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Complementary Energy Approach to Contact
Problems Based on Consistent Augmented
Lagrangian Formulation

M. CuoM0O AND G. VENTURA
Istituto di Scienza delle Costruzioni, Facoltd di Ingegneria
University of Catania, V.le A. Doria 6, 95125, Catania, Italy

Abstract—A stress formulation for frictionless contact problems between deformable bodies is
proposed. Linear compatibility equations are assumed, while the constitutive relations are supposed
nenlinear, yet reversible, i.e., ruled by a convex strain potential, The relevant contact rules are
formulated in terms of concave conjugated potentials, whose superdifferentials vield the constitutive
lawe for the unilateral contact interface. Generalization of the mixed Hellinger-Reissner functional,
and of the functionals of total potential energy and of complementary energy are formulated. The
last one is used for numerical developments. The functional is regularized by means of an augmented
Lagrangian function. Solution to the saddle point problem arising from the regularization is obtained
in the subspace of self-equilibrated stresses only, using equilibrium equations for condensing out the
complementary stresses. In the paper, some examples of more complex unilateral contact relations
are also presented.

Keywords—Complementary formulation, Contact, Augmented Lagrangian, Conjugate unilateral
potentials,

1. INTRODUCTION

A general framework for the analysis of physical problems ruled by nonsmooth potentials is
obtained by applying the tools of convex analysis and the notions of generalized differentials.
The particularization to unilateral problems is a well-established matter, although computational
problems are still open, especially when several types of nonlinearities are coupled together.
The object of the paper is a formulation of contact problems that lend themselves to effective
numerical implementation, that can be applied to geometric and material nonlinear problems.
In this paper only unilateral contact without friction for structures with reversible (generally
nonlinear) behaviour will be treated. In [1], the formulation was applied to no-tension materials,
while extension to elasto-plastic problems was presented in [2].

In contact problems, a displacement formulation is usually adopted. A stress formulation
appears useful when restrictions on the admissible values of the stresses are present, as in no-
tension or no-compression materials. In these cases the solution, while unique in terms of stresses,
can be undetermined in terms of displacements, since stress-free regions may exist. Another
interesting field of applicability of stress based formulation appears to be multibody contact
problems.

This study has therefore as its main goal the formulation of a generalized complementary
energy functional for contact problems, derived from a mixed functional, and the development of
a strategy of solution based on consistent discretization, which does not require the introduction
of special equilibrated elements.

The present work has been partly sponsored by funds of MURST.



The solution of the numerical problem is obtained by introducing an augmented Lagrangian
regularization of the nonsmooth ruling functional. This technique has first been introduced
for contact problems by Simo (3], in an approximated form. In this paper we will present an
exact form of the method, that has already been used in nonlinear mechanic problems [4,5].
Convergence results for the form of the regularization presented here are available in the literature.

2. STRUCTURAL MODEL

2.1. State Variables

The object of this paper is a contact problem between deformable bodies, when only small
deformations are present, assuming a reversible material behaviour {eventually nonlinear, in the
limit unilateral), and nonlinear boundary conditions, in the form of unilateral contact without
friction. As indicated in Figure 1, B will denote the region occupied by the body, whose boundary
OB is decomposed into three parts, dB,, where surface tractions are applied, 8B,, where dis-
placements are prescribed, and 8B,, C 0B,, where contact can occur. Prescribed deformations
and self stress fields will not be taken into account.
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Figure 1. Definition of the body’s boundaries.

The dual state variables u (displacements) and f (external forces) are elements of dual real
linear vector spaces V and V’. For Cauchy’s continuum, which we shall refer to in the sequel, it
is

V = {u € (H1[B])%, u=0o0n 8B,}.

Therefore, it is in general u = ug + @, o € V, where 4 is a displacement function which satisfies
nonhomogeneous boundary conditions.

For convenience, with the symbols (v, v, w, @) will be denoted displacements of points x in B,
in 8;, in 8B,,, and in JB,, respectively. Similarly, the external forces f are partitioned as
f = (b,q,p,7), b are volume forces, ¢ are surface tractions on 8Bq, p are the contact reactions,
and r are the reactions on 9B,,.

