
HAL Id: hal-00916083
https://hal.science/hal-00916083v3

Preprint submitted on 4 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The number of open paths in oriented percolation
Olivier Garet, Jean-Baptiste Gouéré, Régine Marchand

To cite this version:
Olivier Garet, Jean-Baptiste Gouéré, Régine Marchand. The number of open paths in oriented per-
colation. 2013. �hal-00916083v3�

https://hal.science/hal-00916083v3
https://hal.archives-ouvertes.fr


THE NUMBER OF OPEN PATHS IN ORIENTED

PERCOLATION

OLIVIER GARET, JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

Abstract. We study the number Nn of open paths of length n in su-
percritical oriented percolation on Z

d × N, with d ≥ 1. We prove that
on the percolation event {inf Nn > 0}, N

1/n
n almost surely converges to

a positive deterministic constant. We also study the existence of direc-
tional limits. The proof relies on the introduction of adapted sequences
of regenerating times, on subadditive arguments and on the properties
of the coupled zone in supercritical oriented percolation.

1. Introduction and main results

Introduction. Consider supercritical oriented percolation on Z
d × N. Let

N(a, b) denote the number of open paths from a to b. By concatenation
of paths we get N(a, c) ≥ N(a, b)N(b, c). In other words, the following
superadditivity property holds:

logN(a, c) ≥ logN(a, b) + logN(b, c).

Having in mind subadditive ergodic theorems, it seems then natural to think
that, on the percolation event "the cluster of the origin is infinite", the
number Nn of open paths with length n starting from the origin should
grow exponentially fast in n. However, the possibility for edges to be closed
implies that logN(·, ·) may be infinite, and therefore not integrable. This
prevents from using subadditive techniques, at least in their simplest form.

The growth rate of N
1/n
n and related objects have already been studied.

Fukushima and Yoshida [4] proved that limN
1/n
n is almost surely strictly

positive on the percolation event. Lacoin [9] proved that the straigtforward

inequality limN
1/n
n ≤ p(2d + 1) is not always an equality. In spite of those

works, to our knowledge, there was no proof of the convergence of N
1/n
n in

the literature.
Such a convergence has been obtained for a relaxed kind of percolation

called ρ-percolation. Let ρ ∈ (0, 1) and let Nn(ρ) denotes the number of
paths with length n using at least ρn open edges. The existence of the
limit Nn(ρ)1/n has been proved in Comets–Popov–Vachkovskaia [1] and in
Kesten–Sidoravicius [8] by different methods.

The present paper aims to prove that in supercritical oriented percolation,

N
1/n
n has an almost sure limit on the percolation event. The proof relies on

essential hitting times which have been introduced in Garet–Marchand [5]
in order to establish a shape theorem for the contact process in random
environment. Let us now define precisely the oriented percolation setting
we work with.
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Oriented percolation in dimension d + 1. Let d ≥ 1 be fixed, and let
‖.‖1 be the norm on R

d defined by

∀x = (xi)1≤i≤d ∈ R
d ‖x‖1 =

d
∑

i=1

|xi|.

We consider the oriented graph whose set of sites is Z
d × N, where N =

{0, 1, 2, . . . }, and we put an oriented edge from (z1, n1) to (z2, n2) if and
only if

n2 = n1 + 1 and ‖z2 − z1‖1 ≤ 1;

the set of these edges is denoted by
−→
E
d+1
alt . We say that γ = (γi, i)m≤i≤n ∈

(Zd × N)n−m+1 is a path if and only if

∀i ∈ {m, . . . , n− 1} ‖γi+1 − γi‖1 ≤ 1.

Fix now a parameter p ∈ [0, 1], and open independently each edge with

probability p. More formally, consider the probability space Ω = {0, 1}
−→
E

d+1
alt ,

endowed with its Borel σ-algebra and the probability

Pp = (Ber(p))⊗
−→
E

d+1
alt ,

where Ber(p) stands for the Bernoulli law of parameter p. For a configuration

ω = (ωe)e∈
−→
E

d+1
alt

∈ Ω, say that the edge e ∈
−→
E
d+1
alt is open if ωe = 1 and closed

otherwise. A path is said open in the configuration ω if all its edges are open
in ω. For two sites (v,m), (w,n) in Z

d ×N, we denote by {(v,m) → (w,n)}
the existence of an open path from (v,m) to (w,n). By extension, we denote
by {(v,m) → +∞} the event that there exists an infinite open path starting
from (v,m).

There exists a critical probability −→pc
alt(d+ 1) ∈ (0, 1) such that:

Pp((0, 0) → +∞) > 0 ⇐⇒ p > −→pc
alt(d+ 1).

In the following, we assume p > −→pc
alt(d + 1), and we will mainly work

under the following conditional probability:

Pp(.) = Pp(.|(0, 0) → +∞).

Global convergence result and previous results. Denote by Nn the
number of open paths of length n emanating from (0, 0). Our main result is
the following.

Theorem 1.1. Let p > −→pc
alt(d+1). There exists a strictly positive constant

α̃p(0) such that, Pp-almost surely and in L1(Pp),

lim
n→+∞

1

n
logNn = α̃p(0).

We now recall some questions related to this convergence problem. First,
note that Ep(Nn) = ((2d + 1)p)n. As noticed by Darling [2], the sequence
(Nn((2d + 1)p)−n)n≥0 is a non-negative martingale, so there exists a non-
negative random variable W such that

Pp − a.s.
Nn

(2d+ 1)npn
−→ W and Ep[W ] ≤ 1.
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Therefore, it is easy to see that

1

n
logNn → log((2d+ 1)p) on the event {W > 0}.

So when W > 0, Nn has the same growth rate as its expectation. In his
paper [2], Darling was seeking for conditions implying that W > 0. It seems
that these questions have been forgotten for a while, but there is currently an
increasing activity due to the links with random polymers – see for example
Lacoin [9] and Yoshida [10]. Actually, it is not always the case that W > 0.
Let us summarize some known results:

• Pp(W > 0) ∈ {0, 1}. The random variable

χ = lim
n→+∞

1

n
logNn

is Pp-almost surely constant (see Lacoin [9]). Note that a simple
Borel-Cantelli argument ensures that χ ≤ log((2d+ 1)p).

• W = 0 a.s. if d = 1 or d = 2 (see Yoshida [10]).
• There exists −→pc,2

alt(d+ 1),−→pc,3
alt(d+ 1) ∈ [−→pc

alt(d+ 1), 1] such that:

– Pp(W > 0) = 1 when p > −→pc,3
alt(d + 1) and Pp(W > 0) = 0

when p < −→pc,3
alt(d+ 1).

– χ = log(p(2d+ 1)) Pp-almost surely when p > −→pc,2
alt(d+ 1) and

χ < log(p(2d+ 1)) Pp-almost surely when p < −→pc,2
alt(d+ 1).

– −→pc,2
alt(d+ 1) ≤ −→pc,3

alt(d+ 1).

– −→pc,3
alt(d+ 1) < 1 if d ≥ 3.

