
HAL Id: hal-00914697
https://hal.science/hal-00914697

Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CuSum algorithm - a small review
Pierre Granjon

To cite this version:

Pierre Granjon. The CuSum algorithm - a small review. 2013. �hal-00914697�

https://hal.science/hal-00914697
https://hal.archives-ouvertes.fr


The CUSUM algorithm

a small review

Pierre Granjon

GIPSA-lab

March 13, 2014



Contents

1 The CUSUM algorithm 2
1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 The different steps . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The whole algorithm . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Dealing with unknowns . . . . . . . . . . . . . . . . . . . 9
1.3.2 Setting the parameters . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Two-sided algorithm . . . . . . . . . . . . . . . . . . . . . 15

1.4 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Fast initial response CUSUM . . . . . . . . . . . . . . . . 18
1.4.2 Combined Shewhart-CUSUM . . . . . . . . . . . . . . . . 19
1.4.3 Multivariate CUSUM . . . . . . . . . . . . . . . . . . . . 19

Bibliography 20

1



Chapter 1

The CUSUM algorithm

Lai [Lai 1995] and Basseville [Basseville 1993] give a full treatment of the field,
from the simplest to more complicated sequential detection procedures (from
Shewhart control charts [Shewhart 1931] to GLR algorithm first given in
[Lorden 1971]).

1.1 Algorithm

It is Page who first proposes different forms of the cumulative sum (CUSUM)
algorithm in [Page 1954a]:

• direct or recursive forms.

• one- or two-sided forms,

1.1.1 The problem

Let X[n] be a discrete random signal with independent and identically dis-
tributed samples. Each of them follows a probability density function (PDF)
p (x[n], θ) depending on a deterministic parameter θ (for example the mean µX

or the variance σ2
X
of X[n]). This signal may contain one abrupt change occur-

ring at the change time nc. This abrupt change is modeled by an instantaneous
modification of the value of θ occurring at the change time nc. Therefore θ = θ0
before nc and θ = θ1 from nc to the current sample.
Under these assumptions, the whole PDF of the signal pX observed between the
first sample x[0] and the current one x[k] can take two different forms.

• Under the no change hypothesis (H0), the PDF of X[n] is given by:

pX|H0
=

k∏

n=0

p (x[n], θ0) . (1.1)
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• Under the one change hypothesis (H1), this PDF becomes:

pX|H1
=

nc−1∏

n=0

p (x[n], θ0)
k∏

n=nc

p (x[n], θ1) . (1.2)

In this problem, the PDF of each sample p (x[n], θ) and the values of the pa-
rameter before (θ0) and after (θ1) the abrupt change are supposed to be known.
Finally, the only unknowns to be determined are:

• the lack or occurrence of an abrupt change between n = 0 and n = k,

• the value of the possible change time nc.

In order to develop the desired algorithm, we follow an on-line approach. This
means that the abrupt change possibly contained in the past of the signal has
to be sequentially detected sample after sample. Therefore, at each new sample
x[k], one of the two previous hypotheses H0 and H1 has first to be decided.
Then, in the case a change has been detected (H1 decided), the change time has
to be estimated thanks to an estimator n̂c. The general form of this sequential
algorithm is given in algorithm 1.

initialization
if necessary

end
while the algorithm is not stopped do

measure the current sample x[k]
decide between H0 (no change) and H1 (one change)
if H1 decided then

store the detection time nd ← k

estimate the change time nc

stop or reset the algorithm

end

end
Algorithm 1: general form of a sequential change detection algorithm.

Two important steps appear in this algorithm :

detection step: How to decide between H0 and H1?

estimation step: How to efficiently estimate the change time nc?

These steps are further detailed in the two following sections.

