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ABSTRACT 6 

Because bedload equations are nonlinear and because parameters describing the flow 7 

and the bed can have large variance, different results are expected when integrating bedload 8 

over a cross section with respect to spatially variable local data (2D), or when computing 9 

bedload from cross-section-averaged data, which reduces the problem to uniform conditions 10 

(1D). Evidence of these effects is shown by comparing 1D (flume-derived) equations with 2D 11 

field measurements, and by comparing a 2D (field-derived) equation with 1D flume 12 

measurements, leading to the conclusion that different equations should be used depending on 13 

whether local or averaged data are used. However, whereas nonlinearity effects are 14 

considerable for low-transport stages, they tend to disappear for higher flow conditions. 15 

Probability distribution functions describing the variance in flow and bed grain size 16 

distribution (GSD) are proposed and the width-integrated bedload data (implicitly containing 17 

the natural variance in bed and flow parameters) are used to calibrate these functions. The 18 

method consists of using a Monte Carlo approach to match the measured 2D bedload 19 

transport rates with 1D computations, artificially reproducing the natural variance associated 20 

with the mean input parameters. The Wilcock and Crowe equation was used for the 1D 21 

computation because it was considered representative of 1D transport.  22 

The results suggest that nonlinearity effects are mostly sensitive to the variance in 23 

shear stress, modeled here with a gamma function, whose shape coefficient α was shown to 24 

increase linearly with the transport stage. This variance in shear stress suggests that even for 25 

very low flow conditions, shear stress can locally exceed the critical shear stress for the bed 26 

armor, generating local armor break-up. This could explain why the bedload GSD is usually 27 

very similar to subsurface GSD, even in the presence of complete armor. 28 
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INTRODUCTION 32 

Bedload transport prediction is important for many applications, including river 33 

engineering, hazard prediction, and environmental monitoring and management. 34 

Sophisticated equations have been proposed in recent decades [Parker, 1990; Wilcock and 35 

Crowe, 2003], and when the quality of the required input data is good and the flow hydraulics 36 

are calculated in sufficient detail to take into account shear stress variations, they have been 37 

shown to adequately predict transport rates, changes in bed topography, and downstream 38 

fining [Ferguson and Church, 2009]. However, the requisite data (detailed grain size 39 

distribution [GSD], topography, discharge or depth) are not always available, and in many 40 

practical situations bedload must be computed with limited information and width-averaged 41 

river characteristics: The GSD is reduced to a few surface diameters (D50, D84), often 42 

estimated by surface counting [Wolman, 1954], the bed topography is assumed to be 43 

trapezoidal or rectangular and reduced to a mean width W and slope S, and the flow is 44 

considered uniform at the reach scale (a single water depth d for a given discharge and the 45 

energy slope equal to the bed slope). 46 

Despite reflecting the reality of many practical situations, the proposed approach of 47 

computing bedload with simple models and width-averaged data has been widely criticized 48 

for two main reasons: First, equations using limited input data are assumed to be incapable of 49 

reproducing the full complexity of transport [Habersack and Laronne, 2002], and second, 50 

since bedload equations are nonlinear with exponents that may exceed values of 10, width-51 

averaged bedload calculation has been suspected of under-estimating the true bedload flux if 52 

there is any local and/or spatial variation in either the bed material size distribution or in the 53 

flow hydraulics [Gomez and Church, 1989; Paola and Seal, 1995; Ferguson, 2003; Bertoldi, 54 

et al., 2009; Francalanci, et al., 2012].  55 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 4

Ferguson [2003] demonstrated nonlinearity effects with an analytical model based on 56 

the Meyer–Peter and Mueller formulation (derived for local transport in a flume). Using a 57 

probability function describing the shear stress variation around its mean value, he showed 58 

that additional flux locally induced by high shear stress outweighs the lower flux induced by 59 

low shear stress and that, consequently, the total flux (the sum of all local fluxes) should be 60 

higher than the flux computed with the averaged shear stress. These effects are illustrated in 61 

Figure 1, where τ *
 is the Shields number, which for diameter D is: 62 
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RS

)1(

*

−
=τ  
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where R is the hydraulic radius, S is the slope, and s=ρs/ρ is the ratio between the sediment 63 

and the water density. Figure 1a illustrates a river section, the averaged Shields stress <τ*> 64 

and computed bedload transport qs(<τ*>), and its decomposition in local values τi* and 65 

qs(τi*); whereas the local shear stress τi* is twice the average value <τ*> in the figure, the 66 

corresponding computed bedload transport is plotted such that qs(τi*) >> 2qs(<τ*>). These 67 

effects occur because bedload has been shown to be a power function of the shear stress and 68 

the value of the exponent is greater than 1. Considering qs∝τ*
p
, Figure 1b shows that the 69 

higher the value of the exponent p, the greater these effects (with a threshold equation of the 70 

form qs∝(τ*-τc*)
p
 these effects would be maximum near the critical Shields stress τc*). 71 

In contrast to the above expectation, most studies comparing bedload equations to 72 

measured bedload transport rates report large over-estimates instead of under-estimates when 73 

equations are used with width-averaged data, especially for gravel bed rivers [Rickenmann, 74 

2001; Barry, et al., 2004; Bathurst, 2007; Recking, et al., 2012]. In addition, because 75 

equations derived on the basis of field data are supposed to have a built-in allowance for the 76 

effects of spatial variability, they should considerably improve the computation of bedload 77 

transport when compared with standard 1D equations; however, many equations based on 78 
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field data are also site specific, and Barry et al. [2004; 2007] did not draw any conclusions 79 

about the superiority of one category of equation when compared with field data. 80 

Consequently, the questions this paper aims to answer are: How do the nonlinear 81 

effects influence predicted transport rates? Can a single equation, used with either the exact 82 

local shear stress or with width-averaged river characteristics, reproduce local transport and 83 

width-averaged transport, respectively, or should we consider two distinct families of 84 

equations, depending on whether bedload must be computed with local shear stress (as in 85 

numerical models) or with width-averaged data? Can we relate nonlinearity effects to the 86 

natural variance in flow and bed parameters? 87 

First, flume and field data are presented. Secondly, they are used with several bedload 88 

transport equations (1D capacity equation, 1D surface-based equation, and 2D field-derived 89 

equation) to look for evidence of nonlinearity effects. Thirdly, the variance associated with 90 

each flow and bed parameter is described, and a Monte Carlo approach is used for statistically 91 

investigating (calibrating) the shape parameter of each probability distribution function. 92 

Finally, the results are used to discuss the use of equations in field applications.  93 

DATA SET PRESENTATION 94 

In this part, the data set used in the analyses is presented; field data are considered 2D 95 

data because they are width-integrated, and they are distinguished from flume data that are 96 

considered 1D (near-uniform) and therefore an analogue for local transport in natural rivers. 97 

Note that the term 1D should rigorously correspond to strictly uniform flows (constant depth 98 

and bed roughness); however, such flows are almost never fully observed even in the flume, 99 

where small bedforms can exist and sediment patches can develop [Meyer-Peter and Mueller, 100 