See Lacoin [9] Sections 2.2 and 2.3.
• It is believed that −→pc,2

alt(d+1) > −→pc
alt(d+1) and thus −→pc,3

alt(d+1) >
−→pc

alt(d + 1) when d ≥ 2. Lacoin [9] proved that the inequality is
indeed strict for L-spread-out percolation for d ≥ 5 and L large.

In any case, it is clear that we need a proof of the existence of a limit for
1
n logNn that would not require W > 0. Our next result focuses on open
paths with a prescribed slope.

Directional convergence results. We first need to give a few more nota-
tions and results. Oriented percolation is known as the analogue in discrete
time for the contact process. Usually, results are proved for one model,
and it is commonly admitted that the proofs could easily be adapted to the
other one. For the results concerning supercritical oriented percolation we
use in this work, we will thus sometimes give the reference for the property
concerning the contact process without any further explanation.

We define

ξn = {y ∈ Z
d : (0, 0) → (y, n)} and Hn = ∪

0≤k≤n
ξk.

As for the contact process, the growth of the sets (Hn)n≥0 is governed by
a shape theorem when conditioned to survive: for every p > −→pc

alt(d + 1),
there exists a norm µp on R

d such that for every ε > 0, Pp almost surely,

(1) ∃N ∀n ≥ N Bµp(0, (1 − ε)n) ⊂ Hn + [0, 1]d ⊂ Bµp(0, (1 + ε)n),

where Bµp(x, r) = {y ∈ R
d : µp(y − x) ≤ r}. See, for the supercritical

contact process, Durrett [3] or Garet-Marchand [5].
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For every set A ⊂ Bµp(0, 1), we denote by NnA,n the number of open paths

starting from (0, 0), with length n and whose extremity lies in nA ∩ Z
d.

Theorem 1.2. Fix p > −→pc
alt(d+ 1). There exists a concave function

α̃p : B̊µp(0, 1) −→ (0, log(p(2d + 1))],

with the same symmetries as the grid Z
d, such that, for every set A such

that Å = A ⊂ B̊µp(0, 1), Pp-almost surely,

lim
n→+∞

1

n
logNnA,n = sup

x∈A
α̃p(x).

Since α̃p is even and concave, the constant α̃p(0) which appears in the
statement of Theorem 1.1 is indeed the value of the function α̃p at 0.

By considering, in Theorem 1.2, the set A = Bµp(x, ε) for x ∈ B̊µp(0, 1)
and for a small ε, we see that α̃p(x) characterises the growth of the number
of open paths with length n and prescribed slope x. Using the very same
technics of proof, one could for instance prove the following directional con-
vergence result. If x ∈ Z

d, denote by Nx,n the number of open paths from
(0, 0) to (x, n):

Theorem 1.3. Fix p > −→pc
alt(d+1) and (y, h) ∈ Z

d×N
∗ such that µp(y) < h.

Extract from the sequence (ny, nh) the (random) subsequence, denoted ψ :
N → N, of indices k such that (0, 0) → k.(y, h) . Then Pp almost surely,

lim
n→+∞

1

ψ(n)h
logNψ(n).(y,h) = α̃p(y/h).

Take now as a random environment a realization of oriented percolation
on Z

d × N with parameter p such that 0 percolates. Once this random
setting is fixed, choose a random open path with length n, uniformly among
all open paths with length n, and ask for the behavior of the extremity of

this random path. More precisely, for every set A with Å = A ⊂ B̊µp(0, 1),
the probability that the extremity of the random path stands in nA is

NnA,n

Nn
.

Then, Theorem 1.2 can be rephrased as a quenched large deviations principle
for the extremity of this random open path:

Remark 1.4. Fix p > −→pc
alt(d + 1). For every set A such that Å = A ⊂

B̊µp(0, 1), Pp-almost surely,

lim
n→+∞

1

n
log

NnA,n

Nn
= − inf

x∈A
(α̃p(0) − α̃p(x)) .

Open questions. Here are a few open questions.

• Is the following statement true ?

∀x ∈ B̊µp(0, 1)\{0Zd } α̃p(x) < α̃p(0).

If the statement held, then the extremity of a random open path
with length n, uniformly chosen among open paths with length n,
would concentrate near 0Zd .
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• Is α̃p strictly concave ? This would imply the previous statement.

• Does α̃p vanish when x tends to the boundary of B̊µp(0, 1) ?

Organization of the paper. The key ideas of our proofs are the following.
First, in Section 2, we recall results for supercritical oriented percolation,

and we build the essential hitting times.
Then, in Section 3, we fix a vector (y, h) ∈ Z

d ×N
∗ and we build an asso-

ciated sequence of regenerating times (Sn(y, h))n (see Definition 3). These
random times satisfy (0, 0) → (ny, Sn(y, h)) → +∞ and have good invari-
ance and integrability properties with respect to Pp. We can thus apply
Kingman’s subbaditive ergodic theorem to obtain, in Lemma 3.2, the exis-
tence of the following limit:

1

Sn(y, h)
log(Nny,Sn(y,h)) → αp(y, h).

Section 4 is devoted to the proof of Theorem 1.1. The asymptotic behavior
of log(Nn)/n should come from the "direction" (y, h) in which open paths
are more abundant, i.e. in the "direction" (y, h) that maximizes αp(y, h).
The key step to recover a full limit from the limit of a random subsequence is
the continuity lemma 4.2: using the coupled zone, we prove in essence that
two points close in Z

d × N
∗ and reached from (0, 0) by open paths should

have similar number of open paths arriving to them.
Finally, in Section 5, the same ideas are used to prove Theorem 1.2. The

arguments are however more intricate. That is why we chose to present
an independent proof of Theorem 1.1 where to our opinion, each type of
argument – regenerating time, coupling – appears in a simpler form.

Notation. For n ≥ 1, x ∈ Z
d and any set A ⊂ R

d, we denote by

• Nn the number of open paths from (0, 0) to Z
d × {n},

• Nn the number of open paths from (0, 0) to Z
d × {n} that are the

beginning of an infinite open path,
• Nx,n the number of open paths from (0, 0) to (x, n),

• NA,n the number of open paths from (0, 0) to (A ∩ Z
d) × {n}.

2. Preliminary results

2.1. Exponential estimates for supercritical oriented percolation.

We work with the oriented percolation model in dimension d+ 1, as defined
in the introduction. We set, for n ∈ N and x ∈ Z

d,

ξxn = {y ∈ Z
d : (x, 0) → (y, n)}, Hx

n = ∪
0≤k≤n

ξxk ,

ξZ
d

n = ∪
x∈Zd

ξxn, K ′x
n = ∩

k≥n
(ξxk∆ξZ

d

k )c,

τx = min{n ∈ N : ξxn = ∅}.

To simplify, we often write ξn, τ,Hn,K
′
n instead of ξ0

n, τ
0,H0

n,K
′0
n .