1.1.2 The different steps

Detection step

The problem here is to decide between two possible hypotheses H0 and H1 from
the measured samples x[0], . . . , x[k], which is also termed a binary hypothesis
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testing problem. The solution, given by the detection theory, is to use the
so-called likelihood ratio test [Kay 1998, chap. 3]:

test 1. Let the log-likelihood ratio LX be defined by:

LX = ln

(
pX|H1

pX|H0

)
. (1.3)

Then, decide H1 if LX > h (else H0), where h is a threshold set by the user.

In our case, the theoretical expression of LX at the current sample x[k] is ob-
tained by reporting (1.1) and (1.2) in (1.3):

LX [k, nc] = ln

(
pX|H1

[k, nc]

pX|H0
[k]

)
=

k∑

n=nc

ln

(
p (x[n], θ1)

p (x[n], θ0)

)
. (1.4)

Unfortunately, this quantity can not be calculated since it depends on the un-
known change time nc. Once again, the detection theory leads to an efficient
solution which consists of replacing all the unknowns in LX by their maximum
likelihood estimates. Such a test is termed the generalized likelihood ratio test,
and is given by [Kay 1998, chap. 6]:

test 2. Let the generalized log-likelihood ratio GX be defined by:

GX[k] = max
1≤nc≤k

LX [k, nc]

= max
1≤nc≤k

k∑

n=nc

ln

(
p (x[n], θ1)

p (x[n], θ0)

)
. (1.5)

Then, decide H1 if GX[k] > h (else H0), where h is a threshold set by the user.

The quantity defined in (1.5) can now be calculated at each new sample and is
thus used to decide between H0 and H1. It is also termed a decision function.

Estimation step

Once H1 has been decided and an abrupt change has been detected, the prob-
lem is to efficiently estimate the change time nc from the measured samples
x[0], . . . , x[k]. One way to solve this problem is to use its maximum likeli-
hood estimate, which is the value of nc maximizing the likelihood pX|H1

[k, nc]
[Kay 1993, chap. 7]:

n̂c = argmax
1≤nc≤k

pX|H1
[k, nc] = argmax

1≤nc≤k

LX [k, nc]

= argmax
1≤nc≤k

k∑

n=nc

ln

(
p (x[n], θ1)

p (x[n], θ0)

)
. (1.6)
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1.1.3 The whole algorithm

Direct form

In order to obtain a simplified form of the whole algorithm, let’s define from
(1.4) the instantaneous log-likelihood ratio at time n by:

s[n] = LX[n, n] = ln

(
p (x[n], θ1)

p (x[n], θ0)

)
, (1.7)

and its cumulative sum from 0 to k:

S[k] =

k∑

n=0

s[n]. (1.8)

From (1.7) and (1.8), the log-likelihood ratio LX[k, nc] defined in (1.4) can be
rewritten as:

LX [k, nc] = S[k]− S[nc − 1]. (1.9)

Reporting this expression in (1.5) and (1.6), we obtain new expressions for the
decision function GX[k] and for the change time estimate n̂c[k]:

GX[k] = S[k]− min
1≤nc≤k

S[nc − 1] (1.10)

n̂c = argmin
1≤nc≤k

S[nc − 1]. (1.11)

Equation (1.10) shows that the decision function GX[k] is the current value of
the cumulative sum S[k] minus its current minimum value. Equation (1.11)
shows that the change time estimate is the time following the current minimum
of the cumulative sum. Therefore, each step composing the whole algorithm
relies on the same quantity: the cumulative sum S[k] defined through (1.7) and
(1.8). This explains the name of cumulative sum or CUSUM algorithm. By
using equations (1.7), (1.8), (1.10) and (1.11) into algorithm 1, the direct form
of the CUSUM algorithm 2 is obtained.