1948; Dietrich, et al., 1989]. Consequently 1D flow is used here to designate quasi-uniform 101 

flows when compared with 2D flows in the field. 102 
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All parameters considered width-averaged are noted between the symbols < >; other standard 103 

notations correspond to local values. The flow conditions were discriminated with the 104 

transport stage defined by the τ*
/τc

*
 ratio [Church and Zimmerman, 2007], where τc

*
 is the 105 

critical Shields stress estimated with the following formula fitted to a compilation of field data 106 

from the literature [Recking, 2009]: 107 

93.0
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Large uncertainties exist on τc
*
 [Buffington and Montgomery, 1997] and a constant and 108 

arbitrary value τc
*
=0.03 [Parker, et al., 2003] or 0.047 [Meyer-Peter and Mueller, 1948] 109 

could have been used, but using a dependency with slope is more likely to represent reality 110 

[Mueller, et al., 2005; Lamb, et al., 2008; Recking, 2009; Ferguson, 2012]. The transport 111 

stage can be defined for different diameters Di. D50 was used because this diameter is often 112 

considered representative. However, because the exponent in Eq. 2 is near 1, the results would 113 

have been slightly changed with other diameters such as D84 (used for plotting the data in 114 

Recking et al. 2012). Nonetheless, this is not important because this choice impacts only the 115 

distribution of the results on the figures (the x-axes) and not the results themselves (all 116 

equations being used exactly as recommended by their authors). 117 

1D data 118 

Investigating local transport assumes knowledge of the local values. Whereas a few 119 

field data sets measure local transport and the associated flow velocity, the bed surface GSD 120 

is always highly uncertain and always averaged at the reach scale. Such local data sets would 121 

be very difficult to construct because measuring the local bed GSD associated with transport 122 

is almost impossible during flooding. A practical way to obtain such information is flume 123 

experiments, where the flow can be stopped and the bed can be sampled after each bedload 124 

measurement, as done by Wilcock et al. [2001]. They produced bedload data in a 0.6-m-wide 125 

and an 8-m-long tilting flume, with recirculation of poorly sorted sediment mixtures and flow 126 
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conditions allowing partial transport. Five runs were produced with different sand contents 127 

and the data are summarized in Table 1 and are available in Wilcock et al. [2001]. These data 128 

cover a large slope range (0.06%–2%) and are (to the best of the author’s knowledge) the only 129 

published flume data that fully document partial transport [Wilcock and McArdell, 1993]. 130 

These flows are not strictly speaking 1D, as uniformity implies a perfectly constant water 131 

depth and bed roughness. However, as mentioned by the authors, “the sediment bed was 132 

essentially planar,” which allows for the hypothesis of near-uniform flows when compared 133 

with flows in a natural river reach. 134 

2D data 135 

An existing field data set comprising 6,319 values (available in Recking, [2010]) was 136 

expanded with new data from the literature comprising 2,614 measurements collected on 24 137 

river reaches. The main characteristics of this new data set are given in Appendix A and the 138 

data (including bed surface GSD) are available on-line as supplementary material. The 139 

complete data set comprises 8,940 values collected at 109 river sites and is summarized in 140 

Table 2. Most sampling results (when specified) provided width-averaged data for the bed 141 

GSD, the flow characteristics (discharge, velocity), and the bedload transport. The following 142 

figures provide general descriptions of the data set and were used in the subsequent 143 

calculations of 2D bedload transport. 144 

Figure 2 presents the cumulative distribution of diameter <D84>, slope <S>, and width 145 

<W> for the 109 reaches composing the data set. Only 5% are sand bed rivers and 10% have a 146 

D84 smaller than 1 cm (not many published bedload data collected on sand bed rivers were 147 

found in the literature); 70% are gravel bed rivers and 20% are cobble and boulder bed rivers. 148 

Slopes span a broad range of values from 0.01 to 8%. Most widths are in the range 0–15 m, 149 

but reaches as large as 500 m were also considered. The different ranges obtained for <D84>, 150 

slope <S>, and width <W> are consistent, with width and grain size evolving with slope, from 151 
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large lowland sandy rivers to steep narrow boulder streams [Montgomery and Buffington, 152 

1997; Church and Zimmerman, 2007]. Figure 3 plots slope < S > as a function of <D84> for 153 

the data set considered; the trend roughly follows a power function.  154 

A selection of 121 GSDs are plotted in Figure 4. Figure 4a plots a selection of 78 155 

GSDs collected in gravel bed rivers (from the Idaho data set; King et al. [2004]) and the 156 

corresponding averaged GSD. It shows a similar shape between all curves. Figure 4b plots 42 157 

additional GSDs, including sand bed rivers. Figure 4 indicates that the sand fraction at the bed 158 

surface  sF  can vary greatly, and these data suggest 0 <  sF  < 0.2 for most gravel bed 159 

rivers. This is confirmed in Figure 5, where  sF  is plotted as a function of  84D : It is close 160 

to 1 for sand bed rivers and rapidly decreases to approximately 0.1–0.15 for gravel bed and 161 

cobble bed rivers. 162 

Figure 6 (that also includes additional data from Pitlick et al., [2008]) indicates that 163 

the  5084 / DD  ratio is approximately equal to 2, which was also found to be representative 164 

of gravel bed rivers by Rickenmann and Recking [2011] with another data set. However, the 165 

ratio can also differ significantly from 2, and 2/ 5084 = DD  is associated with a variance 166 

following approximately a log-normal distribution with a standard deviation σDR =0.3 (1.1< 167 

D84/D50 < 3.3).  168 

Figure 7 presents relations between the transport stage and the bed surface <D84> and 169 

the slope. It indicates a decrease of <τ*>/<τc*> with <D84> following roughly a power law 170 

(R²=0.45); a similar relation does not seem to exist with the slope. Low <τ*>/<τc*> values for 171 

high <D84> values is not surprising, as the Shields number <τ*> is known to barely exceed 172 

120% of the critical value <τc*> in gravel bed rivers [Parker, 1978; Andrews, 1983; Ryan, et 173 

al., 2002; Mueller, et al., 2005; Parker, et al., 2007]. In fact, only for sand and fine gravels 174 

can the transport stage be very high [Buffington, 2012]. 175 
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Figure 8a plots the unit transport rates <qs> (g/s/m) and Figure 8b plots the averaged 176 

dimensionless transport <Φ>, with Φ defined by [Einstein, 1950]: 177 

3

50)1( Dsg

q

s

s

−
=Φ

ρ
 

(3) 

where ρs is the sediment density. Transport rates cover a wide range; it is interesting to note 178 

that the threshold value <τ*>/<τc*>=1 (computed for D50) corresponds to somewhat 179 

considerable transport and <τ*>/<τc*>=2 approximately delimits two groups with a change in 180 

trend, a result which is consistent with previous analyses [Parker, et al., 1982; Buffington, 181 

2000].  182 

To complete this description of the field data, the bed morphology should be 183 

presented. Unfortunately, except for a few cases [Hassan and Church, 2001; Church and 184 