For instance, τ is the length of the longest open path starting from the
origin, and the percolation event is equal to {τ = +∞}. First, finite open
paths cannot be too long (see Durrett [3]):

(2) ∀p > −→pc
alt(d+ 1) ∃A,B > 0 ∀n ∈ N Pp(n ≤ τ < +∞) ≤ Ae−Bn.
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The set K ′
n ∩ Hn is called the coupled zone, and will play a central role

in our proofs, by allowing to compare numbers of open paths with close
extremities. As for the contact process, the growth of the sets (Hn)n≥0 and
the coupled zones (K ′

n∩Hn)n≥0 is governed by a shape theorem and related
large deviations inequalities:

Proposition 2.1 (Large deviations inequalities, Garet-Marchand [6]).
Fix p > −→pc

alt(d+ 1). For every ε > 0, there exist A,B > 0 such that,

∀n ≥ 1 Pp

(

Bµp(0, (1 − ε)n) ⊂ (K ′
n ∩Hn) + [0, 1]d

⊂ Hn + [0, 1]d ⊂ Bµp(0, (1 + ε)n)

)

≥ 1 −Ae−Bn.

•
(0, 0)

•
(x, n)

•
(y, 0)

Figure 1. Coupled zone.
If x is in the coupled zone K ′0

n , and is reached by an open path starting
from some point (y, 0) ∈ Z

d × {0} (in blue), then (0, 0) → (x, n) (in red).

2.2. Essential hitting times and associated translations. We now in-
troduce the analogues, in the discrete setting of oriented percolation, of the
essential hitting times used by Garet–Marchand to study the supercritical
contact process conditioned to survive in [5] and [6]; we give their main
properties in Proposition 2.2.

For a given x ∈ Z
d, the essential hitting time will be a random time σ(x)

such that

• Pp almost surely, (0, 0) → (x, σ(x)) → ∞,

• the associated random translation of vector (x, σ(x)) leaves Pp in-
variant.

Thus σ(x) will be interpreted as a regenerating time of the oriented perco-
lation conditioned to percolate.

We define a set of oriented edges
−→
E
d of Z

d in the following way: in

(Zd,
−→
E
d), there is an oriented edge between two points z1 and z2 in Z

d if

and only if ‖z1 − z2‖1 ≤ 1. The oriented edge in
−→
E
d+1
alt from (z1, n1) to

(z2, n2) can be identified with the couple ((z1, z2), n2) ∈
−→
E
d × N

∗. Thus,

we identify
−→
E
d+1
alt and

−→
E
d × N

∗. We also define, for (y, h) ∈ Z
d × N, the

translation θ(y,h) on Ω by:

θ(y,h)((ω(e,k))e∈
−→
E d,k≥1

) = (ω(e+y,k+h))e∈
−→
E d,k≥1

.

At some point, we will also need to look backwards in time. So, as set of
sites, we replace Z

d × N by Z
d ×Z, and we introduce the following reversed
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time translation defined on {0, 1}Z
d×Z by

θ↓
(y,h)((ω(e,k))e∈

−→
E d,k∈Z

) = (ω(e+y,h−k))e∈
−→
E d,k∈Z

.

Fix p > −→pc
alt(d+ 1).

We now recall the construction of the essential hitting times and the
associated translations introduced in [5]. Fix x ∈ Z

d. The essential hitting
time σ(x) is defined through a family of stopping times as follows: we set
u0 = v0 = 0 and we define recursively two increasing sequences of stopping
times (un)n≥0 and (vn)n≥0 with u0 = v0 < u1 < v1 < u2 . . . as follows:

• Assume that vk is defined. We set uk+1 = inf{t > vk : x ∈ ξ0
t }.

If vk < +∞, then uk+1 is the first time after vk where x is once again
infected; otherwise, uk+1 = +∞.

• Assume that uk is defined, with k ≥ 1. We set vk = uk + τ0 ◦ θ(x,uk).

If uk < +∞, the time τ0 ◦ θ(x,uk) is the length of the oriented perco-
lation cluster starting from (x, uk); otherwise, vk = +∞.

We then set

K(x) = min{n ≥ 0 : vn = +∞ or un+1 = +∞}.

This quantity represents the number of steps before the success of this pro-
cess: either we stop because we have just found an infinite vn, which corre-
sponds to a time un when x is occupied and has infinite progeny, or we stop
because we have just found an infinite un+1, which says that after vn, site 0
is never infected anymore. It is not difficult to see that

Pp(K(x) > n) ≤ Pp(τ
0 < +∞)n,

and thus K(x) is Pp almost surely finite. We define the essential hitting
time σ(x) by setting

σ(x) = uK(x) ∈ N ∪ {+∞}.

By construction (0, 0) → (x, σ(x)) → +∞ on the event {τ = +∞}. Note
however that σ(x) is not necessarily the first positive time when x is occupied
and has infinite progeny: for instance, such an event can occur between u1
and v1, being ignored by the recursive construction. It can be checked that
conditionally to the event {τ0 = ∞}, the process necessarily stops because
of an infinite vn, and thus σ(x) < +∞. At the same time, we define the
operator θ̃ on Ω, which is a random translation, by:

θ̃x(ω) =

{

θ(x,σ(x))ω if σ(x) < +∞,

ω otherwise.

If (x1, . . . , xm) is a sequence of points in Z
d, we also introduce the shortened

notation

θ̃x1,...,xm = θ̃xm ◦ θ̃xm−1 · · · ◦ θ̃x1.

For n ≥ 1, we denote by Fn the σ-field generated by the maps (ω 7→
ω(e,k))e∈

−→
E d,1≤k≤n

. We denote by F the σ-field generated by the maps (ω 7→

ω(e,k))e∈
−→
E d,k≥1

.

Proposition 2.2. Fix p > −→pc
alt(d+ 1) and x1, . . . , xm ∈ Z

d.
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a. Suppose A ∈ B(R), B ∈ F . Then for each x ∈ Z
d,

Pp(σ(x) ∈ A, θ̃−1
x (B)) = Pp(σ(x) ∈ A)Pp(B).

b. The probability measure Pp is invariant under θ̃x1,...,xm.

c. The random variables σ(x1), σ(x2) ◦ θ̃x1, σ(x3) ◦ θ̃x1,x2, . . . , σ(xm) ◦

θ̃x1,...,xm−1 are independent under Pp.
d. Suppose t ≤ m, A ∈ Ft, B ∈ F

Pp(A, θ̃
−1
x1,...,xm

(B)) = Pp(A)Pp(B).

e. For every x ∈ Z
d, µp(x) = lim

n→+∞

Ep(σ(nx))

n
= inf

n≥1

Ep(σ(nx))

n
.

f. There exists α, β > 0 such that

∀x ∈ Z
d

Ep(exp(ασ(x)) ≤ exp(β(‖x‖1 ∨ 1)).

Proof. To prove a.-d., it is sufficient to mimic the proofs of Lemma 8 and
Corollary 9 in [5]. The convergence e. has been proved for the contact
process in [5], Theorem 22. The existence of exponential moments for σ has
been proved for the contact process in [6], Theorem 2. �

3. Directional limits along subsequences of regenerating times

The essential hitting times have good regenerating properties, but by
construction (see Proposition 2.2 e.), the vector (x, σ(x)) lies close to the
border of the percolation cone {(y, µp(y)) : y ∈ R

d}. We now need to build
new regenerating points such that the set of directions of these points is
dense inside the percolation cone.