Recursive form

The previous algorithm can easily be rewritten in a recursive manner. Indeed,
the cumulative sum (1.8) can be calculated through the simple recursive formula:

S[k] = S[k − 1] + s[k]. (1.12)

Moreover, as shown in [Basseville 1993, chap. 2], since the decision function is
compared to a positive threshold h, it can be rewritten as:

GX[k] = {GX[k − 1] + s[k]}+ , (1.13)

where {z}+ = sup(z, 0). Finally, by using (1.12) and (1.13) into the direct form
algorithm 2, the recursive form of the CUSUM algorithm 3 is obtained. Clearly,
the obtained algorithm is very simple and very interesting to use in real-time or
on-line applications.
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initialization
set the detection threshold h > 0
k = 0

end
while the algorithm is not stopped do

measure the current sample x[k]

s[k] = ln
(

p(x[k],θ1)
p(x[k],θ0)

)

S[k] =
∑k

n=0 s[n]
GX[k] = S[k]−min1≤nc≤k S[nc − 1]
if GX[k] > h then

nd ← k

n̂c = argmin1≤nc≤k S[nc − 1]

stop or reset the algorithm

end
k = k + 1

end
Algorithm 2: CUSUM algorithm, direct form.

initialization
set the detection threshold h > 0
S[−1] = GX[−1] = 0
k = 0

end
while the algorithm is not stopped do

measure the current sample x[k]

s[k] = ln
(

p(x[k],θ1)
p(x[k],θ0)

)

S[k] = S[k − 1] + s[k]

GX[k] = {GX[k − 1] + s[k]}+
if GX[k] > h > 0 then

nd ← k

n̂c = argmin1≤nc≤k S[nc − 1]

stop or reset the algorithm

end
k = k + 1

end
Algorithm 3: CUSUM algorithm, recursive form.
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1.1.4 Example

Let us consider the particular case where the signal X[n] is constituted of inde-
pendent and identically distributed samples following a Gaussian distribution
with mean value µX and variance σ2

X
. This signal is supposed to undergo a pos-

sible change in the mean at a change time nc. The changing parameter θ is then
µX, which takes the values µX0 before and µX1 after the change. Therefore, the
theoretical expression of the PDF followed by each sample is:

p
(
x[n], µXj

)
=

1

σX

√
2π

e
−
(x[n]−µXj)

2

2σ2
X ,

where j = 0 before and j = 1 after the change.
A particular realization x[n] of X[n] is represented on top of Fig. 1.1 with µX0 =
0, µX1 = 1, σ2

X
= 1 and nc = 1000. It is clear from this curve that a simple

threshold applied to x[n] is insufficient to efficiently detect the presence of an
abrupt change and estimate the change time nc.
The CUSUM algorithm is applied to this signal by using its recursive form
3, and a detection threshold set to h = 100. The values of µX0, µX1 and
σ2
X

are supposed to be known, contrarily to nc. Therefore, the instantaneous
log-likelihood ratio s[n] can be calculated whatever the time n through the
expression:

s[n] =
µX1 − µX0

σ2
X

(
x[n]− µX1 + µX0

2

)
. (1.14)

Fig. 1.1 shows the typical behaviour of this algorithm. As expected, the decision
function GX[n] stays close to 0 before and grows continuously after the change
time. The presence of the change is detected when GX[n] > h at nd = 1201
(see the red line), leading to a detection delay of nd − nc = 201 samples. Once
the change has been detected, the time following the current minimum of the
cumulative sum S[n] gives the estimated change time n̂c = 1001. Consequently,
the estimation error of the change time |nc − n̂c| = 1 is very small for this
example.

1.2 Performance

1.2.1 Criteria

Several criteria have been proposed to measure the performance of change de-
tection algorithms, but the following ones are the most popular.

Average run length function The average run length (ARL) function pro-
posed in [Page 1954a] is defined as the expected number of samples before an
action is taken:

ARL = Eθ [Nd] , (1.15)
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Figure 1.1: typical behaviour of the CUSUM algorithm in the case of an iid
Gaussian signal with a change in the mean at time nc = 1000.

where Nd is the detection time of the change detection algorithm, and the
parameter θ is assumed constant for all the signal samples. More particularly,
the ARL function takes two interesting values with respect to θ:

• If θ = θ0, (1.15) becomes ARL0 = Eθ0 [Nd], the ARL to false alarm. This
quantity corresponds to the expected number of samples before a false
alarm is signaled, and can be viewed as the average time between two
false detections. Obviously, this quantity has to be as large as possible to
minimize the rate of false detections.

