Adaptive density estimation in deconvolution problems with unknown error distribution

Abstract : A density deconvolution problem with unknown distribution of the errors is considered. To make the target density identifiable, one has to assume that some additional information on the noise is available. We consider two different models: the framework where some additional sample of the pure noise is available, as well as the repeated observation model, where the contaminated random variable of interest can be observed repeatedly. We introduce kernel estimators and present upper risk bounds. The focus of this work lies on the optimal data driven choice of the smoothing parameter using a penalization strategy.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2014, 8 (2), pp.2879-2904. 〈10.1214/14-ESJ976〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00915982
Contributeur : Gwennaëlle Mabon <>
Soumis le : mardi 23 décembre 2014 - 09:22:16
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : mardi 24 mars 2015 - 10:07:07

Fichier

KM _V3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Johanna Kappus, Gwennaëlle Mabon. Adaptive density estimation in deconvolution problems with unknown error distribution. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2014, 8 (2), pp.2879-2904. 〈10.1214/14-ESJ976〉. 〈hal-00915982v3〉

Partager

Métriques

Consultations de
la notice

105

Téléchargements du document

92