We define, for (y, h) ∈ Z
d×N

∗, a new regenerating time s(y, h) by setting

s(y, h) = σ(y) +
h
∑

i=1

σ(0) ◦ θ̃i−1(0) ◦ θ̃(y),

and the associated translation:

θ̂(y,h)(ω) =

{

θ(y,s(y,h))ω if s(y, h) < +∞,

ω otherwise.

Note that on {τ = +∞}, (0, 0) → (y, s(y, h)) → +∞ and θ̂(y,h) = θ̃y,0,...,0
(with h zeros). We can easily deduce from Proposition 2.2 the following
properties of the time s(y, h) under Pp:

Lemma 3.1. Fix p > −→pc
alt(d+ 1), and (y, h) ∈ Z

d × N
∗.

a. The probability measure Pp is invariant under the translation θ̂(y,h).

b. The random variables (s(y, h) ◦ (θ̂(y,h))
j)j≥0 are independent and

identically distributed under Pp.

c. The measure-preserving dynamical system (Ω,F ,Pp, θ̂(y,h)) is mix-
ing.

d. There exists α, β > 0 such that

∀y ∈ Z
d ∀h ∈ N

∗
Ep(exp(αs(y, h))) ≤ exp(β((‖y‖1 ∨ 1) + h)).
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We fix (y, h) ∈ Z
d × N

∗. We work under Pp, and we set, for every n ≥ 1,

Sn = Sn(y, h) =
n−1
∑

k=0

s(y, h) ◦ θ̂k(y,h).(3)

The points (ny, Sn(y, h))n≥1 are the sequence of regenerating points associ-
ated to (y, h) along which we are going to look for subadditivity properties.

As, under Pp, the random variables (s(y, h) ◦ θ̂j(y,h))j≥0 are independent and

identically distributed with finite first moment (see Lemma 3.1), the strong
law of large numbers ensures that Pp-almost surely

(4) lim
n→+∞

Sn(y, h)

n
= Ep(s(y, h)) = Ep(σ(y)) + hEp(σ(0)).

Thus, for large n, the point (ny, Sn(y, h)) is not far from the line R(y,Ep(s(y, h))).
To obtain directional limits along subsequences, we first apply Kingman’s

subadditive ergodic theorem to fn = − logN(ny,Sn(y,h)) for a fixed (y, h) ∈

Z
d × N

∗.

Lemma 3.2. Fix p > −→pc
alt(d + 1) and (y, h) ∈ Z

d × N
∗. There exists

αp(y, h) ∈ (0, log(2d+ 1)] such that Pp-almost surely and in L1(Pp),

lim
n→+∞

1

Sn(y, h)
logN(ny,Sn(y,h)) = αp(y, h).

Proof. Fix (y, h) ∈ Z
d × N

∗. To avoid heavy notations, we omit all the

dependence in (y, h). For instance Sn = Sn(y, h) and θ̂ = θ̂(y,h). Note that

by definition, Pp-almost surely, for every n ≥ 1, (0, 0) → (ny, Sn) → +∞
and consequently, N(ny,Sn) ≥ 1. For n ≥ 1, we set

fn = − logN(ny,Sn).

Let n, p ≥ 1. Note that Sn + Sp ◦ θ̂n(y,h) = Sn+p. As N(py,Sp) ◦ θ̂n counts the

number of open paths from (ny, Sn) to ((n+p)y, Sn+Sp◦ θ̂n), concatenation

of paths ensures that N(ny,Sn) ×N(py,Sp) ◦ θ̂n ≤ N((n+p)y,Sn+p) which implies
that

∀n, p ≥ 1 fn+p ≤ fn + fp ◦ θ̂n.

As 1 ≤ N(ny,Sn) ≤ (2d + 1)Sn ,

−Sn log(2d+ 1) ≤ fn ≤ 0.

The integrability of s thus implies the integrability of every fn. So we can ap-
ply Kingman’s subadditive ergodic theorem. By property c. in Lemma 3.1,
the dynamical system (Ω,F ,P, θ̂) is mixing. Particularly, it is ergodic, so
the limit is deterministic: if we define

−α′
p(y, h) = inf

n≥1

Ep(fn)

n
,

we have Pp-almost surely and in L1(Pp): lim
n→+∞

fn
n

= −α′
p(y, h).

The limit of the lemma follows then directly from (4) by setting

αp(y, h) =
α′
p(y, h)

Eps(y, h)
.
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Finally α′
p(y, h) ≥ Ep(−f1) = Ep(logN(y,S1)). Since N(y,S1) ≥ 1 Pp-a.s.

and N(y,S1) ≥ 2 with positive probability, it follows that α′
p(y, h) > 0, and

consequently αp(y, h) > 0.
As N(ny,Sn) ≤ (2d + 1)Sn , we see that αp(y, h) ≤ log(2d + 1) and that the

convergence also holds in L1(Pp). �

We can now introduce a natural candidate for the limit in Theorem 1.1:

(5) αp = sup
{

αp(y, h) : (y, h) ∈ Z
d × N

∗
}

< +∞.

Indeed, at the logarithmic scale we are working with, we can expect that the
dominant contribution to the number Nn of open paths to level n will be
due to the number Nnz,n of open paths to level n in the direction (z, 1) that
optimizes the previous limit. Note however that in our construction, (y, h)
has no real geometrical signification, but it is just a useful encoding: as said
before, the asymptotic direction of the regenerating point (ny, Sn(y, h)) in
Z
d × N is

(

y

Ep(s(y, h)
, 1

)

.

To skip from the subsequences to the full limit, we approximate Bµp(0, 1)
with a denumerable set of points: let

(6) Dp =

{

y

Ep(s(y, h))
: y ∈ Z

d, h ∈ N
∗

}

.

Lemma 3.3. For every p > −→pc
alt(d+ 1), Bµp(0, 1) ⊂ Dp .

Proof. Note that the set {z/l : (z, l) ∈ Z
d × N

∗ and µp(z) < l} is dense in

Bµp(0, 1). Thus fix (z, l) ∈ Z
d × N

∗ such that µp(z) < l and consider

(yn, hn) =

(

nz,

⌈

n(l − µp(z)

Ep(σ(0))

⌉)

∈ Z
d × N

∗.

Then
yn

Ep(s(yn, hn))
=

nz

Ep(σ(yn)) + hnEp(σ(0))
→

z

l

as n goes to +∞. �

Finally, for (y, h) ∈ Z
d × N

∗, we denote by

∀n ∈ N ϕ(n) = ϕ(y,h)(n) = inf{k ∈ N : Sk(y, h) ≥ n}.(7)

Thus, for large n, (ϕ(n).y, Sϕ(n)) is the first point among the sequence of
regenerating points associated to (y, h) to be above level n. By the renewal
theory, Pp almost surely,

(8) lim
n→+∞

ϕ(y,h)(n)

n
=

1

Ep(s(y, h))
and lim

n→+∞

Sϕ(y,h)(n)(y, h)

n
= 1.