• If θ = θ1, (1.15) becomes ARL1 = Eθ1 [Nd], the ARL to change detection.
In this case, it corresponds to the expected number of samples before
the detection of a change, and is similar to an average detection delay.
Therefore, this quantity has to be as small as possible to minimize the
reaction time of the algorithm.

Worst case detection delay This criterion has been first proposed in
[Lorden 1971]. Let first define the conditional expected detection delay by

EH1

[
(Nd − nc + 1)

+ |X[0], . . . ,X[nc − 1]
]
, where the expectation is taken under
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the one change hypothesis H1 (PDF given by (1.2)). A minimax performance
criterion is given by its supremum taken over (nc,X[0], . . . ,X[nc − 1]):

EH1
[Nd] = sup

nc≥0

{
ess sup EH1

[
(Nd − nc + 1)

+ |X[0], . . . ,X[nc − 1]
]}

. (1.16)

This quantity is the worst case detection delay of the change detection algorithm.
It obviously has to be as small as possible in order to minimize the quickness of
reaction to an abrupt change in the signal.

1.2.2 Optimality

Page uses ARL0 and ARL1 in [Page 1954a] to conclude on the good the perfor-
mance of the CUSUM algorithm, but gives no result about its optimality.
Next, Lorden [Lorden 1971] shows the asymptotic optimality of the CUSUM
algorithm with respect to the worst case detection delay. More precisely, let the
detection threshold h (see algorithm 2 or 3) be so chosen that the ARL to false
alarm verifies ARL0 ≥ γ > 0. Clearly, this condition is equivalent to limit the
rate of false detections by a given maximum value. When γ →∞, the CUSUM
algorithm minimizes the worst case detection delay EH1 [Nd]. Moreover, the
value of this delay can then be approximated by:

EH1
[Nd] ∼

ln γ

I (pθ0 , pθ1)
, (1.17)

where I (pθ0 , pθ1) = Eθ1

[
ln
(

p(X[n],θ1)
p(X[n],θ0)

)]
denotes the Kullback-Leibler informa-

tion number.
Later, Moustakides [Moustakides 1986] and Ritov [Ritov 1990] generalize this
result to the non asymptotic case (for finite ARL0) by using non-Bayesian and
Bayesian approaches.

1.3 Practical considerations

The goal of this section is to mention the main problems encountered when the
CUSUM algorithm is used in practice, and provide some possible solutions.

1.3.1 Dealing with unknowns

Section 1.1 shows that the CUSUM algorithm entirely relies on the instanta-
neous log-likelihood ratio s[n] defined by Eq. (1.7). This quantity depends on
the probability density function of the signal samples, and thus on its different
parameters. For example, the case of a change in the mean in a iid Gaussian
signal studied in paragraph 1.1.4 leads to Eq. (1.14), where s[n] depends on
the mean values before and after the change µX0 and µX1 and on the variance
σ2
X
. Until now, all these parameters were supposed known, which is a quite

unrealistic assumption for practical applications. In the case where different
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parameters are unknown, the online evaluation of s[n] becomes impossible and
the CUSUM algorithm cannot be employed.
To overcome this problem, the optimal method consists of using the generalized
likelihood ratio test principle by replacing in s[n] all the unknown parameters
by their maximum likelihood estimates. This leads to the generalized likelihood
ratio or GLR algorithm initially presented in [Lorden 1971]. Unfortunately,
this optimal algorithm cannot be written in a recursive manner and its com-
plexity grows with the number of available samples, contrarily to the CUSUM
algorithm. This explains that the GLR algorithm cannot be used for online
applications.
Another possibility is to preserve the simple and recursive structure of the
CUSUM algorithm, even if this leads to suboptimal algorithms. Following this
point of view, different situations may be encountered:

θ1 unknown: This is the most common practical case. Indeed, in most ap-
plications the true value of the changing parameter after change is not
precisely known. In that case, the usual solution is to use the classical
CUSUM algorithm where θ1 is a priori set by the user, i.e. employed as
an additional parameter. A logical and efficient way to set this parameter
is to choose the most likely value that θ1 should take after the change.
The precision of this setting clearly depends on the amount of a priori
information the user has about the signal. The resulting algorithm is gen-
erally suboptimal, but results of section 1.2 show that it is still optimal to
sequentially detect changes from θ0 to the chosen value of θ1.

