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Abstract
Considering either two independent i.i.d. samples, or two independent samples generated from a
heteroscedastic regression model, or two independent Poisson processes, we address the question
of testing equality of their respective distributions. We first propose single testing procedures based
on a general symmetric kernel. The corresponding critical values are chosen from a wild or permu-
tation bootstrap approach, and the obtained tests are exactly (and not just asymptotically) of level α.
We then introduce an aggregation method, which enables to overcome the difficulty of choosing a
kernel and/or the parameters of the kernel. We derive non-asymptotic properties for the aggregated
tests, proving that they may be optimal in a classical statistical sense.
Keywords: Two-sample problem, kernel methods, density model, regression model, Poisson pro-
cess, wild bootstrap, permutation test, adaptive tests, aggregation methods.

1. Introduction

We study in this paper some classical problems of testing the null hypothesis that two independent
sets of random variables are equally distributed, problems which are usually referred to as two-
sample problems. Three different frameworks are considered: either the sets of random variables
are i.i.d. samples from a density model, or samples from a heteroscedastic regression model, or
non-homogeneous Poisson processes. Many papers deal with the i.i.d. two-sample problem, from
the historical tests of Kolmogorov-Smirnov and Cramer von Mises and their extensions, to the more
recent tests of Li (1999), Gretton et al. (2008) and Gretton et al. (2010), which are the closest ones to
the present study. As for the two-sample problem of testing the equality of signals in non-parametric
regression, we can cite among many others the papers by Hall and Hart (1990), King et al. (1991),
or the more recent one by Franke and Halim (2007). When non-homogeneous Poisson processes are
considered, Bovett and Saw (1980) and Deshpande et al. (1999) respectively propose conditional
and unconditional tests for the two-sample problem, but for a restrictive alternative hypothesis.

In these frameworks, non-parametric tests usually consist in rejecting the null hypothesis when
an estimator of a distance between the distributions, chosen as testing statistic, is larger than a certain
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critical value. The question of the choice of a critical value ensuring that the test is, exactly or at least
asymptotically, of the desired level α is a frequent major question. Indeed, the exact or asymptotic
distributions of many testing statistics are not free from the common unknown distribution under
the null hypothesis. In such cases, general bootstrap methods are often used to build data driven
critical values. Except when the permutation bootstrap method is used, authors generally prove
that the obtained tests are (only) asymptotically of level α. We here construct testing procedures
which satisfy specific non-asymptotic statistical performances properties, thus justifying their use
for moderate or even small sample sizes.

The testing statistics that we first introduce can be viewed as extensions of the ones proposed by
Li (1999), or Gretton et al. (2008) and Gretton et al. (2010) in the density model, when the sample
sizes are equal. Li (1999)’s statistics are based on approximation kernels from the classical non-
parametric kernel estimation approach, whereas Gretton et al. (2008) and Gretton et al. (2010)’s
ones consist in unbiased estimators of the Maximum Mean Discrepancy1, based on so-called char-
acteristic kernels (see Fukumizu et al. (2009)). Here, we consider very general kernels, including
projection kernels that are related to model selection and thresholding estimation approaches, ap-
proximation kernels and Mercer kernels. This will enable us to recover general well-known sta-
tistical properties. Li (1999) and Gretton et al. (2008), among other rough bounds, choose the
corresponding critical values from an asymptotic Efron’s bootstrap method, that may have a high
computational cost. On the contrary, Gretton et al. (2010) choose them from asymptotic estimates
for the null distribution of the testing statistic, which have a smaller computational cost, and good
performances in practice when the sample sizes are large. In all cases, the resulting tests are proved
to be asymptotically of level α. Though these tests are investigated via a Monte Carlo simulation
study for moderate or small sample sizes by Li (1999), they are not theoretically justified for finite
sample sizes, neither by Li (1999), nor by Gretton et al. (2008) and Gretton et al. (2010).

The first main contribution of our work at this stage consists in proposing a new choice for the
critical values, based on wild or permutation bootstrap approaches, thus following the original ideas
of Mammen (1992) and Bickel (1968), but applied to U -statistics as in Arcones and Giné (1992).
This choice may lead to high computational costs, but it ensures that our tests are exactly (and not
only asymptotically) of level α.

The second main contribution consists in deriving, for Poisson processes and in the particular
cases of projection and approximation kernels, optimal non-asymptotic conditions on the alterna-
tives, which guarantee that the probability of second kind error is at most equal to a prescribed level
β.

The testing procedures that we introduce hereafter are also intended to overcome the question
of calibrating the choice of the kernel and/or the parameters of the kernel, which is crucial when
using such kernel methods, and which remains unresolved by Gretton et al. (2008). They are based
on an aggregation approach, that is now well-known in adaptive testing (see Baraud et al. (2003) for
instance), but not used in statistical learning theory yet to our knowledge. Instead of considering a
particular single kernel, we consider a whole collection of kernels, and the corresponding collection
of tests, each with an adapted level of significance. We then reject the null hypothesis when it is
rejected by one of the tests in the collection. The aggregated tests are constructed to be of level α,
and in the particular Poisson framework, the loss in second kind error due to the aggregation, when
unavoidable, is as small as possible. The last results are expressed in the form of non-asymptotic

1. The MMD is defined as the distance between the two embedded probability distributions in a RKHS
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oracle type inequalities, that may also lead to optimal results from the adaptive minimax point of
view. This is the third, and probably most important, main contribution of this work.

The paper is organized as follows. We describe in Section 2 the three considered two-sample
problems, ending with the Poisson process framework, which will be the most convenient to obtain
interesting and strong results. We then introduce in Section 3 our testing procedures based on single
kernel functions. Section 4 is devoted to the study of the probabilities of first kind error for the three
frameworks, and the study of the probability of second kind error for Poisson processes. We present
in Section 5 our aggregation approach and the oracle type inequalities satisfied by the aggregated
tests in the Poisson process model.

2. Two-sample problems

Let Z(1) and Z(2) be two independent sets of random variables observed in a measurable space
Z , whose - possibly random - cardinalities are respectively denoted by N1 and N2, and whose
distributions respectively depend on unknown functions s1 and s2. Let Z(1) = {Z(1)

1 , . . . , Z
(1)
N1
}

and Z(2) = {Z(2)
1 , . . . , Z

(2)
N2
}. From the observation of {Z(1)

1 , . . . , Z
(1)
N1
} and {Z(2)

1 , . . . , Z
(2)
N2
}, we

consider the general two-sample problem which consists in testing (H0) ”s1 = s2” against (H1)
”s1 6= s2”.

Let us introduce a few notations. As usual, Ps1,s2 denotes the joint distribution of (Z(1), Z(2)),
and Es1,s2 the corresponding expectation. We set for any eventA based on (Z(1), Z(2)), P(H0)(A) =

sup(s1,s2),s1=s2 Ps1,s2(A). Furthermore, we will need to consider the pooled set Z = Z(1) ∪ Z(2),
with cardinality N = N1 +N2, whose elements are denoted by {Z1, . . . , ZN}.