It is also not too far above level n:

Lemma 3.4. For every (y, h) ∈ Z
d×N

∗, there exist positive constants A,B
such that

∀n ∈ N P(Sϕ(y,h)(n) − n ≥ n) ≤ A exp(−Bn).
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Proof. As we work in discrete time, ϕ(n) ≤ n. So

Pp(Sϕ(n) − n ≥ n) ≤ Pp(∃k ≤ n : s(y, h) ◦ θ̂k(y,h) ≥ n) ≤ nPp(s(y, h) ≥ n).

As s(y, h) admits exponential moments thanks to Lemma 3.1, we can con-
clude with the Markov inequality. �

4. Proof of Theorem 1.1

Fix p > −→pc
alt(d+1). The proof of the almost sure convergence in Theorem

1.1 is a direct consequence of the forthcoming Lemmas 4.1, 4.2 and 4.3.
The L1 convergence follows from the remark that 1

n logNn ≤ log(2d + 1).
Remember that αp is defined in (5).

Lemma 4.1. Pp-almost surely, lim
n→+∞

1

n
logNn ≥ αp.

Proof. Take (y, h) ∈ Z
d × N

∗. Note that (Nn)n≥1 is non-decreasing, and
considering the increasing sequence Sk = Sk(y, h), we see that, Pp almost
surely, for every integer n such that Sk ≤ n ≤ Sk+1,

1

n
logNn ≥

1

Sk+1
logNSk

≥
Sk
Sk+1

logN (ky,Sk)

Sk
.

With (4) and Lemma 3.2, we deduce that Pp almost surely,

lim
n→+∞

1

n
logNn ≥ αp(y, h),

which completes the proof. �

Lemma 4.2. Pp-almost surely, lim
n→+∞

1

n
logNn ≤ αp.

Proof. Fix ε > 0 and η ∈ (0, 1). We first approximate Bµp(0, 1) with a finite

number of points: with Lemma 3.3, we can find a finite set F ⊂ Z
d × N

∗

such that

Bµp(0, 1 + ε) ⊂
⋃

(y,h)∈F

Bµp

(

(1 + ε)y

Ep(s(y, h))
, (1 − η)ε/2

)

.

Then, for n large, we will control the number Nn using these directions.
We define Mn(y, h) as the first point in the sequence (ky, S(y,h)(k))k≥1 of
regerating points associated to (y, h) to be above level n(1 + ε). Using the
notation introduced in (7), we set

∀(y, h) ∈ F kn = kn(y, h) = ϕ(y,h)(n(1 + ε)),

Zn = Zn(y, h) = kn.y ∈ Z
d,

Vn = Vn(y, h) = Skn(y, h) ∈ N,

Mn = Mn(y, h) = (Zn, Vn).

For a given (y, h) ∈ F , the law of large numbers (8) says that

kn(y, h) ∼
n(1 + ε)

Ep(s(y, h))
and Vn(y, h) ∼ n(1 + ε).(9)
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So Pp almost surely, for all n large enough

∀(y, h) ∈ F Bµp

(

(1 + ε)ny

Ep(s(y, h))
, (1 − η)εn/2

)

⊂ Bµp (Zn(y, h), (1 − η)εn) .

It follows then from the shape theorem (1), that Pp almost surely, for all n
large enough

(10) ξn ⊂ Bµp(0, (1 + ε)n) ⊂ ∪
(y,h)∈F

Bµp (Zn(y, h), (1 − η)εn) .

The strategy is to prove that for n large enough, for each x ∈ Bµp(0, n(1+ε)),
the n first steps of an open path that goes from (0, 0) to (x, n) and then
to infinity are also the n first steps of an open path which contributes to
NMn(y,h) for any (y, h) ∈ F such that x ∈ Bµp(Zn(y, h), (1 − η)εn). To do
so, we will use the coupled zone.

Note

Gn = ∩
M∈{−2n,...,2n}d×{0,...,2n}

{

τ < n(1 + ε)
or K ′

nε ⊃ Bµp(0, (1 − η)εn) ∩ Z
d

}

◦ θ↓
M .

Since θ↓
M preserves Pp, we easily deduce from (2), Proposition 2.1 and a

Borel–Cantelli argument that Pp almost surely, Gn holds for every n large
enough.

Now take n large enough such that (10) holds, Gn holds, together with
Vn(y, h) ≤ 2n for each (y, h) ∈ F , which is possible thanks to (9).

Fix x ∈ ξn such that (x, n) → ∞. As (10) holds, choose (y, h) ∈ F such
that x ∈ Bµp(Zn(y, h), (1 − η)εn). Since (0, 0) → Mn and Vn ≥ n(1 + ε), we

know that τ ◦ θ↓
Mn

≥ n(1 + ε). Since Mn ∈ {−2n, . . . , 2n}d × {0, . . . , 2n},

µp(x − Zn) ≤ (1 − η)εn and Gn holds, we have x − Zn ∈ K ′
nε ◦ θ↓

Mn
. Note

that Vn(y, h) ≥ n(1 + ε), so Vn(y, h) − n ≥ εn. Note also that (x, n) → ∞

implies that x − Zn ∈ ξZ
d

Vn(y,h)−n ◦ θ↓
Mn

. By definition of the coupled zone,

we have x− Zn ∈ ξ0
Vn(y,h)−n ◦ θ↓

Mn
. Going back to the initial orientation, it

means that (x, n) → Mn. So, if γ is a path from (0, 0) to (x, n), it is clear
that γ is the restriction of a path that goes from (0, 0) to Mn, and then to
infinity. Then,

Nn ≤
∑

(y,h)∈F

NMn(y,h).

Next, we use the directional limits given by Lemma 3.2: Pp almost surely,

∀(y, h) ∈ F lim
n→+∞

1

Vn(y, h)
logNMn(y,h) = αp(y, h).

As Vn(y, h) ∼ n(1+ε), we obtain from the shape theorem (1) that Pp almost
surely, for all n large enough

∀(y, h) ∈ F
1

n(1 + ε)
logNMn(y,h) ≤ αp(y, h) + ε ≤ αp + ε.
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(0, 0)

(x, n)

Mn = (Zn, Vn)

coupled zone of Mn

asymptotic direction

n(1 + ε)

n

0

Figure 2. Red paths are the part above n of paths from
(0, 0) to infinity. Green paths are the part above n of paths
from (0, 0) to infinity that meet some Mn. To bound Nn, we
prove that each start of a red path is the start of a green
path.

So, for n large enough, we have Pp almost surely,

Nn ≤
∑

(y,h)∈F

NMn(y,h) ≤ |F | exp((αp + ε)n(1 + ε)),

so lim
n→+∞

1

n
log(Nn) ≤ (1 + ε)(αp + ε).

We complete the proof by letting ε go to 0. �

Finally, we prove that working with open paths or with open paths that
are the beginning of an infinite open path is essentially the same:

Lemma 4.3. Pp-almost surely,

lim
n→+∞

logNn

n
= lim

n→+∞

logNn

n
and lim

n→+∞

logNn

n
= lim

n→+∞

logNn

n
.