The duality pairing between V and V' will be denoted by {, )v, then

(u, fv = (v,b)o + (v, Qav + (w,plav + (u,T)av,

where (, )o is the scalar product in Lz, and {, )5y denotes the duality pairing between H'/2(8B)
and H~Y/2(8B). In the case of Cauchy continuum, it is

(U,f)v=/v-de+/ v-qu+/ w-pds+/ u-rds.
B 8B, 8B, 8B,



Similarly, the deformation ¢ and the internal forces o are elements of dual linear vector
spaces D, D'. In the case of continuous bodies, it is

D = {e € M3}, M3 = {symmetric tensors on R? whose elements € L,}.

The duality pairing between D, D’ is

(e,0)p =/ exaodB,
B

where * stands for the scalar product between tensors.

2.2. The Equilibrium and Compatibility Relations

Linear compatibility equations are considered, indicated by a linear operator C : V — D,
so that Cu = £. The adjoint linear operator C’ : D' — V’ yields the equilibrium conditions,
C'o=f.

In the case of Cauchy’s continuum, it is

—div, in B,
C = symgrad, C'= { oom
P, on 9B,,

where P : D' — H~Y2(8B) is the mapping that yields the stress vector on the surface, i.e.,
(PO’);’ = 045Ny,
2.3. The Material Constitutive Equations

Reversible material behaviour is considered, such that the constitutive map from D into D’
can be obtained from a lower semicontinuous, convex strain potential ¢(¢). The conjugate stress
potential is defined by means of Legendre transform

¢°(a) = sup((e, o}p — 4(¢)].
€D

In the applications, it has been assumed ¢ to be the linear elasticity stress potential, ¢¢ =
(1/2)(E~10,0)p, but any nonlinear convex potential can be used, without any change in the
algorithm that will be described.

2.4. Contact Conditions and the Force Potential

2.4.1. Local contact conditions

The displacement of a point P on dB,, at position zp is limited by the presence of a certain
number m of obstacles (Figure 2). If hy(z) < 0 are the admissible regions (h; = 0 are the
equations of the surfaces of the obstacles), the unilateral contact laws are

hi(zp + wp) <0, i=1,...,m, (1)
Vh,-(a:p)
= T O — . < ,
p(Zp) = Pp, N, n; Vhizo)l Pn, <0 (2)

hi(zp + wp)pn, =0, (3)



Figure 2. Multiple unilateral obstacles.

where n; is the inward normal to the obstacle. Condition (2) holds for regular surfaces, such that

the normal is uniquely defined in any point.
Let
Wi = {w(zp) : hi(zp + wp) < 0}, i=1,...,m.

Equation (1) can then be written as
m
'w(.’L'p) eW, = ﬂ W;.
i=1

Assuming that all W;, and therefore their intersection, be convex sets, laws (1)-(3) show
that w, p are dual variables, so the local contact constitutive equation can be written in the form

p(zp) € 8j(wp),

, (4
w(zp) € 8j(pp), )
where j, j¢ are conjugate concave potentials of the unilateral constraint, defined as
J(wp) = —ind Wy, (5)
i(pp) = 11515 [wp - pp + ind Wy,]. (6)

The symbol § indicates the subdifferential set of a convex functional f, defined as (see [6])

Of(x)={z' e X' : (z,y—z) < fly) - f(x)}, VyeX. (7)

If the functional f is concave, then the symbol denotes the superdifferential, defined in the same
way, provided that in equation (7) the < sign is substituted by the > sign.
Let h be an m-vector whose components are the m constraints h;. From (4),(5) one has (see [7])

pp € 8(—ind W) = 8(- ind(RT) o h)(zp +wp) = 8(— ind(RT)){h(xp +wp)]|Oh(zp +wp), (8)

where (R™) is the cone of m-real vectors with nonpositive components. Equation (8) states that
the contact reaction belongs to the normal cone at W,, in the point zp + wp. The last equality
allows us to write

m
pp € Y Adhi(zp +wp), A € 8(—ind R )[hi(zp + wp)].