Hassan, 2002], an exact description of the reach used for measurements was usually not 185 

included in the publications. Mostly only general descriptions of river morphology were 186 

provided, but available information suggests that straight reaches were frequently chosen for 187 

bedload measurements. Nevertheless, the surrounding reach morphology of some sites may 188 

exhibit substantial topographic variation (e.g., pool-riffle or step-pool channels). 189 

LOOKING FOR EVIDENCE OF NONLINEARITY EFFECTS 190 

In this part, the flume and the field data are used with bedload equations to look for 191 

evidence of nonlinearity effects. Bedload equations are used exactly as recommended by their 192 

authors. 193 

From the flume to the field 194 

This part aims to analyze whether averaging the data produces under-prediction when 195 

1D equations are used in the field. 196 

Sixteen flume-derived 1D bedload transport equations were compared with a large 197 

field data set in Recking et al. [2012]. The conclusion of this study was that for the lowest 198 

transport stages (corresponding to partial transport, with τ*
/τc

*
 < 1 for the coarser fractions), 199 
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these threshold equations predicted zero transport whereas the measured transport was non-200 

zero. When the non-zero transport computations were considered, the results showed over-201 

estimation, for all equations, often by several orders of magnitude, which is not in accordance 202 

with the expected under-estimation induced by nonlinearity. This resulted in a generally poor 203 

performance of most of the equations tested, except for high flow conditions (when τ*
/τc

*
 > 2, 204 

which corresponds to sand and fine gravels in Figure 7a). One reason potentially responsible 205 

for over-prediction is that these equations do not account for the changing critical shear stress 206 

with slope.  207 

To overcome this threshold problem (zero prediction and slope effects), a 1D bedload 208 

equation expressed as a function of τ*
/τc

*
 was fitted in Recking [2010] on a large flume data 209 

set obtained with near-uniform sediments (compilation comprising most of the data that have 210 

served to build the equations reported in the literature, available as supplementary material in 211 

Recking, [2010]). This equation accounts for variation of the critical Shields stress with slope 212 

and is presented in Appendix B1. When this 1D equation (used with the median diameter) is 213 

compared with the 1D flume data from Wilcock et al. [2001], the results plotted in Figure 9 214 

can be deemed satisfying, considering that there was no calibration; most particularly, the 215 

trend is very good and there is no clear evidence for over- or under-prediction. 216 

On the other hand, when this equation is compared with the field data, the results 217 

plotted in Figure 10 clearly confirm under-prediction when the transport stage is τ*
/τc

*
 < 0.7, 218 

as expected by nonlinearity effects. However, like the other equations tested in Recking et al. 219 

[2012], this equation over-estimates transport rates for higher flow conditions and gives 220 

acceptable results only when τ*
/τc

*
 > 2 approximately. The possible reason for over-221 

estimation in the range 0.7 < τ*
/τc

*
 < 2 is that all these equations were derived to match as 222 

well as possible the transport capacity of nearly uniform fine materials in flume experiments 223 

(see Recking et al. 2008 for a review of these data). In these conditions, each increment in 224 
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shear stress was systematically balanced by an increment in transport. In gravel and cobble 225 

bed rivers, sediments are not always available for transport because of supply limitations and 226 

hiding effects, and small increments in shear stress may not be compensated by an immediate 227 

increment in bedload, which can explain over-estimation [Bathurst, 2007; Recking, 2012]. 228 

The results are improved in the range 1 < τ*
/τc

*
 < 2 when the Meyer–Peter and Mueller [1948] 229 

shear stress correction is used; however, it also considerably increases under-prediction in the 230 

τ*
/τc

*
 < 1 range.  231 

To overcome the above-mentioned problem, fractional equations were developed for 232 

computing the transport of what is actually present on the bed surface [Parker and 233 

Klingeman, 1982; Parker, 1990; Wilcock and Crowe, 2003]. Among these equations, the 234 

Wilcock and Crowe [2003] equation is considered a truly surface-based relation [Parker, 235 

2009] because it was derived from the flume experiments of Wilcock et al. [2001], with the 236 

exact surface GSD being measured immediately after each flow event. This equation 237 

(presented in Appendix B2) was used as suggested by the authors, with the GSDs sampled at 238 

1-ψ intervals, and by computing the grain shear stress with 2/34/1

65 )(17 USD=τ  [Wilcock, et 239 

al., 2009]. A comparison with the field data set (restricted to 82 reaches and 6,239 values 240 

because the full GSD was not available for all data) showed no significant over-prediction and 241 

a tendency for under-prediction at low shear stresses, in agreement with expected nonlinearity 242 

effects (Figure 11). Similar results were obtained by Gaeuman et al. [2009] who compared 243 

the Wilcok and Crowe equation to bedload measurements of the Trinity river. 244 

To conclude, the above analysis suggests that the variance in flow and bed parameters 245 

produces under-prediction at low transport stages when 1D equations are used in the field. 246 

From the field to the flume 247 

A second way to verify the effects of nonlinearity is to use a 2D field-derived equation 248 

for computing local transport. By fitting the width-integrated transport measurements, these 249 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 12

equations have a built-in allowance for the effects of spatial variability, which should improve 250 

the computation of field bedload transport with width-averaged input data, when compared 251 

with standard 1D equations. On the other hand, if they implicitly compensate for spatial 252 

variability, these equations should logically over-predict transport when compared with 1D 253 

measurements because of nonlinearity effects. This is what was tested here by comparison 254 

with the flume data from Wilcock et al. [2001] (assuming that these data are representative of 255 

1D transport in the field). 256 

Several 2D field-derived equations have been proposed in the literature [Parker, et al., 257 

1982; Barry, et al., 2008; Recking, 2010]. Here, an equation (presented in Appendix B3) 258 

proposed in a previous paper by the author [Recking, 2013] was used because it requires only 259 

a few parameters and permits a direct comparison with flume data. This equation was 260 

compared with the field data set (restricted to 5,735 values not used in its construction, 261 

collected at 73 sites, for blind testing), and the results plotted in Figure 12 indicates only a 262 

slight under-prediction at very low Shields stress ratios. The comparison with a selection of 263 

river reaches did not indicate any particular dependency on the bed morphology (Figure 13). 264 

On the other hand, the comparison with 1D flume data confirmed over-prediction for the low 265 

transport stages, as expected by nonlinearity effects (Figure 14). 266 

To conclude this part, only low transport stages are affected by nonlinearity effects. 267 

Assuming that the flume data are representative of local flows, this analysis suggests that the 268 

variance in flow and bed parameters produces under-prediction when 1D equations are used 269 

in the field. Field-derived equations compensate for these effects, but by contrast they over-270 

predict bedload transport when they are used for computing local transport with local flow 271 

values (e.g., in a numerical model). The following section aims to fill the gap between 1D and 272 

2D transport by investigating the variance associated with each parameter.   273 

 274 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 13

INVESTIGATING THE MISSING DIMENSION 275 

The difference between 1D bedload computation and 2D bedload measurements 276 

results from variance in shear stress and bed properties. Each bedload value of the data set is 277 

by construction the average of several bedload values measured locally and produced by the 278 

variance in flow and bed GSD (as illustrated in Figure 1a); consequently, bedload data 279 

implicitly include the variance in flow and bed parameters, which evolve in both space and 280 

time. On the other hand, this variance is absent from the associated flow and bed data 281 