Proof. Fix 0 < ε < 1 and define, for n ≥ 1, the following event

En = ∩
‖z‖1≤n

{τ < εn or τ = +∞} ◦ θ(z,⌊n(1−ε)⌋).

Assume that En occurs. Consider a path γ = (γi, i)0≤i≤n from (0, 0) to
Z
d×{n} and set z = γ⌊n(1−ε)⌋: as τ ◦θ(z,⌊n(1−ε)⌋) ≥ εn, the event En implies

that τ ◦ θ(z,⌊n(1−ε)⌋) = +∞. So (γi, i)0≤i≤⌊n(1−ε)⌋ contributes to N ⌊n(1−ε)⌋
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and thus, on En,

Nn ≤ (2d + 1)εn+1N ⌊n(1−ε)⌋,

so
1

n
logNn ≤

(

ε+
1

n

)

log(2d+ 1) +
1

n
logN ⌊n(1−ε)⌋

≤

(

ε+
1

n

)

log(2d+ 1) +
1

⌊n(1 − ε)⌋
logN ⌊n(1−ε)⌋.

The exponential estimate (2) ensures that

∀n ≥ 1 Pp(E
c
n) ≤ CdAn

d exp(−Bεn) ≤ A′ exp(−B′n).

With the Borel–Cantelli lemma, this leads to:

lim
n→+∞

1

n
logNn ≤ ε log(2d + 1) + lim

n→+∞

1

n
logNn.

By taking ε to 0, we obtain

lim
n→+∞

logNn

n
≤ lim

n→+∞

logNn

n
.

The proof for the inequality with lim instead of lim is identical. Since
Nn ≤ Nn, the reversed inequalities are obvious. �

5. Proof of Theorem 1.2

5.1. Construction and continuity of α̃p. Recall that Dp was defined
in (6). Our strategy is to prove that the identity

α̃p

(

y

Ep(s(y, h))

)

= αp(y, h).

defines a map on Dp that is uniformly continuous on every compact subset

of Dp ∩ B̊µ(0, 1). We first refine the argument of Lemma 4.2 implying the
coupled zone:

Lemma 5.1. Let β ∈ (0, 1). There exists α > 0 such that the following
holds. For every ε > 0, for every x̂1, x̂2 ∈ Bµp(0, 1 − β), if

µp (x̂1 − x̂2) ≤ αε,

then for any sequences of points (M1
n = (Z1

n, V
1
n ))n and (M2

n = (Z2
n, V

2
n ))n

in Z
d × N

∗, for any C > 0 such that, Pp almost surely,

Z1
n

V 1
n

→ x̂1 and
V 1
n

n
→ C(1 + ε),

Z2
n

V 2
n

→ x̂2 and
V 2
n

n
→ C,

we have the following property: Pp almost surely, for every n large enough,
if (0, 0) → (Z1

n, V
1
n ) and (0, 0) → (Z2

n, V
2
n ) → ∞, then N (Z2

n,V
2

n ) ≤ N(Z1
n,V

1
n ).

Proof. Fix small α, η > 0 and a large integer K ≥ 3 such that

α+ (1 − β) <
K − 2

K
(1 − η).

Fix ε > 0. Set ε′ = ε/K.



THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION 15

µp

(

Z2
n

Cn
−
Z1
n

Cn

)

≤ µp

(

Z2
n

V 2
n

) ∣

∣

∣

∣

∣

V 2
n

Cn
− 1

∣

∣

∣

∣

∣

+ µp

(

Z2
n

V 2
n

− x̂2

)

+ µp (x̂2 − x̂1)

+µp

(

x̂1 −
Z1
n

V 1
n

)

+ µp

(

Z1
n

V 1
n

)
∣

∣

∣

∣

∣

V 1
n

Cn
− 1

∣

∣

∣

∣

∣

.

So P almost surely,

lim
n→+∞

µp

(

Z2
n

Cn
−
Z1
n

Cn

)

≤ (α+ 1 − β) ε <
K − 2

K
(1 − η)ε,

so P almost surely, for every n large enough,

(11) µp

(

Z2
n

Cn
−
Z1
n

Cn

)

≤
K − 2

K
(1 − η)ε = (K − 2)(1 − η)ε′.

By the convergences for the V i
n/n, we know that Pp almost surely, for every

n large enough,

(12) |V 1
n − Cn(1 + ε)| ≤ Cnε′ and |V 2

n − Cn| ≤ Cnε′.

Define

Gn = {∀x ∈ [−Cn(1 + 2ε), Cn(1 + 2ε)]d ∀k ∈ [Cn(1 + ε− ε′), Cn(1 + ε+ ε′)]

(τ ◦ θ↓
(x,k) ≥ ε′Cn) ⇒ ∀m ≥ ε′Cn Bµp(0, x, (1 − η)m) ⊂ K̃ ′

m ◦ θ↓
(x,k)}.

With the large deviations for the coupled zone given in Proposition 2.1,
there exist A,B > 0 such that

∀n large enough Pp(G
c
n) ≤ A exp(−Bn).

Thus, the Borel–Cantelli lemma ensures that Pp(lim Gn) = 1.

Assume then that τ0 = +∞. Pp almost surely, for every n large enough,
we know that (11), (12) and Gn occur. Assume that, for one of these large
enough n, (0, 0) → (Z1

n, V
1
n ) and (0, 0) → (Z2

n, V
2
n ) → ∞. Note that

V 1
n − V 2

n ≥ Cn(1 + ε− ε′) − Cn(1 + ε′) ≥ Cn(K − 2)ε′.

So, on the event Gn, as (0, 0) → (Z1
n, V

1
n ), we see that τ ◦ θ↓

M1
n

≥ ε′Cn, so

KV 1
n −V 2

n
◦ θ↓

M1
n

⊃ Bµp(Z1
n, (1 − η)C(K − 2)nε′).

So, with (11), we see that Z2
n ∈ KV 1

n −V 2
n

◦ θ↓
M1

n
. As (Z2

n, V
2
n ) → ∞, then

(Z2
n, V

2
n ) → (Z1

n, V
1
n ), which gives an injection from the set of open paths

from (0, 0) to (Z2
n, V

2
n ) into the set of open paths from (0, 0) to (Z1

n, V
1
n ). �

For (y, h) ∈ Z
d×N

∗, we define Mn(y, h) as the first point in the sequence
(ky, S(y,h)(k)) of regerating points associated to (y, h) to be above level n
(see Definition (7)):

kn = kn(y, h) = ϕ(y,h)(n),

Zn = Zn(y, h) = kn.y ∈ Z
d and Vn = Vn(y, h) = Skn(y, h) ∈ N,

Mn = Mn(y, h) = (Zn, Vn).
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The law of large numbers (8) says that Pp almost surely,

Zn(y, h)

n
=
kn(y, h).y

n
∼

y

Ep(s(y, h))
and

Vn
n

∼ 1.

The next lemma is a first step toward continuity.