θ0 and/or constant parameters unknown: In that case, the situation is
not as critical as the previous one and a simple solution exists. Indeed,
these unknowns can be replaced by their maximum likelihood estimates
using the available samples at time k, i.e. x[0], . . . , x[k]. Moreover, ef-
ficient implementations can be obtained by using recursive estimators.
Finally, the resulting algorithms use the generalized likelihood ratio test
principle and are nearly optimal.

As an example, let’s once again consider the case studied in paragraph 1.1.4 of
a change in the mean in an iid Gaussian signal. µX1 is usually rewritten with
respect to µX0 as:

µX1 = µX0 + δ, (1.18)

where δ is the change magnitude of the mean value.
By using (1.18) into (1.14), the corresponding instantaneous log-likelihood ratio
then becomes:

s[n] =
δ

σ2
X

(
x[n]− µX0 −

δ

2

)
. (1.19)

This relation shows that s[n] depends on the mean value before change µX0,
the constant variance of the signal σ2

X
and the change magnitude δ. If all these

parameters are unknown, the two strategies described in this paragraph have to
be jointly applied:
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δ unknown: replace the true value of δ in (1.19) by a parameter δ̃ set to the a
priori most likely change magnitude,

µX0 and σ2
X

unknown: replace the true values of µX0 and σ2
X

in (1.19) by

their maximum likelihood estimates µ̂X0 and σ̂2
X
at the current sample.

This finally leads to algorithm 4, where two parameters have now to be a priori
set: the detection threshold h and the change magnitude δ̃.

initialization

set δ̃ to the most likely change magnitude
set the detection threshold h > 0
S[−1] = GX[−1] = 0

initialize the estimators µ̂X0 and σ̂2
X

k = 0

end
while the algorithm is not stopped do

measure the current sample x[k]

calculate the current estimates µ̂X0[k] and σ̂2
X
[k]

s[k] = δ̃
̂σ2
X
[k]

(
x[k]− µ̂X0[k]− δ̃

2

)

S[k] = S[k − 1] + s[k]

GX[k] = {GX[k − 1] + s[k]}+
if GX[k] > h > 0 then

nd ← k

n̂c = argmin1≤nc≤k S[nc − 1]

stop or reset the algorithm

end
k = k + 1

end
Algorithm 4: suboptimal CUSUM algorithm, jump in the mean - iid Gaus-
sian case.

In order to compare optimal and suboptimal CUSUM algorithms, algorithm 4
is applied to the signal previously used in section 1.1.4, with the same detection
threshold h = 100 and a change magnitude perfectly set to δ̃ = 1. Results, illus-
trated in Fig. 1.2, show that the two algorithms have the same general behavior,
but a slightly more important detection delay is obtained with the suboptimal
algorithm.
Finally, this methodology leads to a suboptimal algorithm having the same
global complexity and behavior as its optimal version obtained in section 1.1.3,
and reaching almost similar performance. The main difference is that this al-
gorithm necessitates the setting of one additional parameter, the change mag-
nitude, thanks to a priori information the user may have concerning abrupt
changes occurring in the signal.
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Figure 1.2: typical behaviour of the suboptimal CUSUM algorithm in the case
of an iid Gaussian signal with a change in the mean at time nc = 1000.