i=1



Therefore, at corner points of the admissible domain the total reaction is obtained as a conic
combination of reactions normal to each of the constraint surfaces intersecting at that corner.
In order to derive an explicit expression for the conjugate potential j¢, the case of straight

obstacles will be addressed, i.e., the constraint functions h; are supposed to be linear, and will
be written as

hi(wp) = yi(zp + wp) — Yo, < 0. 9)

More explicitly, equation (9) can be rewritten as

Yi Yo,
w-n; < gi, n; = ——, | = == —~Ip -, 10
e Ll P ‘ (10)

where, as before, n; is the inward normal to the obstacle, and g; represents the initial normal gap
between point P and the i*! obstacle. The conjugate contact potential is evaluated first in the
case of a single obstacle. We introduce the variable z such that its components along the normal
and the tangent to the obstacle are 2z, = g — wy,, 2 = —wy; its domain of admissibility is the
cone Z, = {z: z, > 0,Vz,}. Therefore one has

§¢(p) = inf{w - p + ind W, = gp,, — sup[z - p — ind Z,,] = gpy, — supp Z, = gpn — ind Z2.
w z

Here Z? is the polar cone to Z,, and in this case Z2 = {p: p, < 0,p, =0}, and p, = p - n.
In the case of multiple obstacles, the support function can be evaluated observing that

ind 0 Wi, = iind Wh,
i=1

i=1

and recalling that the conjugate of the finite sum of concave functions is their supremal convolu-
tion (7). Then, the conjugate contact potential becomes

m m m
§°(pp) = inf [w ‘p+ ind Wn,] = sup [E(J’f(pi)] s Y pi=p
Pi li=1 i=1

i=1 *

m m
= Sllp l:Z(— ind Zg. + gipm):| ) meni =D (11)

Pi li=1 i=1

m m m
=—indZ3+ ) gipni P _Pami=p, Zn= Z3.
i=1 i=1

i=1

The level set at —1 of the functional (11) is the polar set to W,,, and turns out to be the convex
hull of the polar sets to W,.

Although the formulation of the problem will be quite general, the development of the numerical
algorithm will refer to the simpler case of a single straight obstacle.

In the case of contact with a single obstacle, local contact relations simplify to

w-n—g=wn—9=<0, p-n=p, <0, Pn(wn — g) = 0. (12)

The dual variables w, and p, are related by nonsmooth, concave potentials of the contact
displacements,

Pr € Ojin(wn), Wy, € 0jn(Pn), (13)

defined as _ .
]n(wn) = —ind W, Wy = {wn twy, —g < 0}’

Ju(pn) = Elf{pnwn +indW,} = wnilelsvnpnwn = ppg — ind P, (14)
P, = {pn Pn SO}
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Figure 3. Constitutive equation, displacement and reactions potential for unilateral
supports.
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Figure 4. Generalized constitutive equation for unilateral supports.

Figure 3 illustrates the contact unilateral law and the conjugated potentials in this special case.
From (14), we obtain the potential j(w) : H/?(8B,,) — R:

J(w) = (jn - N)(w),
p € 8j(w) = NT8jn(Nw) = N py, (15)
3°(p) = inf[w - p - (jn - N)w] = (4z - N)p.

In the last expression for j&, there appears the indicator function of the set P,, which is
P, ={p€ HY?(0B,) : pn <0, p = 0}. N is the projector operator onto the normal to the
contact surface.

2.4.2. Generalized unilateral contact conditions

Equations (14),(15) can be easily generalized to more complex contact constitutive laws, pro-
vided they are reversible. In such a case, in fact, it is always possible to obtain (nondifferentiable)
potentials from the multivalued map p, = U(w,), U : HY/2 — H~1/2,

As an example, the case shown in Figure 4 is examined. It models a type of constraint which
limits the possible displacement of a point (e.g., a roller for a bridge span, provided with two
security stops against excessive displacements due to seismic effects). Therefore, if w, € |g7, 7|,
prn. = 0. When the displacement attains one of the limits, the reaction of the containing wall can
grow (or decrease) up to a limit value p{ (respectively, py), and then further displacements
are allowed, either with constant or with linearly growing reaction. The constitutive law of the



constraint is then a composite map

Wy <g , pn=p3', [pn=k+(wn—g-)+P(-)Fv k+<0]»
wp =g, Pn € (0,751,

wne]g_,g+[, Pn =0,

wy = g7¥, Pn € (g, 0],

wn > g, Pn=p;, [pn =k~ (wn — g%) +pg, k™ <0].