(discharge measured not simultaneously and often at a gauging station, in another location, 282 

and with a single mean GSD). This variance, which is present in bedload data and absent in 283 

the flow and bed data used in the equations, is what Ferguson [2003] called the “missing 284 

dimension.”  285 

The only way to make the use of a 1D equation consistent for comparison with 286 

measured 2D field data would be to “artificially” reproduce the natural flow and bed 287 

variability. This is done in this part of the paper, using the averaged input data in the 1D 288 

Wilcock and Crowe equation, with their variance described by probability distribution 289 

through a Monte Carlo approach. 290 

Probability distribution functions describing the variance in flow and bed parameters 291 

The depth d can vary considerably in an irregular cross section, ranging from near 292 

zero close to the banks to a maximum at the thalweg, and is linearly related to shear stress for 293 

a given slope ∝ dSτ . The variance associated with longitudinal slope across a given 294 

cross section is difficult to evaluate; however, as pointed out by Ferguson [2003], available 295 

field studies have actually shown a positive correlation between d and τ (local deviations from 296 

τ ∝ d tending to cancel each other out), leading to a similar frequency distribution for d and τ. 297 

This is why in the following the variance was considered directly for the shear stress τ  298 

instead of separate variance for d  and S . This variance was described with an 299 
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asymmetric gamma probability function, as already proposed in other works [Paola, 1996; 300 

Nicholas, 2000; Bertoldi, et al., 2009]: 301 

)(

ˆ
)(

ˆ1

ατ

τα
τ

τααα

Γ=
−− e

p  
 

(4) 

where = τττ /ˆ , τ  is the width-averaged bed shear stress, and α is a parameter describing 302 

the width of the distribution. The lower its value, the larger the variance in τ. A value α=1 303 

was found to be a limiting value for highly irregular cross sections [Paola, 1996; Nicholas, 304 

2000], for instance, in braided streams. It also predicts a shear stress in the range 0 < ττ /  < 305 

5 (Figure 15), which is approximately what Ferguson [2003] obtained with his probability 306 

function when the shear stress is below its mean value of over 80% of the cross section. 307 

Values greater than 5 would be representative for single-thread irregular channels, and α 308 

tends toward infinity for a rectangular cross section. 309 

Fractional equations require a complete definition of the GSD. Instead of discussing 310 

the variance associated with each size class, GSD was reduced to three parameters: the sand 311 

fraction on the bed surface Fs, the median diameter D50, and the D84/D50 ratio. This model, 312 

presented in Table 3, was obtained by considering the proportionality ratios between each size 313 

class measured in the compilation of 78 GSDs, plotted in Figure 4a. Figure 16a shows three 314 

examples of measured GSDs and their approximation with the model, and Figure 16b and c 315 

indicates that the difference between the measured and computed percentage for each fraction 316 

of the whole data set is very weak. There is no intention here to reduce all natural GSDs to 317 

these three parameters, but it allows very realistic GSDs to be built.  318 

Only a few studies have investigated the variability of GSDs in a given reach [Church 319 

and Kellerhalls, 1978; Crowder and Diplas, 1997], and defining the variance for Fs, D50, and 320 

D84/D50 for the purpose of this study is not trivial. Considering the central limit theorem, the 321 

distribution of the means of a series of samples should be normally distributed regardless of 322 

the underlying distribution of the sample; therefore it is hypothesized that for a given mean 323 
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value  50D , diameters D50 vary randomly following a normal distribution (Figure 17). 324 

Several values were considered for standard deviation σD. The value 2/ 5084 = DD  and the 325 

associated normal distribution (σDR = 0.3) observed between sites (Figure 6) was hypothesized 326 

as always valid, including for different locations in a given site. Fs=0.1 was considered on 327 

average for gravel bed rivers (Figure 5); however, sand can be either uniformly distributed 328 

over the surface or concentrated in local patches [Buffington and Montgomery, 1999a; 329 

Dietrich, et al., 2006], which can be described with an asymmetric beta function B(x1,x2), 330 

with an average set to x1/x2 = 0.1 (where x1 and x2 are the shape parameters of the function). 331 

Figure 18 plots B(x1, x2) for different values of x1 and x2. Low coefficients (x1 = 0.001; x2 = 332 

0.01) simulate near-zero sand everywhere and high local sand concentration (patches); on the 333 

other hand, high coefficients (x1=100 and x2=1000) simulate a more uniform distribution of 334 

the sand fraction over the surface. 335 

Limited evidence of a clear correlation between grain size and depth led Ferguson 336 

[2003] to consider two limiting scenarios: purely random patchiness, and perfect fining 337 

upward as in classic models of meander point bars. Here, only the case of near-straight 338 

reaches was considered, with no or little correlation between grain size and depth. Flows over 339 

typical morphological units such as riffle, pools, and bars are considered in the discussion.  340 

A Monte Carlo approach for calibrating the probability functions 341 

In this section the width-integrated bedload data (implicitly containing the natural 342 

variance in bed and flow parameters) were used to calibrate the probability functions 343 

describing the variance in flow and bed parameters. This approach is in a sense similar to that 344 

of Chiari and Rickenmann [2010], who used bedload measurements for back-calculating the 345 

macro roughness of several alpine rivers; however, whereas they used a numerical model, a 346 

Monte Carlo approach was used here. 347 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 16

For a given set of width-averaged input data (say,  sF ,  τ,D ), the Monte Carlo 348 

approach consists in performing a large number of random draws from the probability 349 

distribution of each input parameter to construct numerous sets of local values (Fs, D, τ) 350 

about the means. In the second step, each set of local values is used in the 1D bedload 351 

equation to compute the associated local bedload transport sq . Assuming the probability 352 

distribution functions are correct, averaging these local bedload values N sq
N

1
should 353 

retrieve (in a statistical sense) the measured (and width-averaged) bedload transport qs meas.  354 

For each flow range (considered through the ratio  *τ /  *

cτ ) and given values of S , 355 

 sF ,  50D , and  5084 / DD , the different steps are: 356 

(1) computation of  *τ  for each transport stage  *τ /  *

cτ  (considered for values 0.3, 0.5, 357 

0.7, 1, 1.3, 1.5, 2, 5, and >5) knowing  *

cτ  (given by Eq. 2), from which we deduce 358 

><><= SDR /65.1/ *

84 τ  (Eq. 1); 359 

(2) calculation of the flow velocity U  for  84/ DR  with the Ferguson [2007] flow 360 

resistance equation (this equation was chosen because it has been shown to give satisfying 361 

values when compared with a large data set in Rickenmann and Recking, [2011]); 362 

(3) calculation of the appropriate mean grain shear stress ( ) 2/34/1

6517 = UDSτ  363 

[Wilcock, et al., 2009]; <D65> is given in millimeters and deduced from the model of Table 3; 364 

