and lane 7) of Cdc25A (dark exposure) were quantified by densitometry 

scanning and expressed as relative optical density (ROD) compared to β-actin signal 

as loading control. 



(B) Quantification of western blotting signals shown in Figure 2B. Western blot 

signals of Cdc25A were quantified by densitometry scanning and expressed as 

relative optical density (ROD) compared to β-actin signal as loading control.  

(C) Roscovitine, a potent and selective inhibitor of cyclin-dependent kinases, 

dependent lengthening of the G1 phase of ES cells. FACS analysis of 

asynchronously growing ES cells treated with increasing concentration of 

Roscovitine. 

(D) Cdk2 phosphorylation status (Y15P) during an unperturbed cell cycle. ES cells 

were released from nocodazole arrest and collected in G1 and S-phase at indicated 

time points. Proteins were detected with the indicated specific antibodies by western 

blotting. 

(E) Schematic representation of the regulation of phosphorylation on Cdk2 by Wee1 

and Cdc25A. Western blot signals of panel (C) were quantified by densitometry 

scanning and expressed as relative optical density (ROD) compared to β-actin signal 

as loading control. 

(F) qPCR quantification of Cdc25A mRNA normalized to multiple reference genes 

expressed as percentage of control. ES cells were transfected with control (Crtl) 

RNAi or Cdc25A RNAi sequences. Bars represent the mean ± SD of multiple 

observations. 

(G) Western blot analysis of ES cells transfected with control (Crtl) or Cdc25A RNAi 

sequences. 

(H) Quantification of western blotting signals shown in Figure 2E. Western blot 

signals of Fig. 2E were quantified by densitometry scanning and expressed as 

relative optical density (ROD) compared to Chk1 signal as loading control.  



Figure S4 (related to Figure 3): Elevated deubiquitylating enzyme Dub3 in ES cells 

results in Cdc25A abundance. 

(A) Representative western blot signal used for determination of Cdc25A turnover 

rate in the presence of cycloheximide (Cx) in ES and NIH-3t3 cells. Cells were 

collected at indicated time points.  

(B) Cdc25A turnover rate in the presence of cycloheximide (Cx) in ES and NIH-3t3  

cells. Western blot signals of Cdc25A were quantified by densitometry scanning and 

expressed as relative optical density (ROD) compared to β-actin signal as loading 

control. Signal in untreated cells were set at 100% and half-life (t1/2) of Cdc25A was 

determined (data are represented as mean ± SD). 

(C) Overexpression of Dub3 increases Cdc25A abundance. NIH-3t3 cells were 

transduced with empty vector (E.v.) or pLPC encoding Myc6-Dub3. After puromycin 

selection cells were collected and processed for western blot analysis. 

(D) Cdc25A degradation upon DNA damage in NIH-3t3 cells expressing empty vector 

(E.v.) or pLPC encoding Myc6-Dub3. Cells were collected at indicated time points and 

analyzed by western blotting. 

(E) qPCR quantification of indicated mRNA normalised to multiple reference genes 

expressed as percentage of control. ES cells were transfected with control (Luc), β-

TrCP, Cdh1 or Dub3 RNAi sequences and collected 48 hours after transfection. Bars 

represent the mean ± SD of triplicate observations. 

(F) Western blot analysis of Cdc25A protein in RNAi-transfected cells.  

 

 

 



Figure S5 (related to Figure 4): Dub3 is a target gene of the orphan receptor Esrrb 

(A) qPCR quantification of Cdc25A and Dub3 mRNA in ES cells treated with 

increasing concentration of the selective Esrrb and Esrrg agonist DY131 for 16 hours. 

Bars represent the fold induction ± SD of triplicate observations. 

(B) Western blot analysis of Cdc25A protein levels in ES cells treated with increasing 

concentration of the DY131agonist for 16 hours. 

(C) qPCR quantification of Esrrb and Dub3 mRNA normalised to multiple reference 

genes expressed as percentage of control in presence of DY131. ES cells were 

transfected with control (Crtl) RNAi (white bars) or Esrrb specific RNAi sequence 

(black bars). Data are expressed as mean ± SD (error bars) of multiple observations. 