A density model. HereN1 = n1 andN2 = n2 are fixed integers. We assume that (Z
(1)
1 , . . . , Z

(1)
n1 )

and (Z
(2)
1 , . . . , Z

(2)
n2 ) are two independent samples of i.i.d. random variables, observed in a measur-

able space Z , with respective densities s1 and s2 with respect to some non-atomic σ-finite measure
ν on Z . Let us also assume that s1, s2 ∈ L2(Z, dν). The two-sample problem corresponding to
this density model is the most classical one in statistics, but it is also well-known by the learning
community. Indeed, many papers of learning theory now deal with it, such as Gretton et al. (2008)
or Gretton et al. (2010) for instance.

A heteroscedastic regression model. Here N1 = n1 and N2 = n2 are also fixed integers. We
assume that (Z

(1)
1 , . . . , Z

(1)
n1 ) and (Z

(2)
1 , . . . , Z

(2)
n2 ) are two independent samples of i.i.d. random

variables such that for every i ∈ {1, . . . , n1}, Z(1)
i = (X

(1)
i , Y

(1)
i ), with Y

(1)
i = s1(X

(1)
i ) +

σ(X
(1)
i )ξ

(1)
i , and for every i ∈ {1, . . . , n2}, Z(2)

i = (X
(2)
i , Y

(2)
i ), with Y

(2)
i = s2(X

(2)
i ) +

σ(X
(2)
i )ξ

(2)
i . Here X(1)

i and X(2)
i are observed in a measurable space X , and Y (1)

i and Y (2)
i take

their values in a measurable subset Y of R. We set Z = X × Y . The couples (X
(1)
i , ξ

(1)
i ) and

(X
(2)
i , ξ

(2)
i ) are assumed to be identically distributed, and E[ξ

(1)
i |X

(1)
i ] = 0, E[(ξ

(1)
i )2|X(1)

i ] = 1.
Here, s1, s2, and σ are assumed to be in L2(X , PX) where PX denotes the known common dis-
tribution of the X(1)

i ’s and X(2)
i ’s. Note that since the variance function σ2 is the same for both

signals, the corresponding two-sample problem amounts to the problem of testing the equality of
densities for the samples (Z

(1)
1 , . . . , Z

(1)
n1 ) and (Z

(2)
1 , . . . , Z

(2)
n2 ). This problem is also quite classical

in statistics, at least in signal detection issues.
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A Poisson process model. Let Z(1) = {Z(1)
1 , . . . , Z

(1)
N1
} and Z(2) = {Z(2)

1 , . . . , Z
(2)
N2
} be the

points of two independent Poisson processes observed in Z , with respective intensities s1 and s2

with respect to a non-atomic σ-finite measure µ on Z . Notice that here N1 and N2 are Poisson
distributed random variables.

This framework may seem really unusual at least in learning theory. Nevertheless, it is particu-
larly adapted to some specific applications, in reliability or traffic studies for instance. It can also be
merely viewed as a density model, but with a Poissonization of the numbers N1 and N2, that is N1

and N2 are assumed to be Poisson distributed random variables. This Poissonization trick allows
us, among others, to introduce a rather simple testing procedure satisfying sharp properties, that can
not be exactly transposed in the other models. This is the reason why we start with this framework
in the next sections.

In order to emphasize the link with the density model, we assume that the measure µ on Z
satisfies dµ = ndν, where ν is a fixed non-atomic σ-finite measure which may typically be the
Lebesgue measure when Z is a measurable subset of Rd. This amounts to considering the Poisson
processes Z(1) and Z(2) as n pooled i.i.d. Poisson processes with respective intensities s1 and s2

w.r.t. ν. We assume furthermore that s1 and s2 belong to L1(Z, dν) ∩ L∞(Z) ⊂ L2(Z, dν).

3. Single tests based on single kernels

For any measurable function h w.r.t. the measure ν on Z in the density and Poisson process models,
or the measure PX on X in the regression model, we define for k = 1, 2, ||h||k = (

∫
Z |h|

kdν)1/k,
or ||h||k = (

∫
X |h|

kdPX)1/k when they exist, and we denote by 〈., .〉 the scalar product associated
with ||.||2. Moreover, for any real valued function h, ||h||∞= supz∈Z |h(z)|.

3.1. Single tests for Poisson processes

Let us take a symmetric kernel function K : Z × Z → R, which will be chosen as in one of the
three following examples, and which satisfies∫

Z2

K2(z, z′)(s1 + s2)(z)(s1 + s2)(z′)dνzdνz′ < +∞. (1)

We introduce the testing statistic TK which is defined by

TK =
∑

i,j∈{1,...,N},i6=j

K(Zi, Zj)ε
0
i ε

0
j ,

where the ε0
i ’s are some marks on Z. More precisely, for every i in {1, . . . , N}, ε0

i = 1 if Zi belongs
to Z(1), ε0

i = −1 if Zi belongs to Z(2).
We have chosen to study and discuss three particular examples of kernel functions. For each ex-
ample, we explain why TK may be a relevant statistic for the problem of testing (H0) ”s1 = s2”
against (H1) ”s1 6= s2”.

Example 1. Our first choice for K is a kernel function based on a finite orthonormal family
{ϕλ, λ ∈ Λ} for 〈., .〉:

K(z, z′) =
∑
λ∈Λ

ϕλ(z)ϕλ(z′).
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This kernel is known as a projection kernel. Indeed, for every function f in L2(Z, dν),∫
Z
K(z, z′)f(z′)dνz′ = ΠS(f)(z),

where S is the subspace of L2(Z, dν) generated by {ϕλ, λ ∈ Λ}, and ΠS is the orthogonal projec-
tion onto S for 〈., .〉. By straightforward calculations, one can see that TK is actually an unbiased
estimator of n2‖ΠS(s1 − s2)‖2. Hence, when {ϕλ, λ ∈ Λ} is well-chosen, TK can also be viewed
as a relevant estimator of n2‖s1 − s2‖2.
Let us give some typical examples of such kernels obtained from the Fourier basis and from the
Haar basis in the case where Z = [0, 1] and ν is the Lebesgue measure. We first introduce the
Fourier basis (ϕj)j≥0 of L2([0, 1], dν) defined by

ϕ0(x) = 1[0,1](x), ∀j ≥ 1, ϕ2j(x) =
√

2 cos(2πjx), ϕ2j−1(x) =
√

2 sin(2πjx).

Setting Λ = {0, 1, . . . , 2D}, the corresponding kernel is the Dirichlet kernel defined by:

K(z, z′) = 1 + 2
D∑
j=1

cos(2πj(z − z′)).

Let now {ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . , 2j − 1}} be the Haar basis of L2([0, 1], dν) with

ϕ0(x) = 1[0,1](x) and ϕ(j,k)(x) = 2j/2ψ(2jx− k),

where ψ(x) = 1[0,1/2[(x) − 1[1/2,1[(x). If Λ = {0} ∪
{

(j, k), 0 ≤ j ≤ J, k ∈ {0, . . . , 2j − 1}
}

,
the corresponding kernel K corresponds to a projection kernel onto the space generated by all the
functions of the Haar basis up to the level J .

Example 2. When Z = Rd and ν is the Lebesgue measure, our second choice for K is a
kernel function based on an approximation kernel k in L2(Rd), and such that k(−z) = k(z): for
z = (z1, . . . , zd), z′ = (z′1, . . . , z

′
d) in Z ,

K(z, z′) =
1∏d
i=1 hi

k

(
z1 − z′1
h1

, . . . ,
zd − z′d
hd

)
,

where h = (h1, . . . , hd) is a vector of d positive bandwidths. In this case, Es1,s2 [TK ] = n2〈kh ∗
(s1 − s2), s1 − s2〉, where kh(u1, . . . , ud) = 1∏d

i=1 hi
k
(
u1
h1
, . . . , udhd

)
and ∗ is the usual convolution

operator w.r.t. ν.