Lemma 5.2. Let β ∈ (0, 1). There exists α > 0 such that, for every ε > 0,
for every (y1, h1), (y2, h2) ∈ Z

d × N
∗ such that

µp

(

y1

Ep(s(y1, h1))

)

≤ 1 − β and µp

(

y2

Ep(s(y2, h2))

)

≤ 1 − β,

if µp

(

y1

Ep(s(y1, h1))
−

y2

Ep(s(y2, h2))

)

≤ αε,

then |αp(y1, h1) − αp(y2, h2)| ≤ ε.

Proof. Take, for every n, (Z1
n, V

1
n ) = Mn(1+ε)(y1, h1) and (Z2

n, V
2
n ) = Mn(y2, h2).

With the previous Lemma, we obtain

NMn(y2,h2) ≤ NMn(1+ε)(y1,h1),

1

Vn(y2, h2)
logNMn(y2,h2) ≤

Hn(1+ε)(y1, h1)

Vn(y2, h2)

1

Hn(1+ε)(y1, h1)
logNMn(1+ε)(y1,h1),

αp(y2, h2) ≤ (1 + ε)αp(y1, h1).

Exchanging the roles of the (yi, hi), we obtain

|αp(y2, h2) − αp(y1, h1)| ≤ ε log(2d + 1).

�

We define the following equivalence relation of the points in Z
d × N

∗:

(y1, h1) ∼ (y2, h2) ⇔
y1

Ep(s(y1, h1))
=

y2

Ep(s(y2, h2))
.

Lemma 5.2 ensures that if (y1, h1) ∼ (y2, h2), then αp(y1, h1) = αp(y2, h2).
We can thus define on the quotient set of directions Dp, defined in (6), the
following directional limit:

α̃p

(

y

Ep(s(y, h))

)

= αp(y, h).

Lemma 5.2 ensures that the application α̃p is uniformly continuous on each
Dp ∩ Bµp(0, (1 − β)). Note that the α given by Lemma 5.2 gives an upper
bound for its modulus of continuity. As, with Lemma 3.3, Dp ∩Bµp(0, (1 −
β)) is dense in the compact set Bµp(0, (1 − β)), we can extend α̃p to any

Bµp(0, (1 − β)), and then to B̊µp(0, 1).

5.2. Concavity.

Lemma 5.3. The application α̃p is concave on B̊µp(0, 1).
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Proof. Fix β ∈ (0, 1), and consider ŷ, ŷ′ ∈ Dp ∩Bµp(0, (1 − β)). There exist

(y, h), (y′, h′) ∈ Z
d × N such that

s = Ep(s(y, h)) s′ = Ep(s(y
′, h′)),

ŷ =
y

Ep(s(y, h))
=
y

s
ŷ′ =

y′

Ep(s(y′, h′))
=
y′

s′
.

Let α be given by Lemma 5.1. Let λ ∈ (0, 1) and ε > 0. Writing, for
k, k′ ≥ 1:

ky + k′y′

ks+ k′s′
=

ks

ks+ k′s′
ŷ +

k′s′

ks+ k′s′
ŷ′ ∈ Bµp(0, 1 − β),

we can choose k, k′ ≥ k0 such that :

µp

(

ky + k′y′

ks + k′s′
−
(

λŷ + (1 − λ′)ŷ′)
)

≤ αε,

and
ksα̃p (ŷ) + k′s′α̃p (ŷ′)

ks+ k′s′
≥

1

1 + ε

(

λα̃p (ŷ) + (1 − λ)α̃p
(

ŷ′)) .

In particular, the uniform continuity of α̃p on Bµp(0, 1 − β) ensures that

(13) α̃p

(

ky + k′y′

ks+ k′s′

)

≤ αp
(

λŷ + (1 − λ)ŷ′)+ ε.

By Lemma 3.3, we can choose (y′′, h′′) ∈ Z
d × N

∗ such that (with the same
notation):

µp

(

ŷ′′ −
ky + k′y′

ks+ k′s′

)

≤ αε and µp
(

ŷ′′) ≤ 1 − β.

In particular, the uniform continuity of α̃p on Bµp(0, 1 − β) and (13) ensure
that

(14) α̃p(ŷ
′′) ≤ α̃p

(

ky + k′y′

ks+ k′s′

)

+ ε ≤ αp
(

λŷ + (1 − λ)ŷ′)+ 2ε.

For every n ≥ 1, set

Z2
n = nky + nk′y′,

V 2
n = Skn(y, h) + Sk′n(y′, h′) ◦ θ̂kn(y,h)

By the law of large numbers, Skn(y, h)/n and Sk′n(y′, h′)/n almost surely
converge, respectively, to ks ans k′s′. Since s(y′, h′) ∈ L2(Pp), complete con-

vergence actually occurs (see e.g. Hsu-Robbins [7]), so, since the θ̂ operators
leave Pp invariant, we get the following Pp almost sure convergences:

V 2
n

n
→ ks+ k′s′ and

Z2
n

V 2
n

→
ky + k′y′

ks+ k′s′
.

Note that (0, 0) → (nky, Skn(y, h)) → (Z2
n, V

2
n ) → +∞. In particular,

NZ2
n,V

2
n

≥ Nnky,Skn(y,h) ×NZ2
n,V

2
n

◦ θ̂kn(y,h),

logNZ2
n,V

2
n

n(ks+ k′s′)
≥

nks

n(ks+ k′s′)

logNnky,Skn(y,h)

nks
+

(

nk′s′

n(ks+ k′s′)

Nnk′y′,Sk′n(y′,h′)

nk′s′

)

◦ θ̂kn(y,h).
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Using the L1 convergence in the subadditive lemma 3.2, we then obtain

lim Ep

(

logNZ2
n,V

2
n

n(ks+ k′s′)

)

≥
ks

ks+ k′s′
α̃p(ŷ) +

k′s′

ks+ k′s′
α̃p(ŷ

′)

≥
λα̃p (ŷ) + (1 − λ)α̃p (ŷ′)

1 + ε
.(15)

For every n ≥ 1, we now set (Z1
n, V

1
n ) = M(ks+k′s′)n(1+ε)(y

′′, h′′). We have

the following Pp almost sure convergence:

V 1
n

n
→ (1 + ε)(ks + k′s′) and

Z1
n

V 1
n

→
y′′

s′′
.

By Lemma 5.1 we get, Pp almost surely, for large enough n:

(16) N (Z2
n,V

2
n ) ≤ N (Z1

n,V
1

n ).

With the L1 convergence in Lemma 3.2 we get that :

lim
n→+∞

Ep

(

1

n(ks+ k′s′)
log

(

N (Z1
n,V

1
n )

)

)

= (1 + ε)α̃p(ŷ
′′).

With (14), (15) and (16), we obtain

(1+ε)
(

αp
(

λŷ + (1 − λ)ŷ′)+ 2ε
)

≥ (1+ε)α̃p(ŷ
′′) ≥

λα̃p (ŷ) + (1 − λ)α̃p (ŷ′)

1 + ε
.

