Local time of a diffusion in a stable Lévy environment

Abstract : Consider a 1-D diffusion in a stable Lévy environment. In this article, we prove that the normalized local time process recentred at the bottom of the standard valley with height log t, converges in law to a functional of two independent Lévy processes, which are conditioned to stay positive. In the proof of the main result, we derive that the law of the standard valley is close to a two-sided Lévy process conditioned to stay positive. Moreover, we compute the limit law of the supremum of the normalized local time. In the case of a Brownian environment, similar result to the ones proved here have been obtained by Andreoletti and Diel.
Type de document :
Article dans une revue
Stochastics: An International Journal of Probability and Stochastic Processes, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2011, 83 (2), pp.127-152. 〈10.1080/17442508.2010.521559〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00915250
Contributeur : Roland Diel <>
Soumis le : vendredi 6 décembre 2013 - 19:18:06
Dernière modification le : jeudi 3 mai 2018 - 15:32:06

Identifiants

Citation

Roland Diel, Guillaume Voisin. Local time of a diffusion in a stable Lévy environment. Stochastics: An International Journal of Probability and Stochastic Processes, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2011, 83 (2), pp.127-152. 〈10.1080/17442508.2010.521559〉. 〈hal-00915250〉

Partager

Métriques

Consultations de la notice

127