R. Schothorst and H. Van-egmond, Report from SCOOP task 3.2.10 ???collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states???, Toxicology Letters, vol.153, issue.1, pp.133-143, 2004.
DOI : 10.1016/j.toxlet.2004.04.045

R. Canady, R. Coker, S. Egan, R. Krska, and T. Kuiper-goodman, Deoxynivalenol. Safety evaluation of certain mycotoxins in food, pp.419-555, 2001.

P. Turner, V. Burley, J. Rothwell, K. White, and J. Cade, Deoxynivalenol: Rationale for development and application of a urinary biomarker, Food Additives & Contaminants: Part A, vol.25, issue.7, pp.864-871, 2008.
DOI : 10.1080/02652030801895040

URL : https://hal.archives-ouvertes.fr/hal-00577378

P. Turner, R. Hopton, Y. Lecluse, K. White, and J. Fisher, Determinants of Urinary Deoxynivalenol and De-epoxy Deoxynivalenol in Male Farmers from Normandy, France, Journal of Agricultural and Food Chemistry, vol.58, issue.8, pp.5206-5212, 2010.
DOI : 10.1021/jf100892v

P. Turner, R. Hopton, K. White, J. Fisher, and J. Cade, Assessment of deoxynivalenol metabolite profiles in UK adults, Food and Chemical Toxicology, vol.49, issue.1, pp.132-135, 2011.
DOI : 10.1016/j.fct.2010.10.007

Y. Ramakrishna, R. Bhat, and V. Ravindranath, Production of deoxynivalenol by Fusarium isolates from samples of wheat associated with a human mycotoxicosis outbreak and from sorghum cultivars, Applied and Environmental Microbiology, vol.55, pp.2619-2620, 1989.

DOI : 10.1016/S0140-6736(89)91684-X

X. Luo, Outbreaks of moldy cereals poisoning in China Issues in food safety, pp.56-63, 1988.

J. Pestka, Deoxynivalenol: Toxicity, mechanisms and animal health risks, Animal Feed Science and Technology, vol.137, issue.3-4, pp.283-298, 2007.
DOI : 10.1016/j.anifeedsci.2007.06.006

J. Pestka, Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance, Archives of Toxicology, vol.85, issue.2, pp.663-679, 2010.
DOI : 10.1007/s00204-010-0579-8

F. Iverson, C. Armstrong, E. Nera, J. Truelove, and S. Fernie, Chronic Feeding Study of deoxynivalenol in B6C3F1 male and female mice, Teratogenesis, Carcinogenesis, and Mutagenesis, vol.25, issue.6, pp.283-306, 1995.
DOI : 10.1002/tcm.1770150606

A. Perrin-guyomard, J. Poul, M. Laurentie, P. Sanders, and A. Fernández, Impact of ciprofloxacin in the human-flora-associated (HFA) rat model: Comparison with the HFA mouse model, Regulatory Toxicology and Pharmacology, vol.45, issue.1, pp.66-78, 2006.
DOI : 10.1016/j.yrtph.2006.02.002

V. Sirot, J. Fremy, and J. Leblanc, Dietary exposure to mycotoxins and health risk assessment in the second French total diet study, Food and Chemical Toxicology, vol.52, pp.1-11, 2013.
DOI : 10.1016/j.fct.2012.10.036

L. Bail, M. Verger, P. Doré, T. Fourbet, J. Champeil et al., Simulation of consumer exposure to deoxynivalenol according to wheat crop management and grain segregation: Case studies and methodological considerations, Regulatory Toxicology and Pharmacology, vol.42, issue.3, pp.253-259, 2005.
DOI : 10.1016/j.yrtph.2005.04.001

URL : https://hal.archives-ouvertes.fr/hal-01354876

J. Leblanc, L. Malmauret, D. Delobel, and P. Verger, Simulation of the Exposure to Deoxynivalenol of French Consumers of Organic and Conventional Foodstuffs, Regulatory Toxicology and Pharmacology, vol.36, issue.2, pp.149-154, 2002.
DOI : 10.1006/rtph.2002.1584