(4) construction of several sets of local values for τ and GSD (with the model of Table 3) by 365 

random draws in the probability distributions of τ  and  508450 /,, DDDFs ; 366 

computation of the associated bedload ( )GSDqs ,τ  with the Wilcock and Crowe equation. 367 

Large data sets (N=5,000) were constructed to ensure a stable solution for the computed 368 

bedload probability distribution; 369 
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(5) calculation of the average value ( ) ),(
1

, GDSq
N

GSDq
N ss ττ = ; 370 

(6) comparison of ( ) GSDqs ,τ  with qs meas. 371 

Results of simulations  372 

The simulations were tested with different values for α (for τ), σD (for D50), and x1 373 

(with x2 = 10x1 for <Fs> = 0.1). Figure 19 compares the 
measss qq /)( * τ  ratios (where qs meas 374 

is the measured bedload transport and )( * τsq is bedload computed with the Wilcock and 375 

Crowe equation used with average input data, as shown in the right panel of Figure 11) with 376 

>< )(/)( ** ττ ss qq , where >< )( *τsq  is the average bedload deduced from the Monte 377 

Carlo computation. Adequate probability distributions should make it possible to fit 378 

>< )( *τsq with qs meas (in a statistical sense). 379 

No stable solution could be obtained with σD > 0.3 (leading to near-zero D50), and 380 

simulations were considered with 0.1 < σD < 0.3. This range is consistent with Segura et al. 381 

[2010], who measured σD in the range 0.1–0.36 on the basis of multi-pebble counts [Wolman, 382 

1954] involving 2,500–4,700 particles on three reaches of the Williams Fork River (Colorado, 383 

USA). It is also consistent with measurements made on a large gravel bar on the Gunnison 384 

River [Barkett, 1998], a tributary to the Colorado River, consisting of 28 separate Wolman 385 

counts of 100 particles each (total of 2,800 particles), and for which σD was 0.28 (John 386 

Pitlick, personal communication).   387 

Figure 19a shows that it was not possible to match the measurements for all flow 388 

conditions when setting a constant α-value (α = 1 actually seems to work fairly well as a 389 

lower limit to the data). As a consequence, α was empirically varied with the transport 390 

stage  ** / cττ in Figure 19 b and c. All combinations (α, σD, x1) were tested with  ** / cττ  391 

within the range [0.3–100], for constant slopes <S> and <D50> (Figure 19b) and also with the 392 
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transport stage  ** / cττ  linked to the slope and GSD (Figure 19c) through relations plotted 393 

in Figure 3 and Figure 7a. Whatever the hypothesis, the best fit between computed (with the 394 

Monte Carlo approach) and measured bedload was obtained by varying α linearly with a 395 

function given in the form (Figure 19b and c):  396 




=
*

*

cτ

τ
ξα  

 

(5) 

The value of ξ in Equation 5 is slightly sensitive to the variance in GSD. A value of 5 best fits 397 

the measured bedload transport with σD =0.1 (Figure 19c), and a value of approximately 8–10 398 

(not shown in the figure) would be more appropriate for a higher variance in D50 (σD =0.25). 399 

Results plotted in Figure 19c indicate a weak dependency on whether sand is considered 400 

uniformly displayed over the surface (x1=100, x2=1000) or is concentrated into patches 401 

(x1=0.001, x2=0.01).  402 

The conclusion from these simulations is that predictions are weakly sensitive to the 403 

variance in GSD (Figure 19 b and c) but very sensitive to the variance in shear stress (Figure 404 

19a). Such an increase in the parameter α with flow strength was an expected result 405 

[Nicholas, 2000], and values within the range 2 < α < 10 are consistent with results for single-406 

thread channels found by Tunnicliffe et al.[2012]. 407 

DISCUSSION  408 

Consequences for field application 409 

The above results suggest that all models are not adapted to all situations. 1D 410 

equations used with width-average input data are likely to under-estimate width average 411 

bedload transport. The Monte Carlo approach (used with appropriate probability distributions) 412 

can be used for compensating the “missing dimension.” It is illustrated hereafter with the 413 

example of the Lochsa River (using hydraulics and bedload data presented in King et al. 414 

[2004]).  415 
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For the given bed characteristics (Fs=0.03, D50=0.126 m, D84=0.28m, S=0.0023), the 416 

procedure has consisted in defining, for each of the 71 runs characterized by a measured 417 

velocity U and depth d, the transport stage <τ>/<τc>, the GSD, the probability distribution for 418 

all parameters (no calibration was used here, and α=5, σD=0.1, σDR=0.3, x1=100 and x2=1,000 419 

following the above results), and in building bedload data with the Wilcock and Crowe 420 

equation (3,000 values were computed for each run), which were averaged and compared with 421 

the measured bedload. 422 

The results presented in Figure 20 indicate that taking into account the variance in bed 423 

and flow parameters can greatly improve prediction when compared with a direct 424 

computation of the width-averaged data. The inconvenience of this approach is that thousands 425 

of calculations are needed for each width-averaged input data considered. 426 

Local vs. averaged shear stress 427 

Testing the equations (Figure 11) and the Monte Carlo results (Figure 19) showed that 428 

the under-prediction is greater for low transport stages and decreases with increasing shear 429 

stress, as Ferguson [2003] also concluded. This can be explained by a reduced variance in the 430 

shear stress when the flow increases, because depth variations with the local bed topography 431 

may become relatively negligible with regard to the mean flow depth (this is particularly true 432 

for moveable beds becoming flatter with increasing transport stage). 433 

Equations 4 and 5 were used to compute the distribution of the local transport stage 434 

τ/<τc>, for different values of the mean transport stage <τ>/<τc>. The results, plotted in 435 

Figure 21, indicate that for <τ>/<τc> ratios as low as 0.3, the shear stress may locally be 436 

higher than the critical shear stress for mobility of the bed surface (τ/τc>1). This means that 437 

local armor break-up can always exist to some degree, exposing the subsurface material to the 438 

flow. This finding is consistent with the observation that even in the presence of a coarse 439 

armor, with a zero sand fraction at the bed surface (Fs = 0), the bedload GSD is always much 440 
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finer than the surface GSD and equivalent to the subsurface GSD. This was, for instance, the 441 

case for several of the Idaho streams [King, et al., 2004], for which bedload was measured for 442 

very low transport stages. However, the bedload material may also include upstream sediment 443 

supply that is not accounted for in the current analysis. Consequently, the sand fraction 444 

measured at the bed surface at rest could be an incorrect indicator of sediment availability for 445 

bedload computation.  446 

Several questions to be investigated further 447 

The first question is how much are the above results dependent on the Wilcock and 448 

Crowe equation, used here as representative of 1D transport? To answer this question, another 449 

1D equation was considered. In work not shown here, an attempt was made to adapt the 2D 450 

Recking [2013] equation (Appendix B3) to 1D transport by introducing a correction 451 

coefficient ζ < 1 such that:  452 

DsD F 21 )*,( Φ=Φ τζ     (6) 