Example 3. Our third choice corresponds to a general Mercer or learning kernel (see Schölkopf
and Smola (2002)) such that

K(z, z′) = 〈θ(z), θ(z′)〉HK ,

where θ and HK are a representation function and a RKHS associated with K. Here, 〈., .〉HK
denotes the scalar product of HK . Recall that K also has to satisfy (1). This choice of general
Mercer kernels leads to a testing statistic close to the one of Gretton et al. (2008) for the classical
i.i.d. two-sample problem when the sizes of the i.i.d. samples are equal. In this case, Es1,s2 [TK ] =

n2
∥∥∫
Z θ(z)(s1 − s2)(z)dνz

∥∥2

HK
, where ||.||HK is the norm associated with 〈., .〉HK . From Lemma
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4 in Gretton et al. (2008), we know that this quantity corresponds to n2 times the squared Maximum
Mean Discrepancy on the unit ball in the RKHSHK . Moreover, when K is a universal kernel, such
as the Gaussian and the Laplacian kernels, Es1,s2 [TK ] = 0 if and only if s1 = s2. If

∫
Z s1dν =∫

Z s2dν = 1, this is sufficient to say that the kernel is characteristic in the sense of Fukumizu et al.
(2009).

Notice that the projection kernels of Example 1 and the kernels based on some particular ap-
proximation kernels such as in Example 2 are also Mercer kernels. These kernels (the Dirichlet or
Gaussian ones for instance) are thus often used in learning theory, though they are not always nor-
malized in the same way. This difference in normalization may pose some problems in the statistical
interpretation of some results (see Comment 4 of Theorem 4), and we will take care of it. However,
even when the Mercer kernels lead to some results that remain difficult to interpret from a statistical
point of view, their introduction is helpful when the space Z is unusual or pretty large with respect
to the (mean) number of observations and/or when the measure ν is not well specified or easy to
deal with. In such situations, the use of Mercer kernels may be the only possible way to compute
a meaningful test (see Gretton et al. (2008) where such kernels are used for microarrays data and
graphs).

If we denote by � the following operator:

K � p(z) = 〈K(., z), p〉, (2)

by the Cauchy-Schwarz inequality, (1) ensures that 〈K �(s1−s2), s1−s2〉 is well-defined. Then, in
the three above examples, TK is an unbiased estimator of n2〈K � (s1− s2), s1− s2〉 (see Appendix
B for more details). It is therefore appropriate to take it as testing statistic, and reject (H0) when
TK is larger than a critical value to be defined.

Since the distribution of TK under (H0) is unknown, we turn to a wild bootstrap approach,
which comes from the original idea of Mammen (1992) applied to U -statistics as in Arcones and
Giné (1992), but which is here proved to be exactly justified.

We introduce a sequence (εi)i∈N of i.i.d. Rademacher variables independent of Z. Following
Mammen (1992) and Arcones and Giné (1992), the wild bootstrapped version of TK would be given
by
∑

i,j∈{1,...,N},i6=jK(Zi, Zj)ε
0
i ε

0
jεiεj . It is easy to see that under (H0), this wild bootstrapped

version of TK has the same distribution as

T εK =
∑

i,j∈{1,...,N},i6=j

K(Zi, Zj)εiεj .

Furthermore, from a corollary of a more general result of Daley and Vere-Jones (2008), whose state-
ment and proof are given in Appendix C for sake of understanding, we prove that under (H0), since
s1 and s2 are assumed to belong to L1(Z, dν), TK and T εK exactly have the same distribution con-
ditioned on Z (see also Proposition 2). Hence, we consider the (1− α) quantile of T εK conditioned
on Z denoted by q(Z)

K,1−α. We finally introduce the test that rejects (H0) when TK > q
(Z)
K,1−α, whose

test function is defined by
ΦK,α = 1

TK>q
(Z)
K,1−α

. (3)
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3.2. Single tests in the density and heteroscedastic regression models

To shorten the following mathematical expressions, let us define

an1,n2 =

(
1

n1(n1 − 1)
− cn1,n2

)1/2

bn1,n2 = −an2,n1 = −
(

1

n2(n2 − 1)
− cn1,n2

)1/2

,

where
cn1,n2 =

1

n1n2(n1 + n2 − 2)
.

We consider a symmetric kernel function K chosen as in Example 1, Example 2, or Example 3,
replacing Z by X and ν by PX in the regression model, and we introduce the testing statistic
defined by

ṪK =
∑

i,j∈{1,...,N},i6=j

K(Zi, Zj)
(
ε0
i ε

0
j + cn1,n2

)
,

in the density model, or

T̈K =
∑

i,j∈{1,...,N},i6=j

YiYjK(Xi, Xj)
(
ε0
i ε

0
j + cn1,n2

)
,

in the regression model. The marks ε0
i ’s are here defined by ε0

i = an1,n2 if Zi ∈ Z(1) and ε0
i =

bn1,n2 if Zi ∈ Z(2). We can prove by straightforward calculations (see Appendix B for a proof) the
following result.

Proposition 1 The statistics ṪK and T̈K are unbiased estimators of 〈K � (s1 − s2), s1 − s2〉.
Let us now explain how we choose the corresponding critical values. LetR = (R1, . . . , RN ) be

a random vector uniformly distributed on the set of all permutations of {1, . . . , N} and independent
of Z, and let εi = an1,n2 if i ∈ {R1, . . . , Rn1}, and εi = bn1,n2 if i ∈ {Rn1+1, . . . , RN}.

We then define in the density model:

Ṫ εK =
∑

i,j∈{1,...,N},i6=j

K(Zi, Zj) (εiεj + cn1,n2) ,

and denote by q̇(Z)
K,1−α the (1− α) quantile of Ṫ εK conditioned on Z.

In the same way, we define in the regression model:

T̈ εK =
∑

i,j∈{1,...,N},i6=j

YiYjK(Xi, Xj) (εiεj + cn1,n2) ,

and denote by q̈(Z)
K,1−α the (1− α) quantile of T̈ εK conditioned on Z.

We finally consider the tests that reject (H0) when ṪK > q̇
(Z)
K,1−α and T̈K > q̈

(Z)
K,1−α, whose test

functions are respectively denoted by Φ̇K,α and Φ̈K,α.
Notice that rejecting (H0) when ṪK > q̇

(Z)
K,1−α is equivalent to rejecting (H0) when

∑
i,j∈{1,...,N},i6=jK(Zi, Zj)ε

0
i ε

0
j

is larger than the (1−α) quantile of the conditional distribution of
∑

i,j∈{1,...,N},i6=jK(Zi, Zj)εiεj

given Z, which simplifies the implementation of Φ̇K,α. The implementation of Φ̈K,α can of course
be simplified in the same way.
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4. Probabilities of first and second kind errors of the single tests

Let TK , Tε
K , q

(Z)
K,1−α and ΦK,α be either TK , T εK , q(Z)

K,1−α and ΦK,α respectively in the Poisson

process model, or ṪK , Ṫ εK , q̇(Z)
K,1−α and Φ̇K,α respectively in the density model, or T̈K , T̈ εK , q̈(Z)

K,1−α
and Φ̈K,α respectively in the regression model.