The concave potential can be obtained as

Jn(wn) = sup jn,(wn),

1=1,2,

where j,, are the displacement potentials

Jny(Wn) = pt(wn —g7) —indWy,,, Wy, = {wn:w, -g~ <0},
+wn—g7) -y s
k -—2—— +P0 (wn -9 )—ll’ldW,-,,l y
j‘nz(wn) = —indez, an = {wn Wp € [g—)g+]}:
Jns(Wn) = pg (wn — g7) —indW,,,, Wy, = {wy : w, — g% > 0},
_ a+)2
[k- n 29D 4 pi (%) — ind Wm] :

The graphs of j,,, are presented in Figure 5. The concave hull of such graphs is the graph of j,,.
The conjugate potential is then given by (see Figure 6):

Jf; (pn) = inf [wnpn — sup Jnq (wn)] = i?fj:,. (pn)y
1
where simple calculations yield

Jny(Pn) =Png” —ind Pn,, Pn, ={pn:pn < n3}s
_, 1 (h-?&")i] {(), if()>0
+—_"" 3 =

g, ifpn >0,
. _
Ina (P) { pngt, ifpn <0,

jf‘ig(pﬂr) = p'n.g+ — ind Pns, Pna = {pn ! Pn > pa},

1 (pn— pt;)?}-
+o MR S0+
[png + k- 2 ’

Jng

Jni

Figure 5. Generalized displacements potential for unilateral supports.
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Figure 6. Generalized reactions potential for unilateral supports.

2.4.3. The force potential
The bilateral boundary conditions u = @, v # 0, r(u —4) = 0 on 9B;, can also be obtained
from conjugate concave potentials
jo{u) = — ind{u — 4}, T € 9jp(u),
Js(r) = (&, r)ov, u € 9j5(r) = 1,

illustrated in Figure 7. The global potentials of unilateral and bilateral constraints will be
indicated with capital letters, e.g.,

Jo(w) = — ind Wy, W, ={weV :wy(z)—g(z) <0, Vz}, (16)
J,:(p) = (g(m),pn(:c)) —ind Pna pn = {p eV’ :pn(m) <0, pt(l') =0, V-’L'}'
Jb J§
3 u
u
h - ~

Figure 7. Displacements and reactions potentials for bilateral supports.

The global concave force and displacement potentials ¥(u) : V — R, ¥°(f) : V' — R take
finally the following forms:

Y(u) = (v,0)0 + (Vy, @)av + Jn(w) + Jb(u),
V() = inf [(w, v — $()

= inf [(w,plov + (u,T)ov = Jn(w) = Jo(u)] (17)

It

Jg(p)+J;(r)=/ a-rds+/ pngds — ind B,
8B, 8B,



3. VARIATIONAL FORMULATION OF THE PROBLEM

The structural problem described in the previous section is a generalized elasticity problem,
since it is ruled by convex or concave potentials. Therefore, the solution is characterized by the
saddle point of the generalized Hellinger-Reissner functional, given by (see [8])

Ta(o,u) = —6°(c) — ¥(u) + (7, Cu)p = —¢°(c) + / CuxodB
? (18)
—/v-de— v-qds +ind W, + ind{u — 4},
B B,

concave in o and convex in u. The variation of [Ip with respect to the displacement v yields the
weak form of the equilibrium equations

0 € 3,I1r(0,u) & 0 € dY(u) — C'o. (19)
Applying Green’s formula to (18), one has

HR(cr,u)=—¢°(a)+/diva-udB+/ an-uds-—/v-de
B aB B
—/ v-qds+ind W, + ind{u — 4}.
8B,