P. Turner, J. Rothwell, K. White, Y. Gong, and J. Cade, Urinary Deoxynivalenol Is Correlated with Cereal Intake in Individuals from the United Kingdom, Environmental Health Perspectives, vol.116, issue.1, pp.21-25, 2008.
DOI : 10.1289/ehp.10663

B. Warth, M. Sulyok, P. Fruhmann, F. Berthiller, and R. Schuhmacher, Assessment of human deoxynivalenol exposure using an LC???MS/MS based biomarker method, Toxicology Letters, vol.211, issue.1, pp.85-90, 2012.
DOI : 10.1016/j.toxlet.2012.02.023

Y. Waché, C. Valat, G. Postollec, S. Bougeard, and C. Burel, Impact of Deoxynivalenol on the Intestinal Microflora of Pigs, International Journal of Molecular Sciences, vol.10, issue.1, pp.1-17, 2008.
DOI : 10.3390/ijms10010001

B. Rotter, Invited Review: TOXICOLOGY OF DEOXYNIVALENOL (VOMITOXIN), Journal of Toxicology and Environmental Health, vol.48, issue.1, pp.1-34, 1996.
DOI : 10.1080/009841096161447

S. Gratz, G. Duncan, and A. Richardson, The Human Fecal Microbiota Metabolizes Deoxynivalenol and Deoxynivalenol-3-Glucoside and May Be Responsible for Urinary Deepoxy-Deoxynivalenol, Applied and Environmental Microbiology, vol.79, issue.6, pp.1821-1825, 2013.
DOI : 10.1128/AEM.02987-12

P. He, L. Young, and C. Forsberg, Microbial transformation of deoxynivalenol (vomitoxin), Appl Environ Microbiol, vol.58, pp.3857-3863, 1992.

M. Ito, I. Sato, M. Ishizaka, S. Yoshida, and M. Koitabashi, Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol, Applied and Environmental Microbiology, vol.79, issue.5, pp.1619-1628, 2013.
DOI : 10.1128/AEM.03227-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591976

M. Ito, I. Sato, M. Koitabashi, S. Yoshida, and M. Imai, A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight, Applied Microbiology and Biotechnology, vol.10, issue.Pt 2, pp.1-12, 2012.
DOI : 10.1007/s00253-012-3922-6

B. Kollarczik, M. Gareis, and M. Hanelt, In vitro transformation of theFusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs, Natural Toxins, vol.47, issue.3, pp.105-110, 1994.
DOI : 10.1002/nt.2620020303

V. Niderkorn, H. Boudra, and D. Morgavi, Binding of Fusarium mycotoxins by fermentative bacteria in vitro, Journal of Applied Microbiology, vol.74, issue.4, pp.849-856, 2006.
DOI : 10.1021/jf00069a021

J. Young, T. Zhou, H. Yu, H. Zhu, and J. Gong, Degradation of trichothecene mycotoxins by chicken intestinal microbes, Food and Chemical Toxicology, vol.45, issue.1, pp.136-143, 2007.
DOI : 10.1016/j.fct.2006.07.028

Z. Zou, Z. He, H. Li, P. Han, and X. Meng, In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria, Food Science and Biotechnology, vol.106, issue.6, pp.1677-1683, 2012.
DOI : 10.1007/s10068-012-0223-x

B. Becker, H. Bresch, U. Schillinger, and P. Thiel, The effect of fumonisin B1 on the growth of bacteria, World Journal of Microbiology and Biotechnology, vol.13, issue.5, pp.539-543, 1997.
DOI : 10.1023/A:1018513308847

C. Burel, M. Tanguy, P. Guerre, E. Boilletot, and R. Cariolet, Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella, Toxins, vol.5, issue.4, pp.841-864, 2013.
DOI : 10.3390/toxins5040841

I. Oswald, C. Desautels, L. Jl, S. Fournout, and S. Peres, Mycotoxin Fumonisin B1 Increases Intestinal Colonization by Pathogenic Escherichia coli in Pigs, Applied and Environmental Microbiology, vol.69, issue.10, pp.5870-5874, 2003.
DOI : 10.1128/AEM.69.10.5870-5874.2003

I. Tenk, E. ´. Fodor, and C. Szathmáry, The effect of pure fusarium toxins (T-2, F- 2, DAS) on the microflora of the gut and on plasma glucocorticoid levels in rat and swine, Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene 1 Abt Originale A, pp.384-393, 1982.