4.1. Probabilities of first kind error

We here state a result which is at the origin of our choice of the various bootstrap methods involved
in the construction of the critical values q

(Z)
K,1−α.

Proposition 2 Under (H0), TK and Tε
K have the same distribution conditioned on Z.

As a consequence, given α in (0, 1), under (H0),

Ps1,s2
(
TK > q

(Z)
K,1−α

∣∣∣Z) ≤ α. (4)

By taking the expectation over Z, we thus obtain that

P(H0) (ΦK,α = 1) ≤ α, (5)

that is ΦK,α is exactly of level α.

Notice that the property (4) is in fact stronger than the usual control of the probability of first
kind error (without any conditioning) of the test, such as in (5).

4.2. Probability of second kind error for Poisson processes

In this section, we exclusively consider the Poisson process model.
Given β in (0, 1), we here bring out a sufficient condition on the alternative (s1, s2) which

guarantees that
Ps1,s2(ΦK,α = 0) ≤ β.

Proposition 3 Letα, β ∈ (0, 1). For any symmetric kernelK satisfying (1), letAK = n2
∫
Z (K � (s1 − s2))2 (s1+

s2)dν, and BK = n2
∫
Z2 K

2(z, z′)(s1 + s2)(z)(s1 + s2)(z′)dνzdνz′ . There exists some absolute
constant κ > 0 such that if

Es1,s2 [TK ] > 2

√
2AK +BK

β
+ κ ln(2/α)

√
2BK
β

,

then Ps1,s2(ΦK,α = 0) ≤ β.

We are now in a position to deduce from Proposition 3 recognizable properties in terms of
uniform separation rates. Considering each of our three possible choices for the kernel K, and
evaluating AK and BK in these cases, we actually obtain the following theorem.
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Theorem 4 Let α, β ∈ (0, 1), and κ > 0 be the constant of Proposition 3. Let ΦK,α be the test
function defined by (3), where K may be chosen as in Section 3.1.

1. When K is constructed as in Example 1 from an orthonormal basis {ϕλ, λ ∈ Λ} of a D-
dimensional linear subspace S of L2(Z, dν), we introduce the following condition:

||s1−s2||22 ≥ ||(s1−s2)−ΠS(s1−s2)||22+
(4 + 2

√
2κ ln(2/α))||s1 + s2||∞

√
D

n
√
β

+
8||s1 + s2||∞

βn
. (6)

2. When Z = Rd, ν is the Lebesgue measure on Z , and K is constructed as in Example 2 from
an approximation kernel k in L2(Rd), such that k(x) = k(−x), and h = (h1, . . . , hd) with hi > 0,
we introduce the following condition:

||s1 − s2||22 ≥ ||(s1 − s2)− kh ∗ (s1 − s2)||22 +
4 + 2

√
2κ ln(2/α)

n
√
β

√
||s1 + s2||∞||s1 + s2||1||k||22∏d

i=1 hi

+
8||s1 + s2||∞

βn
. (7)

3. When K is a Mercer kernel associated with a representation function θ and a RKHS HK
such that (1) holds as in Example 3, we introduce the following condition:

||s1−s2||22 ≥ inf
r>0

[∥∥(s1 − s2)− r−1K � (s1 − s2)
∥∥2

2
+

4 + 2
√

2κ ln(2/α)

nr
√
β

√
CK

]
+

8||s1 + s2||∞
βn

,

(8)
where CK = BK/n

2 =
∫
Z2 K

2(z, z′)(s1 + s2)(z)(s1 + s2)(z′)dνzdνz′ .

If K is chosen as in one of these three cases, and if the condition (6), (7) or (8) on (s1, s2) is
satisfied respectively, then Ps1,s2(ΦK,α = 0) ≤ β.

Comments.
1. The proof of this result relies on two fundamental points. The first one is the fact that TK is

an unbiased estimator of n2〈K � (s1−s2), s1−s2〉. The second one is the fact that the bootstrapped
testing statistic T εK , from which the critical value of the test is obtained, is a Rademacher chaos,
which can be precisely controlled. When we consider the density and regression models, though
the first point can be directly transposed (see Proposition 1), it is not the case for the second point,
at this stage of our research.

2. In the first case, we see that the right hand side of (6) reproduces a bias-variance decompo-
sition close to the bias-variance decomposition for projection estimators, with a variance term of
order

√
D/n instead of D/n. This is quite usual in statistical testing theory (see Baraud (2002)

for instance), and we know that this leads to sharp upper bounds for the uniform separation rates
of the test. Let us explain this point in the case where the kernel K is the projection kernel onto
the space generated by the functions of the Haar basis up to the level J . We assume that (s1 − s2)
belongs to some Besov body of index δ > 0 and radius R > 0. Let us recall that this implies that
||(s1 − s2) − ΠS(s1 − s2)||22 ≤ R2D−2δ, which gives an upper bound for the right hand side of
(6). If we choose the value of D (depending on R and δ) minimizing this upper bound, we obtain
that Ps1,s2(ΦK,α = 0) ≤ β if ||s1 − s2||2 ≥ Cn−2δ/(1+4δ), where C is a constant depending on
α, β,R, δ and ||s1 + s2||∞. It was proved in Fromont et al. (2011) that the uniform separation rate
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over a Besov body of index δ and radiusR for testing homogeneity of a Poisson process is precisely
bounded from below by n−2δ/(1+4δ). By simple arguments, this lower bound can be extended to the
present two-sample problem. In this sense, the results obtained in Theorem 4 are sharp.

3. The second case also reproduces a bias-variance decomposition when k ∈ L1(Rd) and∫
Rd k(z)dνz = 1: the bias is here ||(s1 − s2)− kh ∗ (s1 − s2)||2. When h1 = . . . = hd, the variance

term is of order h−d/21 /n. As usual in the approximation kernel estimation theory, this coincide with
what is found in the first case through the equivalence h−d1 ∼ D (see Tsybakov (2009) for instance
for more details).

4. The third case is however unusual, since the term ||(s1 − s2) − r−1K � (s1 − s2)||2 can
not always be viewed as a bias term. Indeed, when Mercer kernels K are used in learning theory,
their approximation capacity is not always considered. Even when the Mercer kernel is based on a
projection kernel or an approximation kernel (such as the classical Gaussian kernel for instance), its
usual normalization does not necessarily lead to sharp results from the point of view of approxima-
tion or statistical theory. This is the reason why we wanted to keep the possibility of replacing the
usual normalization by a possibly more adequate one, through the factor r−1.

5. Multiple or aggregated tests based on collections of kernels

In the previous section, we have considered testing procedures based on a single kernel function K.
Using such single tests however leads to the natural question of the choice of the kernel, and/or its
parameters: the orthonormal family in Example 1, the approximation kernel and the bandwidth h in
Example 2, the Mercer kernel and/or its parameters in Example 3. Authors often choose particular
parameters regarding the performance properties that they target for their tests, or use a data driven
method to choose these parameters which is not always justified. For instance, Gretton et al. (2008)
and Gretton et al. (2010) choose the parameter of the kernel from a heuristic method.

In order to overcome these issues, we propose in this section to consider some collections of
kernel functions instead of single ones, and to define multiple testing procedures by aggregating the
corresponding single tests, with an adapted choice of the critical values.