Therefore, the equilibrium equations are explicitly written as

diVG' = b, in Bs
an = on a—Bl
i 8B, (20)

on=p+gq, on 0B,
on=r, on 8B,.
3.1. Generalized Complementary Energy Functional

Extremization of the mixed functional (18) w.r.t. displacements gives
inf g = —¢(0) + inf [(0, Cup — w(u)]
= =¢%0) + inf [(f,u)v ~ ¥(u) = (f,u)v + (0. Cu)p]
= =¢°(0) + ¥°(f) + inf [(o, Cu)p - (f,u)v].

The infimum of the term in the square brackets yields the equilibrium equations (20). The
generalized form of the complementary energy principle is then obtained as

(0, f) = —¢°(0) + ¥°(f), VoeD :Co=F, (21)

that is concave in o, f. It has to be noted that the unknown contact reactions p are related to
the stresses through the equilibrium equations (20). The solution ¢* to the elastic problem is
therefore given by

o* = arg sup I1.(c), subject to C'o = f.

gED’
The explicit representation of the functional I, is
Il (o) = —l/ E™l¢.0dB +/ on . ﬂds+/ gpn ds — ind By, (22)
2/s 8B, 8B,

where for simplicity the linear elastic stress potential has been introduced.

An unconstrained formulation is obtained by decomposing the stress as ¢ = og + o1, so that
oo € kerC', 01 € X, where £ = {0 € D' : C'oc = f}. Substituting these in (22) turns II. into
an unconstrained functional of og only, II.(6(cg)).



3.2. Generalized Potential Energy Functional

Extremization of the mixed form (18) with respect to the stress components leads to the
generalized total potential energy functional Il., dual to Il

e (u) = sggl[—w(o) + (o, Cu)p|] — ¥(u) = ¢(Cu) — ¥(u), Yue V. (23)
The explicit expression of (23) in the case of linear elastic material is

He(u)=%/BECu-CudB—/Bb-udB—/aB g - uds — ind W, (w), u =14 on 0B,. (24)
q

The functional II, is convex in u, and the solution u*, provided it exists, is characterized by
u* = argmin Il (u).
& ue{/l e( )

3.3. Regularization of the Functionals

Functionals II.,II, are nondifferentiable because of the presence of the indicator functions.
Several methods of regularization have been proposed; the ones widely used for numerical im-
plementation of structural problems have been penalty, Lagrangian, and augmented Lagrangian
methods. Lagrange methods lead to linear or nonlinear complementarity problems, solved by
means of linear or nonlinear programming. Although often employed in the first formulations
of contact problems [9-11], they are not very convenient from a computational point of view.
Penalty methods, introduced by Fiacco and McCormick for constrained optimization [12], seem
particularly well suited for the problem at hand, since the tangent stiffness matrix that rules the
iterative problem {in the displacement formulation) is very simple, being the sum of the elastic
stiffness matrix and a diagonal matrix of fictitious “stiff” contact spring constants. Usually exter-
nal quadratic penalty functions have been used, although other penalty functionals, particularly
of the interior type, can be employed. In [13], it has been shown that these alternative formula-
tions can offer some advantages in specific problems (especially when interpenetration needs to
be accurately avoided, as in multibody contact-impact problems). However, it is well known that
penalty methods suffer from slow or poor convergence, especially when the penalty parameter
becomes large, since the Hessian of the potential energy functional is not continuous. There-
fore, attention turned toward perturbed [14] and augmented Lagrangian methods [3,4,15,16].
Augmented Lagrangian techniques, introduced by Hestenes and Powell [17,18] for constrained
optimization problems, avoid the difficulties with penalty methods, since there is no diverging
parameter, and also those with classical Lagrangian methods, since the evaluation of the Lagrange
multipliers is equivalent to the optimization of a dual functional, convex with respect to the mul-
tipliers. In [4,16], a comparison between Lagrangian and augmented Lagrangian algorithms for
contact problems is shown, while in [3,5], numerical approximations of augmented Lagrangian
formulation are compared with the analogous penalty formulations.

