Skip to Main content Skip to Navigation
Journal articles

Numerical simulation of a solitonic gas in KdV and KdV-BBM equations

Abstract : The collective behaviour of soliton ensembles (i.e. the solitonic gas) is studied using the methods of the direct numerical simulation. Traditionally this problem was addressed in the context of integrable models such as the celebrated KdV equation. We extend this analysis to non-integrable KdV-BBM type models. Some high resolution numerical results are presented in both integrable and nonintegrable cases. Moreover, the free surface elevation probability distribution is shown to be quasi-stationary. Finally, we employ the asymptotic methods along with the Monte-Carlo simulations in order to study quantitatively the dependence of some important statistical characteristics (such as the kurtosis and skewness) on the Stokes-Ursell number (which measures the relative importance of nonlinear effects compared to the dispersion) and also on the magnitude of the BBM term.
Complete list of metadatas

Cited literature [45 references]  Display  Hide  Download
Contributor : Denys Dutykh <>
Submitted on : Monday, August 4, 2014 - 10:45:53 AM
Last modification on : Friday, November 6, 2020 - 3:28:30 AM
Long-term archiving on: : Tuesday, November 25, 2014 - 11:55:33 PM


Files produced by the author(s)




Denys Dutykh, Efim Pelinovsky. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations. Physics Letters A, Elsevier, 2014, 378 (42), pp.3102-3110. ⟨10.1016/j.physleta.2014.09.008⟩. ⟨hal-00913960v3⟩



Record views


Files downloads