5.1. The aggregation of single tests

Let us introduce a finite collection {Km,m ∈ M} of symmetric kernels: Z × Z → R that satisfy
(1) in the Poisson process and density models, or symmetric kernels: X × X → R such that∫
X 2 K

2
m(x, x′)(s1 + s2)(x)(s1 + s2)(x′)dPX(x)dPX(x′) < +∞ in the regression model. Let

{wm,m ∈ M} be a collection of positive numbers such that
∑

m∈M e−wm ≤ 1. For all m inM,
let TKm and Tε

Km
be defined as in Section 4, just taking K = Km. For u ∈ (0, 1), we denote by

q
(Z)
m,1−u the (1 − u) quantile of Tε

Km
conditioned on the pooled process Z, and we introduce for

α ∈ (0, 1):

u(Z)
α = sup

{
u > 0,P

(
sup
m∈M

(
Tε
Km − q

(Z)
m,1−ue−wm

)
> 0

∣∣∣∣∣ Z
)
≤ α

}
.

We now consider the test which rejects (H0) when there exists at least one m in M such that
TKm > q

(Z)

m,1−u(Z)
α e−wm

, whose test function is given by

Φα = 1
supm∈M

(
TKm−q

(Z)

m,1−u
(Z)
α e−wm

)
>0
. (9)
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Note that given the observation of the pooled process Z, u
(Z)
α and q

(Z)

m,1−u(Z)
α e−wm

can be estimated

by a classical Monte Carlo procedure.
It is quite straightforward to see that this test is of level α and that one can guarantee a probability

of second kind error at most equal to β ∈ (0, 1) if one can guarantee it for one of the single tests
rejecting (H0) when TKm > q

(Z)

m,1−u(Z)
α e−wm

.

We thus obtain from Theorem 4 an interesting result for Poisson processes.

5.2. Oracle type inequalities for Poisson processes

In this section, as in Section 4.2, we exclusively consider the Poisson process model.

Theorem 5 Let α, β ∈ (0, 1). Let {Km,m ∈ M} be a collection of kernels, chosen as in one
of the two following cases, and {wm,m ∈ M} be a collection of positive numbers such that∑

m∈M e−wm ≤ 1.

Case 1. Let {Sm,m ∈ M} be a finite collection of Dm-dimensional linear subspaces of
L2(Z, dν), spanned by orthonormal bases denoted by {ϕλ, λ ∈ Λm} respectively. We set, for
all m inM, Km(z, z′) =

∑
λ∈Λm

ϕλ(z)ϕλ(z′), and we introduce the condition:

||s1−s2||22≥ inf
m∈M

{
||(s1−s2)−ΠSm(s1−s2)||22 +

4 + 2
√

2κ (ln(2/α) + wm)

n
√
β

||s1 +s2||∞
√
Dm

}

+
8||s1 + s2||∞

βn
. (10)

Case 2. If Z = Rd and ν is the Lebesgue measure on Rd, let {km1 ,m1 ∈ M1} be a collection
of approximation kernels such that

∫
Z k

2
m1

(z)dνz < ∞, km1(z) = km1(−z), and a collection
{hm2 ,m2 ∈ M2} of vectors hm2 = (hm2,1, . . . , hm2,d) of d positive numbers. We set M =
M1 ×M2, and for all m = (m1,m2) inM, z = (z1, . . . , zd), z′ = (z′1, . . . , z

′
d) in Rd,

Km(z, z′) = km1,hm2
(z − z′) =

1∏d
i=1 hm2,i

km1

(
z1 − z′1
hm2,1

, . . . ,
zd − z′d
hm2,d

)
.

We introduce the following condition:

||s1 − s2||22≥ inf
(m1,m2)∈M

{
||(s1 − s2)− km1,hm2

∗ (s1 − s2)||22+

4 + 2
√

2κ(ln(2/α) + wm)

n
√
β

√
||s1 + s2||∞||s1 + s2||1||km1 ||22∏d

i=1 hm2,i

}
+

8||s1 + s2||∞
βn

, (11)

Let Φα be the test defined by (9). Φα is a level α test, and if either (10) in Case 1 or (11) in Case 2
is satisfied, then Ps1,s2 (Φα = 0) ≤ β.

Comparing these results with the ones obtained in Theorem 4, one can see that considering the
aggregated tests allows to obtain the infimum over allm inM in the right hand side of (10) and (11)
at the price of the only additional term wm. This result can be viewed as an oracle type inequality:
indeed, without knowing (s1 − s2), we know that the uniform separation rate of the aggregated
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test is of the same order as the smallest uniform separation rate in the collection of single tests,
up to the factor wm. By choosing a collection of kernels based on nested or more complicated
linear subspaces generated by subsets of the Haar basis of L2(Z, dν), when Z = [0, 1] and ν is
the Lebesgue measure on [0, 1], as in the paper by Fromont et al. (2011), this can be used to prove
that our test is adaptive in the minimax sense over classes of alternatives (s1, s2) such that (s1− s2)
belongs to Besov or weak Besov bodies with various parameters (see Fromont et al. (2011) for more
details).
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Appendix A. Short simulation study

In this Appendix, we want to bring a part of an experimental study, which aims at illustrating the
theoretical results of this paper. We consider the only Poisson process model here. Let Z = [0, 1]
or Z = R, n = 100 and ν be the Lebesgue measure on Z . Z(1) and Z(2) denote two independent
Poisson processes with intensities s1 and s2 on Z with respect to µ = 100 ν. We focus on the mul-
tiple testing procedure ΦK,α defined by (9), with K chosen as: a projection kernel based on nested
subsets of the Haar basis on [0, 1], the standard Gaussian kernel, or the Epanechnikov approximation
kernel, and with α = 0.05. The corresponding tests are denoted by Ne, G, and E respectively. To
be more explicit, recall that we introduced the Haar basis {ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . , 2j−1}}
in Section 3.1. Let K0(z, z′) = ϕ0(z)ϕ0(z′), and for J ≥ 1, KJ(z, z′) =

∑
λ∈{0}∪ΛJ

ϕλ(z)ϕλ(z′)

with ΛJ = {(j, k), j ∈ {0, . . . , J − 1}, k ∈ {0, . . . , 2j − 1}}. For J ≥ 1, we take wJ =
2
(
ln(J + 1) + ln(π/

√
6)
)
. The test Ne then corresponds to the multiple testing procedure Φα de-

fined by (9), with the collection of kernels {KJ , J = 0, . . . , 7} and with the collection of weights
{wJ , J = 0, . . . , 7}. Let us now describe precisely the tests G and E. Let k be defined by either
k(u) = (2π)−1/2 exp(−u2/2) for all u ∈ R in the Gaussian case, or k(u) = (3/4)(1 − u2)1|u|≤1

in the Epanechnikov case. Let {hm,m ∈ M} = {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} be a col-
lection of bandwidths and {Km,m ∈ M} be the corresponding collection of kernels given by
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Km(z, z′) = 1
hm
k
(
z−z′
hm

)
for all m in M. The tests G and E then correspond to the mul-

tiple testing procedure Φα defined by (9), with the collection of kernels {Km,m ∈ M} and
{wm,m ∈M} = {1/6, . . . , 1/6}.