According to Figure 14, the function ζ(τ*, Fs) must converge to 1 when the sand fraction Fs 453 

converges to 1 or when the transport value is high (when all grain classes are moving, which 454 

can be expressed, for instance, with reference to the threshold conditions τc* for the coarser 455 

fraction considered through diameter D84 in Eq. 2). Calibration with the Wilcock et al. flume 456 

data gave: 457 

10

*

*
* )ln()12.015.0(1),( 





−+= s

c

s FF
τ

τ
τζ             for τ*/τc* < 1.56   

ζ(τ*
, Fs)   = 1                                                           for τ*/τc* > 1.56       

 

 

(7) 

where τ* and τc* were calculated with Eqs. 1 and 2 for Di=D84. This function performed as 458 

well as the Wilcock and Crowe equation for the bulk bedload transport when compared with 459 

the flume data of Wilcock et al., it produced results that are very similar to Figure 11 when 460 

compared with the field data, and gave a very similar result for α (i.e., linear variation with 461 

<τ*>/<τc*>) when used in the Monte Carlo approach. Consequently, it is not the Wilcock and 462 
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Crowe equation that should be questioned here, but the flume data from which it was derived: 463 

Are they representative of local transport in the field? Very precise local field measurements 464 

would be needed to confirm these results, not only for the bed shear stress and bedload 465 

transport, but also for the associated bed surface GSD (such data do not yet exist to the best of 466 

the author’s knowledge). 467 

 A second question concerns the effects of the local bed morphology. The case of near-468 

straight reaches was considered here, with no or little correlation between the depth and GSD. 469 

Developing probability functions that are typical of morphological units such as riffle, pools, 470 

and bars [Buffington and Montgomery, 1999b; Bunte and Abt, 2001] may necessitate a more 471 

sophisticated approach, linking these two parameters [Ferguson, 2003]. However, 472 

investigating the correlation between depth and grain size is challenged by uncertainties on 473 

the variance in GSDs, which may change with hydraulic roughness [Buffington and 474 

Montgomery, 1999a] or other external factors, such as the transport stage: The streambed 475 

textures are typically documented at low flow when the bed is at rest and likely reflect 476 

preferential transport by secondary flows, during hydrograph recession. For instance, there is 477 

no reason why the bed patchiness measured on the bed at rest would be representative of the 478 

bed during flooding. 479 

To conclude, the investigation proposed in this paper considered variations around the 480 

mean input values, which themselves were assumed to be exact. However, an erroneous 481 

estimation of the width-averaged input data is likely to strongly impact the results. This aspect 482 

should be considered in further analysis. It should be noted that the Monte Carlo analysis can 483 

also be a useful tool for estimating the error on bedload prediction, with consideration of 484 

uncertainties attached to the measured (or estimated) field data [Wilcock, et al., 2009].  485 

CONCLUSIONS 486 

Because they are nonlinear, bedload transport equations should logically under-predict 487 
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observed bedload transport when they are used with averaged (flow and bed) input data 488 

[Gomez and Church, 1989; Paola and Seal, 1995; Ferguson, 2003; Bertoldi, et al., 2009; 489 

Francalanci, et al., 2012]. However, this expectation has not been clearly demonstrated in 490 

prior studies comparing predicted transport rates with observed values, which show over-491 

prediction, usually by several orders of magnitude [Rickenmann, 2001; Barry, et al., 2004; 492 

Bathurst, 2007; Recking, et al., 2012]. 493 

In this paper, evidence of nonlinearity was shown by comparing 1D (flume-derived) 494 

equations and 2D field measurements (Figure 10, Figure 11) and by comparing a 2D (field-495 

derived) equation with 1D flume measurements (Figure 14). Comparison with a 1D 496 

nonthreshold equation derived for uniform sediments [Recking, 2010] and with no shear stress 497 

correction produced under-prediction for low transport stages only (when τ*/τc* < 1), over-498 

prediction in the range 1 < τ*/τc* < 2, and near adequate transport for higher transport stages 499 

(Figure 10). Over-prediction in the range 1 < τ*/τc* < 2 is typical of other 1D threshold 500 

equations [Recking, et al., 2012]. The nonthreshold fractional equation from Wilcock and 501 

Crowe used with shear stress correction also under-predicted bedload for the low transport 502 

stages (when τ*/τc* < 1) as expected by nonlinearity effects, and adequately reproduced 503 

bedload for higher transport stages (Figure 11). On the other hand, the field-derived 2D 504 

equation [Recking, 2013] that implicitly takes into account the variance in flow and bed 505 

parameters correctly predicted the field data but over-predicted 1D bedload transport 506 

measured in the flume by Wilcock et al. [2001] (Figure 14).  507 

Under-prediction exists because each bedload data is by construction the average of 508 

several local bedload values containing the variance in shear stress and bed GSD, whereas 509 

such variance is absent from the mean input values used in bedload equations. The GSD was 510 

reduced to three parameters (Fs, D50, D84/D50) and probability distribution functions were 511 

proposed to describe the variance associated with the flow and the bed. Then the Wilcock and 512 
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Crowe equation was compared with the field bedload data in a Monte Carlo approach, in 513 

order to calibrate the parameters of these functions. The conclusion is that bedload prediction 514 

is weakly sensitive to the variance in bed GSDs but is highly sensitive to the variance in shear 515 

stress (Figure 19). The shear stress was modeled by a gamma function, whose shape 516 

coefficient was found to vary linearly with the transport stage <τ*>/<τc*>. The variance in 517 

shear stress suggests that local shear stress can exceed the critical shear stress for the bed 518 

armor even for very low flow conditions (Figure 21); this may explain local armor break-up 519 

and why the bedload GSD is frequently equivalent to the subsurface GSD (much finer than 520 

the surface GSD). 521 

Several aspects of this study remain to be investigated. In particular, little is known 522 

about the variance in GSDs for a given reach, and new data (collected in the flume or in the 523 

field) are needed for comparison with the Wilcock et al. [2001] data used here as 524 

representative of 1D transport. 525 

526 
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FIGURE CAPTIONS 541 

Figure 1: Schematic representation of nonlinearity effects on a river cross section. Figure 1a 542 

illustrates a river section, its averaged parameters <τ*> and qs(<τ*>), and its decomposition 543 

in local values τi* and qs(τi*); Figure 1b indicates that the higher the value of the shear stress 544 

exponent, the greater the nonlinearity effects. 545 

 546 

Figure 2: Cumulative distribution of <D84>, slope <S>, and width <W>, for the field data set 547 

(109 reaches) 548 

 549 

Figure 3: Variation of the slope <S> with <D84> deduced from the field database 550 

 551 

Figure 4: Grain size distributions for the field data set: (a) a selection of 78 GSDs from gravel 552 

bed rivers; (b) additional data (43 GSDs) including sand bed rivers 553 

 554 

Figure 5: Plot of the sand fraction Fs as a function of the bed surface D84  555 

 556 

Figure 6: D84/D50 ratio measured for a selection of 170 river reaches (left) and associated 557 

probability distribution function (right) 558 

 559 

Figure 7: Relationship between the transport stage <τ*>/<τc*> and the bed surface <D84> and 560 

the slope <S> 561 

 562 

Figure 8: Transport rates plotted as a function of the transport stage <τ*>/<τc*>; (a) unit 563 

transport <qs> (g/s/m); (b) dimensionless transport (Einstein parameter <Φ>) 564 

 565 
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Figure 9: Comparison of the Wilcock et al. [2001] data (qs meas) with the Recking [2010] 566 

equation (qs(<τ*>); Appendix B1), which represents a best fit of flume data having near-567 

uniform sediments  568 

 569 

Figure 10: Comparison of the field data (qs meas) with the Recking [2010] equation (qs(<τ*>); 570 