1.3.2 Setting the parameters

The CUSUM algorithm have several tuning parameters the user has to correctly
set:

• in any case the detection threshold h,

• in case of the previous suboptimal CUSUM algorithm, θ1 or equivalently
the change magnitude.

the change magnitude The previous section shows that the user must have
a priori knowledge about the signal to correctly set this parameter. Indeed,
an efficient setting for the change magnitude is the a priori most likely change
magnitude that should appear in the signal. In case several magnitudes of jump
are possible, the best choice is the minimum one. In any case, the resulting
change detection algorithm is only optimal to sequentially detect the chosen
change magnitude. Notice that an a posteriori choice of the most likely change
magnitude leads to the GLR algorithm [Lorden 1971].
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the detection threshold The classical way to set this parameter is to use
the average run length function (1.15), and more particularly the mean time
between false alarms ARL0 and the mean detection delay ARL1. These two
specific values of the ARL function depend on the detection threshold h, and
can thus be used to set the performance of the CUSUM algorithm to a desired
value for a particular application. A first possibility is to choose the mean time
between false alarms to a desired value NFA:

• fix the desired mean time between false alarms NFA = ARL0(ho),

• compute the corresponding optimal threshold value ho = ARL0
−1 (NFA),

• deduce the resulting mean detection delay ARL1(ho).

Another possibility is to first choose the mean detection delay to a value ND

the user desire:

• fix the desired mean detection delay ND = ARL1(ho),

• compute the corresponding optimal threshold value ho = ARL1
−1 (ND),

• deduce the resulting mean time between false alarms ARL0(ho).

Obviously, such a method requires the knowledge of the different values of the
ARL function, and several approaches has been proposed in the literature to
evaluate this function in the CUSUM case [Basseville 1993, chap. 5]:

Integral equation approach: Page demonstrates in [Page 1954a] that this ARL
function is the solution of an integral equation of Fredholm’s type. Un-
fortunately, finding an analytical solution to this equation is generally im-
possible. To overcome this problem, several methods have been proposed
to numerically evaluate this solution, see for example [Goel 1971]. This
first approach can lead to very accurate results, but is computationally
intensive.

Approximation approach: Different analytical approximations of this ARL
function relying on the theory of sequential analysis [Wald 1947] have
been proposed, see for example [Page 1954b] and [Siegmund 1985]. This
second approach is simpler than the previous one, but generally leads to
less accurate results.

Markov chain approach: Following this approach, it is not only possible to
evaluate the average run length function, but also the statistical prop-
erties of the CUSUM algorithm such as the run length distribution. It
has been introduced in the discrete case in [Brook 1972], adapted to the
continuous case in [Lucas 1982a, Lucas 1982b], and further investigated
in [Yashchin 1985a, Yashchin 1985b].

As an example, Fig. 1.3 shows Siegmund’s approximation [Siegmund 1985] of
ARL0(h) and ARL1(h) in case of a change in the mean of magnitude δ = 1 in
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Figure 1.3: Siegmund’s approximation of ARL0(h) and ARL1(h), case of a
change in the mean in an iid Gaussian signal with a SNR = δ

σX

= 1.

an iid Gaussian signal of variance σ2
X
= 1. This corresponds to a signal to noise

ratio SNR = δ
σX

= 1. Several things are highlighted by this figure. First, the
mean time between two false detections ARL0 is clearly much more important
than the mean detection delay ARL1 whatever the value of h. For example, the
two data-tips show that the CUSUM algorithm applied to such a signal with
a detection threshold h = 3.5 generates a false detection every 200 samples in
mean, and detects a change in the mean of magnitude 1 with a delay of 7 samples
in mean. Second, h is directly related to the algorithm reactivity or sensitivity:
the smaller h, the more reactive or sensitive the algorithm. Indeed, abrupt
changes are detected after very small delays for small h, but the price to pay is
to obtain at the same time a small time between false detections, or equivalently
a high false alarm rate. On the contrary, the same algorithm generates small
false detection rates for large thresholds, but with large detection delays.
The methodology explained in this section finally allows the user to set the
CUSUM parameters such that this algorithm reaches desired performance in
terms of mean time between false alarms ARL0 and mean detection delay ARL1.
Relation (1.17) can also be interesting for practical applications. Indeed, it can
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be rewritten as:

ARL1 ∼
lnARL0

I (pθ0 , pθ1)
, when ARL0 →∞,

which roughly connects ARL1 and ARL0 when the latter is large.