Details of the implementation of the method will be given in the following sections. It is based
on the following result relative to indicator functions:

K={zeX:h(z)=0, h: X - R},

ind K (x) = sup (Ah(x) + %ah%x)) , a€R,.
XeR

The term in parentheses is named augmented Lagrangian function £. The equal sign holds
only for equality constraints. For inequality constraints, i.e., h(z) < 0, the correct expression is



obtained by defining a new equality constraint h(z) = inf,>¢(h(z)+2) = 0, using slack variables 2
(see [19]). Then one has

L(z, ) z) = Ah(z) + %al_ﬁ(z) = ;r;% (A(h(w) +2) + %a(h(z) + 2)2) . (25)

The value of z that yields the infimum can be explicitly calculated from the gradient of the
previous expression, thus

V.L=A+alh(z)+2) =0, z = max (0,—-2—}1(3:)).
Therefore one has
h(z) = h(z) + max (0, —g - h(x)) = max (h(x), —2) . (26)

It has to be noted that the transformation of the inequality constraint h(z) < 0 into an equality
one could also be obtained by means of Macauley bracket

h(z) <04 (h)4 =0, L =A(R)4 + %a(h)i. (27)

This approach has been used in an augmented Lagrangian scheme by some authors [3,16]. Be-
tween the two formulations there exist remarkable differences. A plot of £, Lys is presented in
Figure 8, compared with penalty regularization. The two augmented Lagrangian functions are
both continuous at the origin, but L£xs has zero first derivative, while £ has a slope equal to A.
Moreover, Figure 9 shows that £ has discontinuous second derivative at the origin, precluding
the extension of the theoretical results known for the equality constraint case (based on the conti-
nuity of the Hessian of the augmented Lagrangian functional in a neighbourhood of the solution)
and degrading the convergence properties of the numerical algorithms.

Jn
ind Wy, — Penalty
AL
- Mo .
| -A220. Wng
A

Figure 8. Regularizations of the indicator function of the admissible domain via
Lagrangian, augmented Lagrangian, and penalty approximations.
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Figure 9. Second derivative of the augmented Lagrangian function compared with
the second derivative of penalty and augmented Lagrangian with Macauley bracket
function.

Introducing the regularization (25) in the functionals II., I, (22), (24), two dual mixed func-
tionals are obtained,

1 - .
H‘c’l=—§/ E la-adB-i-/ an-uds+/ gPn ds
B 3B, 8B,
_ 1 5 —— [l
+,/.an (ﬂpn - Eapn) dsa p‘n = max (Pm a)a (28)
ng’:leCu.CudB-/b-udB—/ q-uds
2/B B 8B,
—_ 1 —_—
—/ Y(@n=g)+ -B(@n=g)?)ds, Wa—g=max(wa—g,—2). (29
8B, 2 B

Note that in (28) the sign of the Lagrangian multiplier has been changed and (— sup L(u, pp))
has been turned into (inf —L(u,p,)). In these augmented functionals, u,~y have the meaning
of contact displacement w,, — g and of contact reaction —p,, respectively. Consequently, a, 5
represent compliance and stiffness constants of fictitious springs active when interpenetration
occurs. The solution is obtained as saddle point of the problems

. ! . !
n‘}f cs’gg ¥ (o, ), sgp JIGI‘f/ 1% (u, ).

Note that in the algorithm, Lagrangian multipliers are unconstrained variables.

4. DISCRETIZED FORMULATION OF THE
COMPLEMENTARY ENERGY FUNCTIONAL

4.1. Nodal Variables

A solution method based on the generalized complementary energy functional will now be
described.
Although it is not strictly necessary, both stress and displacement fields are separately dis-
cretized on a FE mesh ‘
o = G,8, u = Gyu. (30)

Discretization of displacements is necessary only for their numerical calculation, once the so-
lution in terms of stresses has been achieved. However, it will be used directly in the Hellinger-
Reissner functional in order to obtain discretized equilibrium equations in a consistent way.

