Numerical simulation of a solitonic gas in KdV and KdV-BBM equations

Abstract : The collective behaviour of soliton ensembles (i.e. the solitonic gas) is studied using the methods of the direct numerical simulation. Traditionally this problem was addressed in the context of integrable models such as the celebrated KdV equation. We extend this analysis to non-integrable KdV-BBM type models. Some high resolution numerical results are presented in both integrable and nonintegrable cases. Moreover, the free surface elevation probability distribution is shown to be quasi-stationary. Finally, we employ the asymptotic methods along with the Monte-Carlo simulations in order to study quantitatively the dependence of some important statistical characteristics (such as the kurtosis and skewness) on the Stokes-Ursell number (which measures the relative importance of nonlinear effects compared to the dispersion) and also on the magnitude of the BBM term.
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger
Contributeur : Denys Dutykh <>
Soumis le : lundi 4 août 2014 - 10:45:53
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : mardi 25 novembre 2014 - 23:55:33


Fichiers produits par l'(les) auteur(s)




Denys Dutykh, Efim Pelinovsky. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations. Physics Letters A, Elsevier, 2014, 378 (42), pp.3102-3110. 〈〉. 〈10.1016/j.physleta.2014.09.008〉. 〈hal-00913960v3〉



Consultations de la notice


Téléchargements de fichiers