As we noticed in Section 2, the present Poisson process model merely corresponds to a Pois-
sonization of the density model. Hence, conditionally on the number of points of Z(1) and Z(2),
any test for the classical i.i.d. two-sample problem can be used here. We compare our tests with the
Kolmogorov-Smirnov test and the test proposed by Gretton et al. (2008), based on a Gaussian kernel
with a heuristic choice for the parameter of the kernel, and a critical value obtained from an Efron’s
bootstrap method. These two tests are respectively denoted by KS and M (for MMD abbreviation).
The probabilities of first kind error of the five tests Ne, G, E, KS and M are estimated from 5000
simulations, and the probabilities of second kind error from 1000 simulations.

We focus on several intensities s1 and s2, taken among:

f1(x) = 1[0,1](x),

f2,a,ε(x) = (1 + ε)1[0,a)(x) + (1− ε)1[a,2a)(x) + 1[2a,1)(x),

f3,η(x) =

1 + η
∑
j

hj
2

(1 + sgn(x− pj))

 1[0,1](x)

C2(η)
,

f4,ε(x) = (1− ε)1[0,1](x) + ε

∑
j

gj

(
1 +
|x− pj |
wj

)−4
 1[0,1](x)

0.284
,

f5,λ(x) =
λ

2
e−λ|x−1/2|,

f6,µ,σ =
1√
2πσ

e−|x−µ|
2/σ2

,

where p, h, g, w, ε are defined as in Fromont et al. (2011) 2, 0 < ε ≤ 1, 0 < a < 1/2, η > 0 and
C2(η) is such that

∫ 1
0 g2,η(x)dx = 1.

The obtained estimated levels of the tests fluctuate between: 0.042 and 0.053 for KS, 0.048 and
0.052 for M, 0.047 and 0.049 for Ne, 0.051 and 0.054 for G, 0.05 and 0.55 for E.

The obtained estimated powers of the tests are represented in the two following figures. The
dots represent the estimated powers, and the triangles represent the upper and lower bounds of
asymptotic confidence intervals with confidence level 99%, with variance estimation.

The main point that we can notice here is that when the alternative intensities are very irreg-
ular, our tests perform better, even sometimes much better, than the two other ones, and that it is
particularly true for the test E. The only case where the test M clearly outperforms ours involves
more regular intensities. Of course, we do not always know whether the underlying intensities of

2.

p= ( 0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81 )
h= ( 4 -4 3 -3 5 -5 2 4 -4 2 -3 )
g= ( 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 )
w= ( 0.005 0.005 0.006 0.01 0.01 0.03 0.01 0.01 0.005 0.008 0.005 )
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Figure 1: Left: (s1, s2) = (f1, f2,a,ε). Each column resp. corresponds to (a, ε) =
(1/8, 1), (1/4, 0.7), (1/4, 0.9), and (1/4, 1). Right: (s1, s2) = (f1, f3,η). Each column
resp. corresponds to η = 4, 8 and 15.
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Figure 2: Left: (s1, s2) = (f1, f4,ε). The two columns resp. correspond to ε = 0.5 and 1. Right:
(s1, s2) = (f5,λ, f6,1/2,1/4). The two columns resp. correspond to λ = 7 and λ = 10.

our problem are irregular or not. A good compromise would be in such cases to aggregate several
of the studied tests, for instance Ne, M and E.

Appendix B. The testing statistics as unbiased estimators

The Poisson process model. Let (ε0
z)z∈Z be defined by ε0

z = 1 if z belong to Z(1) and ε0
z = −1 if

z belongs to Z(2), and let dZ be the point measure associated with the pooled process Z. Denoting
by Z [2] the set {(z, z′) ∈ Z2, z 6= z′}, we have that

TK =
∑

z,z′∈Z,z 6=z′
K(z, z′)ε0

zε
0
z′ =

∫
Z [2]

K(z, z′)ε0
zε

0
z′dZzdZz′ .
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Since, for every z in Z, E[ε0
z|Z] = (s1−s2)(z)

(s1+s2)(z) (see (12) for a proof),

Es1,s2 [TK ] = Es1,s2
[
E
[∫
Z [2]

K(z, z′)ε0
zε

0
z′dZzdZz′

∣∣∣Z]]
= Es1,s2

[∫
Z [2]

K(z, z′)
(s1 − s2)(z)

(s1 + s2)(z)

(s1 − s2)(z′)

(s1 + s2)(z′)
dZzdZz′

]
= n2

∫
Z2

K(z, z′)(s1 − s2)(z)(s1 − s2)(z′)dνzdνz′ .

= n2〈K � (s1 − s2), s1 − s2〉.

The density model. Let us introduce

cn1 =
1

n1(n1 − 1)
and cn2 =

1

n2(n2 − 1)
.

Now remark that ṪK =
∑

i,j∈{1,...,N},i6=jK(Zi, Zj)
(
ε0
i ε

0
j + cn1,n2

)
can be rewritten as

ṪK =
∑

i,j∈{1,...,n1},i6=j

K(Z
(1)
i , Z

(1)
j )cn1 +

∑
i,j∈{1,...,n2},i6=j

K(Z
(2)
i , Z

(2)
j )cn2

−2

n1∑
i=1

n2∑
j=1

K(Z
(1)
i , Z

(2)
j )

(√
(cn1 − cn1,n2)(cn2 − cn1,n2)− cn1,n2

)
.

Noticing that
(cn1 − cn1,n2)(cn2 − cn1,n2) =

(
(n1n2)−1 + cn1,n2

)2
,

we obtain by straightforward calculations that

Es1,s2
[
ṪK

]
=

∫
Z2

K(z, z′)s1(z)s1(z′)dνzdνz′ +

∫
Z2

K(z, z′)s2(z)s2(z′)dνzdνz′

−2

∫
Z2

K(z, z′)s1(z)s2(z′)dνzdνz′

=

∫
Z2

K(z, z′)(s1 − s2)(z)(s1 − s2)(z′)dνzdνz′ .

= 〈K � (s1 − s2), s1 − s2〉.

ṪK is thus an unbiased estimator of 〈K � (s1 − s2), s1 − s2〉.

The regression model. We keep the same notations as above for cn1 and cn2 . Now remark that
T̈K can be rewritten as

T̈K =
∑

i,j∈{1,...,n1},i6=j

Y
(1)
i Y

(1)
j K(X

(1)
i , X

(1)
j )cn1 +

∑
i,j∈{1,...,n2},i6=j

Y
(2)
i Y

(2)
j K(X

(2)
i , X

(2)
j )cn2

−2

n1∑
i=1

n2∑
j=1

Y
(1)
i Y

(2)
j K(X

(1)
i , X

(2)
j )

(√
(cn1 − cn1,n2)(cn2 − cn1,n2)− cn1,n2

)
.
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Hence, by similar arguments as above, we obtain that

Es1,s2
[
T̈K

]
=

∫
X 2

K(x, x′)s1(x)s1(x′)dPX(x)dPX(x′)

+

∫
X 2

K(x, x′)s2(x)s2(x′)dPX(x)dPX(x′)

−2

∫
X 2

K(x, x′)s1(x)s2(x′)dPX(x)dPX(x′)

=

∫
X 2

K(x, x′)(s1 − s2)(x)(s1 − s2)(x′)dPX(x)dPX(x′).

= 〈K(s1 − s2), s1 − s2〉.