Letting ε tend to 0, we get the concavity of α̃p on Dp∩Bµp(0, (1−β)). Since
α̃p is continuous, a density argument completes the proof. �

5.3. Inequalities for the directional convergence. We now prove re-
fined versions of Lemmas 4.1 and 4.2.

Lemma 5.4. For every subset A of B̊µp(0, 1) such that Å 6= ∅, Pp-almost
surely,

lim
n→+∞

1

n
logNnA,n ≥ sup

x∈Å

α̃p(x).

Proof. Let L ∈ R with L < supx∈Å α̃p(x). There exists x ∈ Å with α̃p(x) >
L. Fix ε ∈ (0, 1) such that B(x, 8ε) ⊂ A. By the continuity of α̃p, if we take ε
small enough, we can also ensure that α̃p > L on B(x, 8ε). With Lemma 3.3,

we can find (y, h) ∈ Z
d × N such that ŷ =

y

Ep(s(y, h))
∈ B(x, 4ε).

We define Mn(y, h) as the first point in the sequence (ky, S(y,h)(k))k≥1 of
regerating points associated to (y, h) to be above level n(1 − ε). Using the
notation introduced in (7), we set

∀(y, h) ∈ F kn = kn(y, h) = ϕ(y,h)(n(1 − ε)),

Zn = Zn(y, h) = kn.y ∈ Z
d and Vn = Vn(y, h) = Skn(y, h) ∈ N,

Mn = Mn(y, h) = (Zn, Vn).

The law of large numbers (8) says that

Zn(y, h) ∼ n(1 − ε)ŷ and Vn(y, h) ∼ n(1 − ε).(17)



THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION 19

Note

Gn =
⋂

M∈Bµp (n(1−ε)ŷ,εn)×[n(1−ε)..n(1−ε/2)],
k≥εn/2

{ξ0
k ⊂ Bµp(0, (1 + ε)k)} ◦ θM .

Since θM preserves Pp, we easily deduce from (2), Proposition 2.1 and a

Borel–Cantelli argument that Pp almost surely, Gn holds for n large enough.
Now take n large enough such that Gn holds and, with (17), Zn ∈

Bµp(n(1 − ε)ŷ, εn) and (1 − ε)n ≤ Vn ≤ (1 − ε/2)n, so that εn/2 ≤ n−Vn ≤
εn. Then Gn ensures that (ε < 1)

ξZn
n−Vn

⊂ Bµp(Zn, (1 + ε)εn) ⊂ Bµp(n(1 − ε)ŷ, 3εn) ⊂ Bµp(nŷ, 4εn) ⊂ nÅ.

So NMn ≤ NnA,n, and then

1

n
logNnA,n ≥

Vn
n

1

Vn
logNMn .

With (17) and Lemma 3.2, we deduce that Pp almost surely,

lim
n→+∞

1

n
logNnA,n ≥

1

1 − ε
αp(ŷ) ≥

1

1 − ε
L.

Letting ε going to 0 completes the proof. �

Lemma 5.5. For every non-empty set A such that A ⊂ B̊µp(0, 1), Pp-almost
surely,

lim
n→+∞

1

n
logNnA,n ≤ sup

x∈A
α̃p(x).

Proof. The proof is a refinement of that of Lemma 4.2. Let δ > 0. Since
A is a compact subset of B̊µ(0, 1) and z 7→ α̃p(z) is continuous on B̊µ(0, 1),
one can find ε ∈ (0, 1) such that

sup
A+Bµp(0,2ε)

α̃p ≤ δ + sup
A

α̃p.

Now take η > 0 and F as defined in the proof of Lemma 4.2 and note

FB =

{

(y, h) ∈ F :
y

Ep(s(y, h))
∈ B

}

.

Now consider x ∈ nA. Since nA ⊂ Bµp(0, n(1 + ε)), for n large enough, we

can find (y, h) ∈ F such that x/n ∈ Bµp

(

(1+ε)y
Ep(s(y,h))

, (1 − η)ε/2

)

. We have

µp

(

y

Ep(s(y, h))
−
x

n

)

≤ µp

(

(1 + ε)
y

Ep(s(y, h))
− (1 + ε)

x

n

)

≤ µp

(

(1 + ε)y

Ep(s(y, h))
−
x

n

)

+ εµp(x/n)

≤ (1 − η)ε/2 + εµp(x/n) ≤ 2ε.

Since x/n ∈ A, we get (y, h) ∈ FA+Bµp (0,2ε). Now, following the proof

of Lemma 4.2, for n large enough, for each x ∈ nA, the n first steps of
an open path that goes from (0, 0) to (x, n) and then to infinity are also
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the n first steps of an open path which contributes to NMn(y,h) for any
(y, h) ∈ FA+Bµp (0,2ε), which gives

NnA,n ≤
∑

(y,h)∈FA+Bµp (0,2ε)

NMn(y,h).(18)

As previously, we get

lim
n→+∞

1

n
log(NnA,n) ≤ sup

FA+Bµp (0,2ε)

αp ≤ sup
A+Bµp (0,2ε)

α̃p ≤ δ + sup
A

α̃p.

We complete the proof by letting δ go to 0. �

5.4. Proof of Theorem 1.4. It remains to skip from NnA,n to NnA,n.
Fix 0 < ε < 1 and define, for n ≥ 1, the following event

Gn = ∩
‖z‖1≤n

{τ < εn or τ = +∞} ◦ θ(z,⌊n(1−ε)⌋)

∩ ∩
‖z‖1≤n

{K ′
εn ⊂ Bµp(0, 2εn)} ◦ θ↓

(z,n).

As before, a Borel-Cantelli argument ensures that Pp-almost surely, Gn oc-
curs for every large enough n.

Assume that Gn occurs. Consider a path γ = (γi, i)0≤i≤n from (0, 0) to
nA × {n} and set z = γ⌊n(1−ε)⌋: as τ ◦ θ(z,⌊n(1−ε)⌋) ≥ εn, the event Gn
implies that τ ◦ θ(z,⌊n(1−ε)⌋) = +∞. Looking backwards in time, we see
that all these z are in nA+Bµp(0, 2εn). So (γi, i)0≤i≤⌊n(1−ε)⌋ contributes to

NnA+Bµp(0,2εn),⌊(1−ε)n⌋ and thus, on Gn,

NnA,n ≤ (2d+ 1)εn+1NnA+Bµp (0,2εn),⌊(1−ε)n⌋,

so
1

n
logNnA,n ≤

(

ε+
1

n

)

log(2d + 1) +
1

n
logNnA+Bµp (0,2εn),⌊(1−ε)n⌋.

Now, we first use Lemma 5.5 and take the lim, and then we use the continuity
of α̃p and let ε go to 0:

lim
n→+∞

logNnA,n

n
≤ ε log(2d+ 1) + sup

x∈A+Bµp (0,2ε)
α̃p(x),

so lim
n→+∞

logNnA,n

n
≤ sup

x∈A
α̃p(x).

As NnA,n ≤ NnA,n, with Lemma 5.4 we obtain that

lim
n→+∞

logNnA,n

n
= sup

x∈A
α̃p(x).

This completes the proof.

Olivier Garet and Régine Marchand would like to warmly thank Matthias
Birkner and Rongfeng Sun for pointing out an error in a previous version
of the paper.
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