Appendix B1), which represents a best fit of flume data having near-uniform sediments: 571 

measured unit bedload qs meas vs. computed value qs <τ> (left panel), and qs meas / qs<τ> ratio 572 

vs. transport stage (right panel). 573 

 574 

Figure 11: Comparison of the field data (qs meas) with the Wilcock and Crowe equation [2003] 575 

(qs(<τ*>); Appendix B2): measured unit bedload qs meas vs. computed value qs <τ> (left panel), 576 

and qs meas / qs<τ> ratio vs. transport stage (right panel). 577 

 578 

Figure 12: Comparison of the field data (qs meas) with the field equation [Recking, 2010; 579 

2013] (qs(<τ*>); Appendix B3): measured unit bedload qs meas vs. computed value qs <τ> (left 580 

panel), and qs meas / qs<τ> ratio vs. transport stage (right panel). 581 

 582 

Figure 13: Performance of the field equation [Recking, 2013; Appendix B3] across a broad 583 

range of grain size and channel morphology  584 

 585 

Figure 14: Comparison of the Wilcock et al. [2001] data (qs meas) with the field equation 586 

[Recking, 2010; 2013] (qs(<τ*>); Appendix B3); Fs is the sand fraction at the bed surface 587 

 588 

Figure 15: Gamma function of τ/<τ> plotted for different values of the shape parameter α 589 

 590 
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Figure 16: Modeling of GSD: (a) model comparison with three GSDs and difference between 591 

computed and measured GSDs of (b) Figure 4a (78 GSDs) and (c) Figure 4b (43 GSDs) 592 

 593 

Figure 17: Normal distribution of D50/<D50> plotted for different values of the standard 594 

deviation σ 595 

 596 

Figure 18: Beta function of Fs plotted for different values of the shape parameters x1 and x2 597 

 598 

Figure 19: Comparison of the results of the Monte Carlo simulation (curves) with the Figure 599 

11b data (Box plots),  for (a) constant α-values; (b) transport state-dependent α and several 600 

values of <D50>; (c) several combinations of α, σD, and x1 with  ** / cττ , <D84> and <S> 601 

linked by relationships illustrated in Figure 3 and Figure 7. 602 

 603 

Figure 20: Bedload computation with the Wilcock and Crowe [2003] equation with and without 604 

taking into account the variance in bed and flow parameters (qs(τ) and qs(<τ>), respectively): 605 

example of the Lochsa River 606 

 607 

Figure 21: Distribution of local transport stages τ/τc, for different mean transport stages 608 

<τ>/<τc> 609 

 610 

 611 

 612 

613 
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NOTATIONS 614 

d Flow depth [m] 615 

Dx Grain diameter (subscript denotes % finer) [m] 616 

Fs Sand fraction at the bed surface [-] 617 

>< P  Width averaged value of parameter P:  =
>=<

W

y
Pdy

W
P

0

1
 618 

Q Flow discharge [m
3
/s] 619 

q Specific discharge (q=Q/W) [m
3
/s/m] 620 

Qs Sediment discharge at equilibrium flow condition [kg/s]  621 

qs  Bedload transport rate per unit width (qs=Qs/W) [kg/s/m] 622 

R Hydraulic radius [m] 623 

S Slope [m/m] 624 

s Relative density (s=ρs/ρ) [-] 625 

U Vertically averaged flow velocity [m/s] 626 

u* Shear velocity: ρτ /* =u  [m/s] 627 

W Channel width [m] 628 

x1, x2  Parameters of the beta distribution for Fs 629 

α Parameter of the gamma function for τ 630 

ξ Coefficient in α=ξ<τ*>/<τc*> 631 

σD Standard deviation of the normal distribution for D50 632 

σDR Standard deviation of the normal distribution for D84/D50 633 

Φ Dimensionless transport rate:  Φ=qsv/[g(s-1)D
3
]
0.5

 [-] 634 

ρ Fluid density [kg/m
3
] 635 

ρs Sediment density [kg/m
3
] 636 

τ Bed shear stress [N/m
2
] 637 
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τ* Shields parameter calculated for diameter Dx [ ]: τ*x = τ/[(ρs-ρ)gDx] [-] 638 

τ*c Critical Shields stress corresponding to grain entrainment [-] 639 

640 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 30

APPENDIX 641 

Recking, A. (2013), An analysis of nonlinearity effects on bed load transport prediction, 

J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20090.



 31

Appendix A: Main characteristics of the additional data 

Site  Data source Measurement technique* W 

(m) 

S 

(x103) 

Q 

(m3/s) 

U 

(m) 

d 

(m) 

D50
** 

(mm) 

D84
** 

(mm) 

Nb of 

values 

Mondego River Da Cunha [1969] in 

Brownlie, 1981  

No information 70–189 

 

0.54–0.97 29–660 NA 0.45–2.45 2.2–2.6 4.7–6 219 

Mountain Creek Einstein [1944] in 

Brownlie [1981] 

Sediment discharge measured 

by trapping sediment in a 

mesh-covered hopper and 

pumping it into a weighing 

tank. Continuous water stage 

record. Discharge calculated 

from velocity (and depth) 

determined by means of floats.  

3.3–4.3 

 

1.36–3.15 

 

0.1–1.5 NA 0.04–0.44 0.3–0.9 0.4–1.7 100 

Saskatchewan 

River 

Samide [1971] in 

Brownlie [1981] 

Basket-type bed-load samplers, 

local velocity and depth 

measurements 

3–6.1 1.53–7.45 4.7–39.1 NA 0.73–2.74 1.5–7.5 22.8–178 55 

Hii River Shinohara and 

Tsubaki [1959] in 

Brownlie [1981] 

No information 0.8–8 0.84–1.72 0.05–4.9 NA 0.11–0.73 1.3–1.5 2.7–3.2 23 

Nile River Gaweesh  and Van 

Rijn [1994]; Abdel-

Fattah et al. [2004] 

Nozzle (width = 0.096 m; 

height = 0.055 m; length = 

0.085 m; rear width = 0.105 m; 

rear height = 0.06 m) 

connected to a nylon bag with a 

mesh size of 150 or 250 10–6m. 

Velocity and depth 

measurements. 