1.3.3 Two-sided algorithm

Previously developed algorithms are adequate for the detection of changes in
one direction only, and are called one-sided CUSUM algorithms. However, in
most applications it is necessary to also detect changes in either direction. This
is for example the case of a piecewise constant signal buried in noise whose
changing mean must be on-line tracked.
A simple solution proposed by Page in [Page 1954a] is to use two one-sided algo-
rithms, one to detect an increase and one to detect a decrease in the parameter
θ. This leads to two different instantaneous log-likelihood ratios, si[n] dedicated
to the increase θ0 → θi1 and sd[n] to the decrease θ0 → θd1 with θd1 < θ0 < θi1.
Two cumulative sums Si

X
[n], Sd

X
[n] and two decision functions Gi

X
[n], Gd

X
[n] can

then be computed, and a change in the parameter is finally detected thanks to
the following test:

test 3. Decide H1 if
(
Gi

X
[k] > h > 0

)
∪
(
Gd

X
[k] > h > 0

)
(else H0), where h is

a threshold set by the user.

Once again, the classical way to quantify the performance of this algorithm
is the ARL function. As explained in [Basseville 1993, chap. 5], the ARL
function of the two-sided CUSUM algorithm can be computed from the ARL
functions of the two one-sided CUSUM algorithms it is constituted. Under
general conditions, these three ARL functions verify the relation:

1

ARL
≤ 1

ARLi
+

1

ARLd
, (1.20)

where:

• ARL is related to the two-sided CUSUM algorithm,

• ARLi is related to the one-sided CUSUM algorithm corresponding to the
change θ0 → θi1,

• ARLd is related to the one-sided CUSUM algorithm corresponding to the
change θ0 → θd1 .

Finally, inequality (1.20) becomes a simple equality in the case of a change in the
mean of an iid Gaussian signal, and the ARL function of the two-sided CUSUM
algorithm can be in this case efficiently approximated thanks to methods given
in the previous section.
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Applied to the case of a change in the mean in an iid Gaussian signal, this
general principle leads to the two following instantaneous log-likelihood ratios:

si[n] = +
|δ|
σ2
X

(
x[n]− µX0 −

|δ|
2

)

sd[n] = − |δ|
σ2
X

(
x[n]− µX0 +

|δ|
2

)

where |δ| is the absolute value of the change magnitude. The resulting algorithm
corresponds to the well known cumulative sum control chart widely used in
continuous inspection for quality control (see for example [Montgomery 2010]).
Moreover, jointly applying the ideas developed in the previous section concern-
ing unknown parameters leads to algorithm 5. This simple and efficient recursive
algorithm is able to sequentially detect increasing or decreasing changes in the
mean of an iid Gaussian signal thanks to only two parameters:

• the change magnitude δ̃, set to the most likely magnitude of change by
using a priori knowledge about the signal,

• the detection threshold h, set by specifying the desired performance through
the algorithm ARL function.

Fig. 1.4 shows different results obtained thanks to algorithm 5 applied to a
random signal with abrupt changes. The signal of interest is an iid Gaussian
signal with a constant standard deviation σ = 1 and a piecewise constant mean
with three abrupt changes. The most difficult change to detect is situated at
sample 800 and has a magnitude δmin = 0.5, which is smaller than the standard
deviation. In Fig. 1.4, the original piecewise constant mean is represented in
black and its noisy versions are represented in blue. Algorithm 5 is applied
to the noisy signal with two different settings. As mentioned previously, the
change magnitude parameter δ̃ must be set to the minimum change magnitude
δmin = 0.5, but the mean time between false detections ARL0 can be chosen
differently:

• First, ARL0 = 1000. This value is a little bit too small since the last part
of the signal has no change in the mean during more than 1000 samples.
Therefore, the algorithm should be too much sensitive and false detections
are expected in this case.