Discretization of the contact variables can be performed either by introducing special contact
elements where displacements or reactions can be interpolated, or by using the same discretization
as for the bulk variables. We denote by w the nodal displacement of nodes belonging to the



contact boundary, v the remaining ones, and n(s) the inward normal to the obstacle. Then the
normal contact displacement w,, in discretized form becomes

Wy, = Gy ()W - n(s) = NG, (s)w. (31)

Discretized contact reactions are obtained from the expression for the virtual work,
/ Pn(8)(NGy(s)w)ds = / Gl (s)NTp,dsw =p - w. (32)
8B, 8B,

In this way, only nodal reactions can be directly evaluated, while their distribution over the
boundary is undetermined. In discretized form, the contact potentials become

Y(Gyv) = / GlbvdB + / Gygqvds — ind W, (NG,w) = f - v — ind W, (NG, w), (33)
B 8B,
Ye(f) = inf {v £+ w-p—v £ +indWa(NGuw)}
= / pn(s)g(s)ds — ind P,. (34)
8B,

The last expression is easily evaluated in the case of a single obstacle. Recalling expression (10)
for g, and using isoparametric interpolation for the nodal coordinates, the first term of 1. becomes

_ (2 Ndsep.g gobo XY
/aaw”"(s)"(s)ds'/aaw”"(s)a“(s)" “(y-x l)ds P& = Ty O

The components of g have the meaning of nodal values of the gap function, and are interpolated
by the shape functions adopted for the contact displacements as suggested in general cases [20].
The discretized form of the dual force potential becomes then

wc(p) =p-g—ind an (36)
where the set P,, is a discretized form of the set B, [21]
Pn, ={pP:Pn; £0, p;;, =0, V nodes i € 8B, }.

4.2. Equilibrium Equations Discretized
The weak form of the equilibrium equations obtained from the variation of (18) is

(09 Cﬁ)D - (b1 ﬁ')O - (q’ ﬁ')av - j(un + '&n) + j(un) Z 07 Vﬁ,

that is,
(o, Ci)p — (b,i)o — (g, B)ov = (Pn, Un), Pn € OJn(wn). (37)
Inserting in (18) the discretization (30) of o, u, one has
/ (CG,)"G,dBs v = / GIbdB-v + Glqds v,
B B 8B,

/(CGu)TG,st-w=/ Glqds w+ GINTp.ds-w,
B 8B, OBy

/(CGu)TG,st-u=/ GIrds-u,
B 8B,



where the first set of equations refer to internal nodes, the second to nodes on 8B,,, and the third
to nodes on 8B,,. The equations are set as '

C f 0
R
H r 0

whereC: R" - R, Q:R" - R, H:R" — R¢ (n = number of free nodal displacements, [ =
number of contact nodes, ¢ = number of assigned displacements, 7 = dimension of the space of
the stress components).

The stress variables are partitioned in the set of the self-equilibrated stresses sq, of dimension
T —n + I, and the set of the stresses in equilibrium with the external forces, s;, of dimension
n — [. The equilibrium equations are then written as

& 8-
Q Q =|q|+ : (39)
Hg Hi 51 r 0

The partition of the stresses must be performed in such a way that the submatrix C; be
invertible. In practice, this is accomplished by a Gaussian reduction. The equilibrated stresses s;
and the contact reactions p can be obtained explicitly solving equations (39) with respect to the
self-equilibrated stresses sg

s1 = —C7'Cgso + C; 'f. (40)
The solution of (39) becomes
_Iso] _ _ 1 |1 ©
e el clddw
p = QRsp + 3, QR = Qo — Q:C7'Cy, a=Qt-q=Q,C{'f-q, (42)
r = HRsy + b, HR = H, - H,C;!Cy, b=Ht=H,C;f. (43)

4.3. Discretization of Complementary Energy Functional

Using expressions (41)—(43) for enforcing equilibrium, and the augmented Lagrangian regular-
ization (25), the expression (28) of II% takes the discretized form

{
I (s0) = = [ 8°(Go(Rso +1))dB + (HRso + b) -+ (QRsy+a) g + 4P = 30D 72, (40
B

i=1

where p; = wy, —¢;, pi = max{p;, pi/a). It has to be noted that in (44) the contact displacement
variables u are evaluated at nodal points, since they are directly interpolated.
In the special case of linear elastic behaviour, the functional (44) becomes, after some algebra,

ngl = —%RTFR.SO + 8¢ — RTFt - 8o + RTHTﬁ -80 + RTQTg * 8o
! 1
+ 3 [ sohis = gatam(s0)?] (45
i=1
F= [ GIV%.(0)G, dB,
B

after eliminating inessential constant terms.