J. Furet, O. Firmesse, M. Gourmelon, C. Bridonneau, and J. Tap, Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR, FEMS Microbiology Ecology, vol.68, issue.3, pp.351-362, 2009.
DOI : 10.1111/j.1574-6941.2009.00671.x

G. Johnson, D. Bibby, S. Wong, S. Agrawal, and S. Bustin, A MIQE-Compliant Real-Time PCR Assay for Aspergillus Detection, PLoS ONE, vol.438, issue.7, p.40022, 2012.
DOI : 10.1371/journal.pone.0040022.t004

L. Sørensen and T. Elbaek, Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry, Journal of Chromatography B, vol.820, issue.2, pp.183-196, 2005.
DOI : 10.1016/j.jchromb.2005.03.020

D. Mariat, O. Firmesse, F. Levenez, V. Guimaraes, and H. Sokol, The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age, BMC Microbiology, vol.9, issue.1, p.123, 2009.
DOI : 10.1186/1471-2180-9-123

URL : https://hal.archives-ouvertes.fr/hal-00657910

P. Yi and L. Li, The germfree murine animal: An important animal model for research on the relationship between gut microbiota and the host, Veterinary Microbiology, vol.157, issue.1-2, 2011.
DOI : 10.1016/j.vetmic.2011.10.024

M. Wos-oxley, A. Bleich, A. Oxley, S. Kahl, and L. Janus, Comparative evaluation of establishing a human gut microbial community within rodent models, Gut Microbes, vol.64, issue.3, pp.234-249, 2012.
DOI : 10.1111/j.1442-9993.1993.tb00438.x

S. Frese, A. Benson, G. Tannock, D. Loach, and J. Kim, The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri, PLoS Genetics, vol.31, issue.2, p.1001314, 2011.
DOI : 10.1371/journal.pgen.1001314.s014

N. Bernbom, B. Nørrung, P. Saadbye, L. Mølbak, and F. Vogensen, Comparison of methods and animal models commonly used for investigation of fecal microbiota: Effects of time, host and gender, Journal of Microbiological Methods, vol.66, issue.1, pp.87-95, 2006.
DOI : 10.1016/j.mimet.2005.10.014

R. Ducluzeau, M. Ladiré, and P. Raibaud, Effet de l'ingestion de son de bl?? sur la flore microbienne f??cale de donneurs humains et de souris gnotox??niques receveuses, et sur les effets de barri??re exerc??s par ces flores ?? l'??gard de divers microorganismes potentiellement pathog??nes, Annales de l'Institut Pasteur / Microbiologie, vol.135, issue.2, pp.303-318, 1984.
DOI : 10.1016/S0769-2609(84)80013-7

K. Hirayama, S. Kawamura, and T. Mitsuoka, Development and Stability of Human Faecal Flora in the Intestine of Ex-germ-free Mice, Microbial Ecology in Health and Disease, vol.82, issue.2, pp.95-99, 1991.
DOI : 10.3109/08910609109140269

I. Sato, M. Ito, M. Ishizaka, Y. Ikunaga, and Y. Sato, Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms, FEMS Microbiology Letters, vol.327, issue.2, pp.110-117, 2012.
DOI : 10.1111/j.1574-6968.2011.02461.x

R. Islam, T. Zhou, J. Young, P. Goodwin, and K. Pauls, Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil, World Journal of Microbiology and Biotechnology, vol.1, issue.1, pp.7-13, 2012.
DOI : 10.1007/s11274-011-0785-4

H. Yu, T. Zhou, J. Gong, C. Young, and X. Su, Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection, BMC Microbiology, vol.10, issue.1, p.182, 2010.
DOI : 10.1186/1471-2180-10-182

S. Guan, J. He, J. Young, H. Zhu, and X. Li, Transformation of trichothecene mycotoxins by microorganisms from fish digesta, Aquaculture, vol.290, issue.3-4, pp.290-295, 2009.
DOI : 10.1016/j.aquaculture.2009.02.037

T. Zhou, J. He, and J. Gong, Microbial transformation of trichothecene mycotoxins, World Mycotoxin Journal, vol.1, issue.1, pp.23-30, 2008.
DOI : 10.3920/WMJ2008.x003