• ARL0 = 2000. This value seems to be correct since the maximum number
of samples between two changes in the signal is less than 2000. However,
the resulting algorithm should be less sensitive than in the previous case,
with higher detection delays.

The red curves of Fig. 1.4 represent the piecewise constant signal estimated by
algorithm 5 and the black crosses “+” denote the corresponding detection times.
Fig. 1.4(a) (resp. 1.4(b)) shows the results obtained with the most (resp. less)
sensitive setting. It can first be noticed that whatever the settings, all changes
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initialization

set δ̃ to the most likely change magnitude
set the detection threshold h > 0

Si[−1] = Gi
X
[−1] = Sd[−1] = Gd

X
[−1] = 0

initialize the estimators µ̂X0 and σ̂2
X

k = 0

end
while the algorithm is not stopped do

measure the current sample x[k]

calculate the current estimates µ̂X0[k] and σ̂2
X
[k]

si[k] = |δ̃|
̂σ2
X
[k]

(
x[k]− µ̂X0[k]− |δ̃|

2

)

sd[k] = − |δ̃|
̂σ2
X
[k]

(
x[k]− µ̂X0[k] +

|δ̃|
2

)

Si[k] = Si[k − 1] + si[k] ; Sd[k] = Sd[k − 1] + sd[k]

Gi
X
[k] =

{
Gi

X
[k − 1] + si[k]

}
; Gd

X
[k] =

{
Gd

X
[k − 1] + sd[k]

}

if
(
Gi

X
[k] > h > 0

)
∪
(
Gd

X
[k] > h > 0

)
then

nd ← k

if
(
Gi

X
[k] > h > 0

)
then

n̂c = argmin1≤nc≤k S
i[nc − 1]

end

if
(
Gd

X
[k] > h > 0

)
then

n̂c = argmin1≤nc≤k S
d[nc − 1]

end
stop or reset the algorithm

end
k = k + 1

end
Algorithm 5: suboptimal two-sided CUSUM algorithm, jump in the mean -
iid Gaussian case.
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(a) Setting: δ̃ = 0.5 ; ARL0 = 1000.
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(b) Setting: δ̃ = 0.5 ; ARL0 = 2000.

Figure 1.4: Application of algorithm 5 to an iid Gaussian signal containing three
changes in the mean with two different settings.
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are correctly detected and estimated. As expected, one false detection appears
around sample number 900 in Fig. 1.4(a) with the most sensitive setting. This
false detection disappears with the second setting of Fig. 1.4(b), but the detec-
tion delays are apparently more important in this case.
Of course, these indicative results should be statistically validated, but this first
example correctly illustrate the good properties of algorithm 5.

1.4 Variations

Variations of the classical CUSUM algorithm has also been proposed. Here are
the most simple ones.

1.4.1 Fast initial response CUSUM

The classical recursive CUSUM algorithm is usually reset to zero after the de-
tection of a change in the signal. The goal is here to increase its detection
performance and to give it a head start by changing the initial value of the
cumulative sums when resetting. See [Lucas 1982b] and [Yashchin 1985a].

1.4.2 Combined Shewhart-CUSUM

The classical CUSUM algorithm is optimal to detect small persistent changes
in signals, but Shewhart control charts are often faster to detect very important
changes. The goal is here to combine the two algorithms in order to improve
the resulting detection performance. See [Westgard 1977], [Lucas 1982a] and
[Yashchin 1985b].

1.4.3 Multivariate CUSUM

The CUSUM algorithm can be easily generalized to multivariate signals. See
for example [Basseville 1993, chap. 7], where the basic case of r-dimensional
random vectors of Gaussian independent sequences is treated in section 7.2.1.
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