200–578 0.04–0.09 NA 0.4–0.9 2.76–5.72 0.3–0.6 0.3–1.7 29 

Rhine River Gaweesh and Van 

Rijn [1994] 

Same as Nile River 300–350 0.08–0.11 NA 0.5–1.3 4.5–7.4 0.9 1.9 12 

Turkey brook at 

Birkie Reach 

Reid  and Frostick 

[1986] 

Three independent pit traps 3 2.6–16.2 0.1–13.8 NA 0.064–0.93 22 42 206 

SF Cache la Poudre Ryan  et al [2005] Helley-Smith sampler, velocity 

with Price AA or current meter 

7.3–15.1 7 0.5–16.6 0.33–1.73 0.16-0.64 68 115 89 

Cache Creek Ryan et al [2005] Same as SF Cache la Poudre 5.1–5.3 21 0.7–2.7 0.5–1.1 0.30-0.48 46 115 60 

Coon Creek Ryan et al [2005] Same as SF Cache la Poudre 4.5–6.7 31 0.3–4 0.5–1.7 0.15-0.39 83 215 88 

East Fork Encampt. Ryan et al [2005] Same as SF Cache la Poudre 3.9–6.5 38 0.1–2.2 0.3–1.14 0.10-0.34 50 133 84 

Halfmoon Creek Ryan et al [2005] Same as SF Cache la Poudre 8.3–9.6 9.2–16 0.5–10.8 0.35–1.75 0.16-0.59 62 108 155 

East Fork San Juan Ryan et al [2005] Wading version of an Elwha 15–17.2 8 2.8–13.8 0.71–1.59 0.27-0.52 50 112 77 
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bedload sampler, 102×203mm 

Mid Fork Piedra Ryan et al [2005] Same as East Fork SJ 11.4–

13.8 

9–19 1–10.9 0.45–1.63 0.19-0.53 80 210 86 

Silver Creek Ryan et al [2005] Same as East Fork SJ 3.8–4.4 45 0.1–1.4 0.08–0.39 0.11-0.32 31 73 57 

Upper Florida Ryan et al [2005] Same as East Fork SJ 11.3–17 1.2–15.1 1.1–15.3 0.27–1.35 0.41-0.89 210 550 37 

Redwood at Orick Madej and Ozaki 

[1996] and 

unpublished USGS 

data 

Qs (Helley-Smith sampler) and 

Q measured at Orick gauging 

station. W(Q), D50 and D84 

from unpublished data 

11.7–70 1.4 1.8–569 NA NA 5 18 221 

Fraser river at 

Agassiz 

McLean et al [1999], 

Ferguson and Church 

[2009] 

Basket sampler (610×255 mm) 

for high flows (>7000 cm) and 

half-size VuV sampler 

(225×115 mm) for lower flows. 

Discharge measured at gauging 

station. 

510 0.46 1085–11445 NA NA 42 70 76 

Harris Cr. Church and Hassan 

[2002]; Hassan and 

Church [2001]; 

Sterling and Church 

[2002] 

Sediment trap 

 

15 13 4.2–18.4 NA NA 70 100 22 

Tordera River García and Sala 

[1998], Garcia et al 

[2000] 

Pit trap 5.5 20 2–7.5 0.9–1.63 0.27-0.45 50 170 220 

Bridge Cr. Nanson [1974] Basket sampler 38 cm long/30 

cm wide, mesh size 6.4 mm, 

current meter and water stage 

recorder 

2.3 67 0.3–1.1 NA NA 30 63 18 

Virginio Cr. 

 

Tacconi and Billi 

[1987], Cencetti et 

al.,[1994]  

Vortex tube 

Bedload values deduced from 

graph reading 

12 8 0.6–7.1 NA NA 27 55 99 

Fall River FR1 Pitlick [1993]. Helley-Smith 76 mm, water 

stage record and calibration 

with a current meter 

9 3.2 0.92–10.71 0.34–1.37 0.30-0.87 11 20 175 

Fall River FR2 Pitlick [1993] Same as FR1 7 1.5 1.13–9.97 0.44–1.11 0.36-1.39 1 3 182 

Torrent Saint-Pierre 

(braided river) 

Meunier  et al [2006] U with propeller CM OTT, HS 

15*15cm, Net mesh 0.25mm. 

9.2-11 25 0.05-0.91* 0.48-1.98 0.08-0.98 21 80 224 

*Discharge per unit width q [m3/s/m] ** Measured at the bed surface 642 
 643 
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Appendix B1: 1D Equation for uniform sediments (Recking, 2010) 644 
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Appendix B2: Wilcock and Crowe [2003] bedload equation 647 
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Where qvi is the volumetric transport rate of size i per unit width (qv=Σqvi), Dsm is the 654 

geometric mean particle diameter of the bed surface and Fs is the sand fraction at the bed 655 

surface. 656 

 657 

Appendix B3: Recking (2013) 658 
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where q = Q/W and where p = 0.23 when 3

84/ gSDq  < 100 and p = 0.3 otherwise. 661 
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 662 

TABLES 663 

 664 

 665 

Run Fs* 

(x100) 

D50* 

(mm) 

D84* 

(mm) 

Slope 

(x10
3
) 

q (m²/s) d (m) qs (g/m/s) 

BOMC 37.9-59.6 0.5-2.8 8-14.9 0.6-16.2 0.029-0.095 0.09-0.12 0.002-572 

J27 15.5-27.7 4-5.5 16.4-20.2 2.1-17 0.05-0.13 0.09-0.11 0.003-779 

J21 3.4-16.5 5.5-8 18-21.8 3.3-18.5 0.065-0.126 0.1-0.12 0.017-152 

J14 0.6-1.8 9-12 21.4-23.2 5.2-18.6 0.079-0.133 0.102-0.12 0.019-115 

J06 0-0.3 10.5-12.9 20.4-24.8 4.5-22.5 0.078-0.133 0.1-0.11 0.000-204 

* measured at the bed surface 666 

Table 1: Experimental runs from Wilcock et al 2001 667 

 668 

 669 

 670 

Parameter Range 

Slope (m/m) 0.00004–0.085 

Diameter D50 (mm) 0.25–220 

Diameter D84 (mm) 0.3–558 

Bankfull depth (m) 0.04–7.5 

Bankfull width (m) 0.3–578 

 671 

Table 2: Main characteristics of field data 672 

 673 

 674 

 675 

 676 

 677 
Class i (%) Di (mm) Cn Remark 

0 100Fs Dm - Dm = 2mm but if Fs = 0  Dm = the minimum 
diameter of the GSD 

1 

s

n

s F
C

F
100

10050
+

−  
m

n

m D
C

DD
+

−50  

16  
2 3.3 3.3 replaced by 8 if Dm > 2 mm  
3 1.9  
4 1.3  
5 50 D50 -  

6 60 
50

5084 D
C

DD

n

+
−  5.9  

7 70 2.3  

8 84 D84 -  

9 90 

CnD84 

1.3  

10 98 2.5 2.5 replaced by 1.5 if Dm > 2 mm 

11 100 5.1  

 678 
Table 3: Grain Size distribution Model. Input data are D50, D84, Fs (the sand fraction), and Dm if Fs=0 679 
(minimum grain size). Cn is a coefficient and Di is the upper limit of the size class. For constructing a GSD, 680 
Fs and Cn are used for computing the limits of each size class (column 3) and the % in each class (column 681 
2).  682 
 683 

684 
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