H. El-nezami, A. Chrevatidis, S. Auriola, S. Salminen, and H. Mykkä-nen, Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium, Food Additives and Contaminants, vol.46, issue.7, pp.680-686, 2002.
DOI : 10.1016/0165-1218(93)90003-V

T. Franco, S. Garcia, E. Hirooka, Y. Ono, and J. Santos, Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification, Journal of Applied Microbiology, vol.74, issue.3, pp.739-748, 2011.
DOI : 10.1111/j.1365-2672.2011.05074.x

P. Turner, Q. Wu, S. Piekkola, S. Gratz, and H. Mykkänen, Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol, Food and Chemical Toxicology, vol.46, issue.6, pp.2118-2123, 2008.
DOI : 10.1016/j.fct.2008.02.004

W. Awad, J. Bohm, E. Razzazi-fazeli, K. Ghareeb, and J. Zentek, Effect of Addition of a Probiotic Microorganism to Broiler Diets Contaminated with Deoxynivalenol on Performance and Histological Alterations of Intestinal Villi of Broiler Chickens, Poultry Science, vol.85, issue.6, pp.974-979, 2006.
DOI : 10.1093/ps/85.6.974

T. Goyarts and S. Dä-nicke, Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig, Toxicology Letters, vol.163, issue.3, pp.171-182, 2006.
DOI : 10.1016/j.toxlet.2005.10.007

V. Nagl, H. Schwartz, R. Krska, W. Moll, and S. Knasmüller, Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats, Toxicology Letters, vol.213, issue.3, pp.367-373, 2012.
DOI : 10.1016/j.toxlet.2012.07.024

M. Fraher, O. Toole, P. Quigley, and E. , Techniques used to characterize the gut microbiota: a guide for the clinician, Nature Reviews Gastroenterology & Hepatology, vol.437, issue.6, 2012.
DOI : 10.1038/nrgastro.2012.44

J. Clemente, L. Ursell, L. Parfrey, and R. Knight, The Impact of the Gut Microbiota on Human Health: An Integrative View, Cell, vol.148, issue.6, pp.1258-1270, 2012.
DOI : 10.1016/j.cell.2012.01.035

I. Nadal, E. Donant, C. Ribes-koninckx, M. Calabuig, and Y. Sanz, Imbalance in the composition of the duodenal microbiota of children with coeliac disease, Journal of Medical Microbiology, vol.56, issue.12, pp.1669-1674, 2007.
DOI : 10.1099/jmm.0.47410-0

J. Dicksved, J. Halfvarson, M. Rosenquist, G. Jarnerot, and C. Tysk, Molecular analysis of the gut microbiota of identical twins with Crohn's disease, The ISME Journal, vol.64, issue.7, pp.716-727, 2008.
DOI : 10.1038/ismej.2008.37

C. Amuzie, J. Harkema, and J. Pestka, Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: Comparison of nasal vs. oral exposure, Toxicology, vol.248, issue.1, pp.39-44, 2008.
DOI : 10.1016/j.tox.2008.03.005

H. Atkinson and K. Miller, Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation, Toxicology Letters, vol.23, issue.2, pp.215-221, 1984.
DOI : 10.1016/0378-4274(84)90129-2

M. Islam, Y. Roh, J. Kim, C. Lim, and B. Kim, Differential immune modulation by deoxynivalenol (vomitoxin) in mice, Toxicology Letters, vol.221, issue.2, pp.152-163, 2013.
DOI : 10.1016/j.toxlet.2013.05.656

T. Rinttilä, A. Kassinen, E. Malinen, L. Krogius, and A. Palva, Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR, Journal of Applied Microbiology, vol.64, issue.6, pp.1166-1177, 2004.
DOI : 10.1067/mai.2003.105

X. Huijsdens, R. Linskens, M. Mak, S. Meuwissen, and C. Vandenbroucke-grauls, Quantification of Bacteria Adherent to Gastrointestinal Mucosa by Real-Time PCR, Journal of Clinical Microbiology, vol.40, issue.12, pp.4423-4427, 2002.
DOI : 10.1128/JCM.40.12.4423-4427.2002