T̈K is thus an unbiased estimator of 〈K � (s1 − s2), s1 − s2〉.

Appendix C. Exact validity of the wild bootstrap approach in the Poisson process
model

We here want to prove that under (H0), the testing statistic TK and its bootstrapped version T εK
exactly have the same distribution conditioned on Z. In this appendix, we prove a more precise
result, which is known in the Poisson process field, but never explicitly stated as follows to our
knowledge.

Proposition 6 (i) Let Z(1) and Z(2) be two independent Poisson processes on a metric space Z
with intensities s1 and s2 with respect to some measure µ on Z and such that s1, s2 ∈ L1(Z, dµ).
Denote by dZ(1) and dZ(2) the point measures respectively associated with Z(1) and Z(2). Then the
pooled process Z whose point measure is given by dZ = dZ(1) + dZ(2) is a Poisson process on Z
with intensity s1 + s2 with respect to µ. Let

(
ε0
z

)
z∈Z be defined by ε0

z = 1 if z belongs to Z(1) and
ε0
z = −1 if z belongs to Z(2). Then conditionally on Z, the variables

(
ε0
z

)
z∈Z are i.i.d. and

∀ z ∈ Z, P
(
ε0
z = 1|Z

)
=

s1(z)

(s1 + s2)(z)
, P
(
ε0
z = −1|Z

)
=

s2(z)

(s1 + s2)(z)
(12)

with the convention that 0/0 = 1/2.
(ii) Respectively, let Z be a Poisson process on Z with intensity s1 + s2 with respect to some

measure µ. Let (εz)z∈Z be a family of random variables with values in {−1, 1} such that, condi-
tionally on Z, the variables (εz)z∈Z are i.i.d. and

∀ z ∈ Z, P (εz = 1|Z) =
s1(z)

(s1 + s2)(z)
, P (εz = −1|Z) =

s2(z)

(s1 + s2)(z)

with the convention that 0/0 = 1/2. Then the point processes Z(1) and Z(2), respectively defined
by the point measures dZ(1)

z = 1εz=1dZz and dZ(2)
z = 1εz=−1dZz are two independent Poisson

processes with respective intensities s1 and s2 with respect to µ.

All along the proof,
∫

denotes
∫
Z . One of the key arguments of the proof is that the marked

point processes are characterized by their Laplace functional (see for instance Daley and Vere-Jones
(2008)).
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To prove the first point of the result, this key argument makes sufficient to compute E
[
exp

(∫
hdZ

)]
for a bounded measurable function h on Z . Since Z(1) and Z(2) are independent,

E
[
exp

(∫
hdZ

)]
= E

[
exp

(∫
hdZ(1)

)]
E
[
exp

(∫
hdZ(2)

)]
.

Since the Laplace functional of Z(1) is given by E
[
exp

(∫
hdZ(1)

)]
= exp

(∫ (
eh − 1

)
s1dµ

)
, and

the Laplace functional of Z(2) has the same form, replacing s1 by s2,

E
[
exp

(∫
hdZ

)]
= exp

(∫ (
eh − 1

)
(s1 + s2) dµ

)
,

which is the Laplace functional of a Poisson process with intensity (s1 + s2) w.r.t. µ.
Let us now prove (12). The distribution of (ε0

z)z∈Z conditioned on Z is characterized by the func-
tion:

t = (tz)z∈Z 7→ Φ(t, Z) = E

[
exp

(∑
z∈Z

tzε
0
z

)∣∣∣∣∣Z
]
.

Let λ be a bounded measurable function defined on Z , and define

Eλ = E

[
exp

(∫
λdZ

)
exp

(∑
z∈Z

tzε
0
z

)]
.

By independency of Z(1) and Z(2) again,

Eλ = E
[
exp

(∫
(λ(z) + tz)dZ

(1)
z

)
exp

(∫
(λ(z)− tz)dZ(2)

z

)]
= E

[
exp

(∫
(λ(z) + tz)dZ

(1)
z

)]
E
[
exp

(∫
(λ(z)− tz)dZ(2)

z

)]
.

Then

Eλ = exp

[∫
(e(λ(z)+tz) − 1)s1(z) + (e(λ(z)−tz) − 1)s2(z)

]
dµz

= exp

∫
(eh(z) − 1)(s1 + s2)(z)dµz

= E
[
exp

(∫
hdZ

)]
,

where

h(z) = λ(z) + ln

(
etzs1(z) + e−tzs2(z)

(s1 + s2)(z)

)
.

Hence, for every bounded measurable function λ defined on Z ,

E

[
exp

(∫
λdZ

)
exp

(∑
z∈Z

tzε
0
z

)]
= E

[
exp

(∫
λdZ

)∏
z∈Z

(
etz

s1(z)

(s1 + s2)(z)

+ e−tz
s2(z)

(s1 + s2)(z)

)]
.
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Recalling that the marked point processes are characterized by their Laplace functional, this implies
that

Φ(t, Z) = E

[
exp

(∑
z∈Z

tzε
0
z

)∣∣∣∣∣Z
]

=
∏
z∈Z

(
etz

s1(z)

(s1 + s2)(z)
+ e−tz

s2(z)

(s1 + s2)(z)

)
,

which concludes the proof of (12).
To prove the second point of the result, let h1 and h2 be two bounded measurable functions on

Z .

E
[
exp

(∫
h1dZ

(1) +

∫
h2dZ

(2)

)]
= E

[
E

[
exp

(∫
h1dZ

(1) +

∫
h2dZ

(2)

) ∣∣∣∣∣Z
]]

= E

[
E

[∏
z∈Z

exp (h1 (z) 1εz=1 + h2 (z) 1εz=−1)

∣∣∣∣∣Z
]]

.

Remark that there is almost surely a finite number of points in Z and that if z belongs to Z, then
s1 (z) + s2 (z) > 0. Moreover

E [exp (h1 (z) 1εz=1 + h2 (z) 1εz=−1)] = eh1(z) s1 (z)

s1 (z) + s2 (z)
+ eh2(z) s2 (z)

s1 (z) + s2 (z)
.

Then using the expression of the Laplace functional of Z with the function

h = ln

(
eh1(z) s1 (z)

s1 (z) + s2 (z)
+ eh2(z) s2 (z)

s1 (z) + s2 (z)

)
,

leads to

E
[
exp

(∫
h1dZ

(1) +

∫
h2dZ

(2)

)]
= exp

(∫ (
eh1(z) s1 (z)

s1 (z) + s2 (z)
+ eh2(z) s2 (z)

s1 (z) + s2 (z)
− 1

)
(s1 + s2)(z)dµz

)
.

Finally we have that

E
[
exp

(∫
h1dZ

(1) +

∫
h2dZ

(2)

)]
= exp

(∫ (
eh1 − 1

)
s1dµ

)
exp

(∫ (
eh2 − 1

)
s2dµ

)
.

We here recognize the product of the Laplace functionals of two Poisson processes with respective
intensities s1 and s2 w.r.t. µ. This gives the independence and concludes the result.

Appendix D. Proof of Proposition 3

Given β in (0, 1), we here want to bring out an exact condition on the alternative (s1, s2) which
ensures that

Ps1,s2(ΦK,α = 0) ≤ β. (13)
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Let us introduce the (1−β/2) quantile of the conditional quantile q(Z)
K,1−α that we denote by qα1−β/2.