(D) DNA fragments size prior to ChIP analysis. Sonication resulted to DNA fragments 

smaller than 500bp. 

(E) Specificity of the Esrrb antibody. Immunoprecipitation of 293T-HEK cells 

transfected with either empty vector (Ev) or Flag-Esrrb expression plasmids. 

Immunoprecipitation was performed in parallel using either Flag or Esrrb antibody.  

Both antibodies specifically immunopreciptated Flag-Esrrb protein.  

(F) Western blot analysis of expression levels of CV1 cells transfected with either 

empty vector (lane 1), Flag-Esrrb (lane 2), Flag-Esrrb Δ-Cter (lane 3) or Sox2 (lane 

4), 48 hours post-transfection.  



Figure S6 (related to Figure 5): Developmental regulation of Cdc25A protein 

abundance correlates with Dub3 expression levels. 

(A) qPCR quantification of pluripotency and cell fate specification markers during 

neural conversion of ES cells. Data were normalized to multiple reference genes. 

Data are expressed as mean ± SD (error bars) of multiple observations. 

(B) Immunofluorescence detection of Nestin at day 1 and day 6 of N2B27-induced 

differentiation. Nuclei were counterstained using DAPI. Scale bar 50 µM. 

(C) Specificity of the antibody raised against mouse Dub3. Human 293T cells were 

transfected with empty vector (EV) or HA-Dub3 expressing vectors. Cells were 

collected 24 hours post transfection and extracts were immunoblotted (IB) using pre-

immune (PI), Dub3 or HA antibodies. The Dub3 antibody recognizes a specific 

polypeptide of 60 kDa in SDS-PAGE (arrow) which is not recognized by the pre-

immune serum. 

(D) Validation of the antibody raised against mouse Dub3. Western blot analysis of 

ES cells transfected with control (lane 1) or Dub3 (lane 2) RNAi sequences. Cells 

were collected 48 hours post transfection and extracts were immunoblotted using 

Dub3 purified antibody and β-actin. 

(E) Western blot analysis of Dub3 substrates and indicated proteins during neural 

conversion. 

(F) qPCR quantification of Suds3, RhoA and Esrr g during neural conversion of ES 

cells. Data were normalized to multiple reference genes. Data are expressed as 

mean ± SD (error bars) of multiple observations. 



(G) qPCR quantification of Nestin, Nanog, Cdc25A and Dub3 mRNA normalized to 

multiple reference genes in ES and Neural Stem Cells (NSC). Bars represent the 

mean ± SD of multiple observations. 

(H) qPCR quantification of G1 cyclin stoechiometry during neural conversion of ES 

cells. Data were normalised to multiple reference genes. Data are expressed as 

mean ± SD (error bars) of multiple observations. 

 

Figure S7 (related to Figure 6): Constitutive Dub3 expression leads to massive 

apoptosis concomitant to differentiation-induced cell cycle remodeling. 

(A) Cell cycle distribution and BrdU incorporation of empty vector (EV) and eGFP-

Dub3 expressing ES cells analysed by FACS. 

(B) Phase contrast photos of eGFP-Dub3 and EV expressing cell-lines. 

(C) Immunoflorescnece detection of active capsase 3 during LIF withdrawal in empty 

vector and eGFP-Dub3 expressing ES cells.  

(D) qPCR quantification of pluripotency markers (Nanog, Klf4, Oct4, Rex1), of Sox7 

and of Noxa normalised to multiple reference genes during LIF withdrawal. 

(E) Western blot analysis of cell extracts collected every day throughout the N2B27-

induced differentiation process of empty vector or eGFP-Dub3 expressing ES cells 

into NSCs. Of note, four days after N2B27-mediated differentiation all eGFP-Dub3 

expressing cells were all dead by apoptosis as indicated by high caspase 3 activities. 

(F) Western blot analysis of cell extracts collected every day throughout the 

differentiation process of empty vector or HA-Dub3 expressing ES cells into NSCs. 

The molecular and cellular phenotype of HA-Dub3 expressing cells was highly 



comparable to the eGFP-Dub3 expressing cells indicating that the phenotype is 

independent of the N-terminal tag. 