Then for any (s1, s2),

Ps1,s2(ΦK,α = 0) ≤ Ps1,s2(TK ≤ qα1−β/2) + β/2,

and a condition which guarantees Ps1,s2(TK ≤ qα1−β/2) ≤ β/2 will be enough to ensure (13).

We denote byZ [3] andZ [4] the sets {(z1, z2, z3) ∈ Z3, z1, z2, z3 all different} and {(z1, z2, z3, z4) ∈
Z4, z1, z2, z3, z4 all different} respectively. Let us denote by dZ the point measure associated with
the pooled process Z.

From Markov’s inequality, we have that

Ps1,s2 (|−TK + Es1,s2 [TK ]| ≥ t) ≤ Var(TK)

t2
.

Since Es1,s2 [T 2
K ] = Es1,s2

[
E
[(∫
Z [2] K(z, z′)ε0

zε
0
z′dZzdZz′

)2 |Z]] , by using (12), we obtain that

Es1,s2 [T 2
K ] = Es1,s2

[∫
Z [4]

K(z1, z2)K(z3, z4)
s1 − s2

s1 + s2
(z1)

s1 − s2

s1 + s2
(z2)

s1 − s2

s1 + s2
(z3)

s1 − s2

s1 + s2
(z4)dZz1dZz2dZz3dZz4

]

+4Es1,s2
[∫
Z [3]

K(z1, z2)K(z1, z3)
s1 − s2

s1 + s2
(z2)

s1 − s2

s1 + s2
(z3)dZz1dZz2dZz3

]
+2Es1,s2

[∫
Z [2]

K2(z1, z2)dZz1dZz2

]
.

Now, from Lemma 5.4 III in Daley and Vere-Jones (2008) on factorial moments measures applied
to Poisson processes, we deduce that

Es1,s2 [T 2
K ] =

∫
Z4

(
K(z1, z2)K(z3, z4)(s1 − s2)(z1)(s1 − s2)(z2)

(s1 − s2)(z3)(s1 − s2)(z4)

)
dµz1dµz2dµz3dµz4

+4

∫
Z3

K(z1, z2)K(z1, z3)(s1 + s2)(z1)(s1 − s2)(z2)(s1 − s2)(z3)dµz1dµz2dµz3

+2

∫
Z2

K2(z1, z2)(s1 + s2)(z1)(s1 + s2)(z2)dµz1dµz2 ,

where the integrals in the right hand side are finite from the assumption (1).
We finally obtain that

Es1,s2 [T 2
K ] = (Es1,s2 [TK ])2 + 4AK + 2BK ,

so

Ps1,s2

(
|−TK + Es1,s2 [TK ]| ≥

√
8AK + 4BK

β

)
≤ β

2
.
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Therefore if

Es1,s2 [TK ] >

√
8AK + 4BK

β
+ qα1−β/2, (14)

then Ps1,s2(TK ≤ qα1−β/2) ≤ β/2.

Let us now give a sharp upper bound for qα1−β/2. Conditionally on Z, T εK is a homogeneous
Rademacher chaos of the form

∑
i6=i′ zi,i′εiεi′ ,where the zi,i′’s are some real deterministic numbers

and (εi)i∈N is a sequence of i.i.d. Rademacher variables. From Corollary 3.2.6 of de la Peña and
Giné (1999), we deduce that there exists some absolute constant κ > 0 such that

E

(
exp

[
|
∑

i6=i′ zi,i′εiεi′ |
κ
∑

i6=i′ z
2
i,i′

])
≤ 2,

hence by using Markov’s inequality, we have that

P

|∑
i6=i′

zi,i′εiεi′ | ≥ κ ln(2/α)
∑
i6=i′

z2
i,i′

 ≤ α.
Applying this result to T εK , we obtain that qα1−β/2 is upper bounded by the (1 − β/2) quantile

of κ ln(2/α)
√∫
Z [2] K2(z, z′)dZzdZz′ . By using Markov’s inequality again and Lemma 5.4 III in

Daley and Vere-Jones (2008) again, we finally deduce that

Ps1,s2
(∫
Z [2]

K2(z, z′)dZzdZz′ ≥
2BK
β

)
≤ β

2
,

and that qα1−β/2 ≤ κ ln(2/α)
√

2BK
β , which allows to conclude with (14).

Appendix E. Proof of Theorem 4

First, notice that AK ≤ n3||K � (s1 − s2)||22||s1 + s2||∞ and recall that BK = n2CK . Then, for all
r > 0,

Es1,s2 [TK ] =
n2r

2

(
||s1 − s2||22 + r−2||K � (s1 − s2)||22 − ||(s1 − s2)− r−1K � (s1 − s2)||22

)
.

From Proposition 3, we deduce that Ps1,s2 (ΦK,α = 0) ≤ β if

||s1 − s2||22 + r−2||K � (s1 − s2)||22 − ||(s1 − s2)− r−1K � (s1 − s2)||22

≥ 4

√
2||s1 + s2||∞

nβ

||K � (s1 − s2)||2
r

+
2

nr
√
β

(
2 + κ

√
2 ln

(
2

α

))√
CK .

By using the elementary inequality 2ab ≤ a2 + b2 with a = ||K � (s1 − s2)||2/r and b =
2
√

2
√
||s1 + s2||∞/(nβ) in the right hand side of the above condition, this condition can be re-

placed by:

||s1 − s2||22 ≥ ||(s1 − s2)− r−1K � (s1 − s2)||22 +
8||s1 + s2||∞

nβ

+
2

nr
√
β

(
2 + κ

√
2 ln

(
2

α

))√
CK .
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We can even add an infimum over r in the right hand side of the condition, since r can be arbitrarily
chosen. This exactly leads to the result in the case 3.

The results in the cases 1 and 2 are obtained by taking r = 1 and controlling CK in these two
cases.

Control of CK in Case 1. We consider an orthonormal basis {ϕλ, λ ∈ Λ} of a D-dimensional
subspace S of L2(Z, dν) and K(z, z′) =

∑
λ∈Λ ϕλ(z)ϕλ(z′). In this case,

K � (s1 − s2) =
∑
λ∈Λ

(∫
Z
ϕλ(z)(s1 − s2)(z)dνz

)
ϕλ = ΠS(s1 − s2).

Moreover, since the dimension of S is assumed to be finite, equal to D,

CK ≤ ||s1 + s2||2∞
∫
Z

(∑
λ∈Λ

ϕλ(z)ϕλ(z′)

)2

dνzdνz′

≤ ||s1 + s2||2∞D.

Control of CK in Case 2. Assume now that Z = Rd and introduce an approximation kernel
such that

∫
k2(z)dνz < +∞ and k(−z) = k(z), h = (h1, . . . , hd), with hi > 0 for every i, and

K(z, z′) = kh(z−z′), with kh(z1, . . . , zd) = 1∏d
i=1 hi

k
(
z1
h1
, . . . , zdhd

)
. In this case, K � (s1−s2) =

kh ∗ (s1 − s2), and

CK =

∫
Z
k2
h(z − z′)(s1 + s2)(z)(s1 + s2)(z′)dνzdνz′

≤ ||s1 + s2||∞
∫
Z
k2
h(z − z′)(s1 + s2)(z)dνzdνz′ ,

≤ ||s1 + s2||∞||s1 + s2||1||k||22∏d
i=1 hi

.
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