 



Supplemental Experimental Procedures 

 

Cell culture and transfection 

Briefly, ES cells were maintained in Glasgow MEM BHK-21 (GMEM) supplemented 

with 10% fetal bovine serum, non-essential amino acids, L-glutamine, sodium 

pyruvate, β-mercapthethanol. NIH-3t3 cells were maintained in Dulbeccoʼs modified 

eagleʼs medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM 

glutamine and antibiotics. The viruses-containing conditioned medium was incubated 

on exponentially growing NIH-3t3 cells for 24 hours in the presence of polybrene (10 

mg/mL). 48 hours post-infection, cells were selected in puromycin (2.5 µg/mL)-

containing medium for 8-10 days before use. Reverse transfection of ES cells was 

performed using INTERFERin (Polyplus) according to manufacturerʼs directions. 

Cells were collected 24, 36 or 48 hours after transfection for analysis. The Cdc25A 

RNAi sequence was 5ʼ-GAAAUUUCCCUGACGAGAA-3ʼ, Dub3 5ʼ-

GGCUGUAAGAUGUGUGCUA-3ʼ and a Esrrb previously described (Feng et al., 

2009). RNAi for Cdh1 and β-TrCP knockdown were purchased from Darmacon 

(SMARTpool) 57371 (Cdh1) and 12234 (β-TrCP). 

 

Monolayer differentiation of ES cells into neurectodermal precursors. 

ES cells were dissociated and plated in N2B27 medium onto 0.1% gelatine-coated 

dishes at a density of 1.104 cells/cm². N2B27 medium is a 1:1 mixture of DMEM/F12 

(Gibco) supplemented with modified N2 (25 µg/ml insulin, 100 µg/ml apo-transferrin, 

6 ng/ml progesterone (Sigma), 16 µg/ml putrescine (Sigma), 30 nM sodium selenite 

(Sigma), 50 µg/ml bovine serum albumine (Gibco), Neurobasal medium supplemeted 



with B27 (Gibco), β-mercaptoethanol (0.1 mM) and glutamate (0.2 mM) was also 

added. The medium was replaced every two days until day 7. 

 

Plasmids 

The murine Dub3 gene (Gene ID: 625530) was amplified by PCR and cloned into 

pLPC-Myc6, pcDNA3-GFP and pcDNA3-HA. All constructs were verified by DNA 

sequencing. Mouse Esrrb (pSG5FI-mEsrrb) and the C-terminal truncated pSG5FI-

mEsrrb-ΔCter were previously described (Vanacker et al., 1999). Genomic 

sequences of the Dub3 promoter were amplified by PCR and inserted into pGL4.10 

vector (Promega) for luciferase activity. pCEP4-Sox2 was a kind gift of F. Poulat 

(IGH-CNRS). 

 

 

Cell extracts, western blotting and antibodies 

Cells were rinsed once in PBS and then incubated with ice cold lysis buffer (50 mM 

Tris-HCl pH 7.4, 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 40 mM β-glycero-

phosphate, 1% Triton X-100 and protease inhibitors) for 30 min on ice before 

scraping. Whole cell extracts were clarified by centrifugation at 12000 rcf for 10 min 

at 4°C. Protein concentration of the clarified lysates was estimated using BCA 

method (Pierce). Equal amount of protein was used for western blot analysis. All 

antibodies were incubated overnight at 4 °C in phosphate-buffered saline (PBS) 

containing 1% BSA and 0,1% Tween (Sigma). Antibodies used from Cell Signaling: 

Chk1S345P (2341), p53S15P (9284), γH2AX (2577), CDK2Y15P (9111), Myc-Tag (2276); 

active caspase 3 (9961); p53S15P (9284), γH2AX (2577); Active caspase 3 (9961); 



Abcam: DNA polα  (ab31777), H3 (ab1791), CDK2 (ab6538), PSTAIR (ab10345), 

GFP (ab290), DNA polα (ab31777), H3 (ab1791), MCM2 (ab4461); Suds3 (ab3740) 

Santa Cruz:  Cdc45 (sc-20685), Cdc25A (sc-7389), Chk1 (sc-8408), Cyclin B1 (sc-

245), Cdc25C (sc-327), Cdc25B (sc-65504), p21 (sc-6246),  Cdc45 (sc-20685), 

Cdc25A (sc-7389), Chk1 (sc-8408); RhoA (sc-418); anti-goat IgG-HRP (sc-2020) 

Sigma: (PC10), β-actin (A1978), Cyclin A (C7410), Anti-Flag M2 (F1804), β-actin 

(A1978), Cyclin A (C7410), Flag (F3165); Oct4 (Chemicon, AB3209), and Millipore, 

Nestin (Ab353), H3S10P (Millipore 09-797). Wee1 (kindly provided by T. Lorca, CRBM 

Montpellier).  

Mouse Dub3 polyclonal antibodies were raised by immunizing rabbits with a 

synthetic peptide (NH2-MSPGQLCSQGGR-COOH) designed from mouse Dub3 C-

terminus, coupled to keyhole limpet hemocyanin (KLH). Antibodies were purified by 

coupling the Dub3 peptide on HiTrap NHS-activated HP columns (GE Healthcare). 

 

Chromatin immunoprecipitation 

Cells were lysed in ice-cold lysis buffer (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 50 mM NaF, 

5 mM EDTA, 40 mM β-glycero-phosphate, 1% SDS, 1% Triton X-100 and protease 

inhibitors) for 30 min on ice. Immuoprecipitation was performed by adding 5 µg Esrrb (Sigma 

SAB2100715), Sox2 (Bethyl A301-739) or control antibodies (Peprotech 500-P00) to lysates 

and incubation with rotation overnight at 4 °C. BSA and salmon sperm-blocked Protein A-

Sepharose (Amersham) beads were added to the lysate. 

 

Luciferase assay 

ES cells were transfected with following reporter constructs, pG13-luciferase, p21-

luciferase and p21-ΔREp53-luc (kindly provided by J. Basbous, IGH, Montpellier). A 



Renilla luciferase plasmid was cotransfected as an internal control. Cells were 

harvested 24 hours after transfection and mock or UV-irradiated. Six hours following 

UV-induced DNA damage, cells were harvested and the luciferase activities of the 

cell lysates were measured using the Dual-luciferase Reporter Assay system 

(Promega). The proximal promoter of 1kb upstream ATG start codon was inserted 

into pGL4.10 plasmid. Three mutations of the Esrrb consensus binding site 

(TCAAGGTCA) were introduced by PCR to generate a mutated binding site 

(TCATTTTCA). All constructs were sequence verified. 

 

Immunofluorescence microscopy 

For Nestin, Oct4 and active caspase 3 staining staining, cells were fixed in 4% 

paraformaldehyde and permeabilized with 0,1% Triton X-100. After fixation, cells 

were blocked in 3% BSA PBS-Tween and incubated overnight with antibody. The 

slides were mounted using Prolong Gold with DAPI (Invitrogen). For determination of 

the cellular localisation of Dub3, mouse ES cells were transfected with pcDNA-GFP-

Dub3 and directly fixed. All slides were analysed using a Leica DM6000 

epifluorescence microscope. Images were acquired using a Coolsnap HQ CCD 

camera (Photometrics) and the metamorph software (Molecular Devices). 

 

Subcellular fractionation experiments 

Chromatin-enriched and soluble fractions were prepared using CSK-extraction 

procedure. Briefly, pelleted cells were lysed in CSK buffer (10 mM PIPES pH 6.8, 100 

mM NaCl, 300 mM sucrose, 1 mM EGTA, 1 mM MgCl2, 0.5 mM DTT, 1 mM ATP, 

0.2% Triton X-100 and protease inhibitors) for 10 min on ice. After centrifugation at 



3000 rpm for 3 min at 4 °C, the supernatant (Triton-soluble fraction) was recovered 

and the pellet (Triton-insoluble fraction) was resuspended in CSK buffer and 

incubated for 10 min on ice. After centrifugation, the pellet (chromatin-enriched 

fraction) was resuspended in Laemmli Buffer. Equivalent amount of soluble and 

chromatin fractions were analyzed by immunoblotting. 

 

Statistical analysis 

Two-way ANOVA or Student t-test were used to evaluate differences between groups 

using Prism software (GraphPad Software). P < 0.05 was considered significant and 

indicated with *, P < 0.001 was indicated with **. 

 



 

 