For a Newton-like method of minimization, the gradient and the Hessian of (45) have to be
evaluated:

Vsoll2! = ~RT / GTVoe(o(s0)) dB + RTHT 4 + RTQ g + VL(so), (46)
B
0, ifp<i
VL(s)) =RTQT(i+ap), p=Aap p=0p, Ay= b
bij, ifpy > >
V2solI¢ = ~RTFR + V2L(sy), (47)

V2L(so) = aRTQTAQR.

The matrix A appearing in (46),(47) selects only active constraints in the construction of the
gradient and the Hessian. The expression (46) of VII# is the discretized form of the compatibility
equations rot rot € = 0. Indeed, it can be rewritten as (2]

R'e-RTH&-R'QTw =0,

e being the discretized deformations, and the next two terms are deformations due to imposed
displacements and to the displacements of contact nodes.

4.4. The Augmented Lagrangian Numerical Implementation

The saddle point problem for the augmented Lagrangian functional is solved performing the
minimization on the direct variables and the maximization on the dual ones through two dis-
tinct iterations. Different numerical methods can be chosen for each one, as well as different
augmented Lagrangian iteration schemes [22], like the “classical” iteration scheme in which first
minimization on the direct variables is achieved and then one step of the dual iteration is done,
or the “diagonal” scheme in which alternatively one step of the direct and one step of the dual
iteration is performed, until the norm of the constraint function ||5|| is reduced sufficiently. In
the present implementation, the iterative scheme proceeds through the alternate steps

si) = arg [sup g (Sow\(k_l),#(k_l))] o 8 = p D —ap, (s09)), (48)
80 €
in which the penalty parameters can be kept constant or incremented during the iterations. The
symbol []. indicates minimum computed with gradient tolerance ¢ (|| V4, II%| < ¢).

The pure Newton method is used for the minimization in the stresses, while a first-order formula
(corresponding to the application of a pure gradient method on the dual problem inf IT.(x, o(u)))
is used for the Lagrangian multipliers update. It should be noted that the first-order formula
is a local update formula, i.e., it involves only the evaluation of the constraint function at the
point selected for the contact. On the contrary, second-order formulas, while exhibiting better
convergence properties, involve at least the evaluation of the gradients of the constraints with
respect to the whole direct variables set and the construction and solution of several large systems
of linear equations. Some details on these aspects can be found in [22,23].

It should be noted, however, that in practical applications it is not possible to minimize exactly
the functional with respect to the direct variables as required by the iteration scheme described
above, and anyway a numerically accurate minimization is a hard computational task. Moreover,
it is known that in order to ensure a fast enough convergence of the algorithm, the penalty
parameters should be set to a value greater than a threshold value which is unknown a priori.
To override these difficulties, the following incremental scheme for the penalty parameters has
been suggested by various authors [19]:

o+ = { pa®,if |5 > slpk-1),

49
a®)  otherwise, (49)



where usually p = 10.0, 6§ = 0.25. This incremental scheme ensures a good convergence rate for
the Lagrange multipliers and has the property that if the sequence of the multipliers is bounded,
then the sequence {a‘*¥)} is bounded, too.

Asymptotically exact optimization of the functional with respect to the direct variables can be
achieved if the following stopping criterion for the minimization procedure is introduced:

’Vsoll k)

al < &k,

where {£;} is a nonincreasing sequence, e > 0, e — 0, so that the minimization becomes more
precise after each multiplier iteration and asymptotically exact [19]. A linear rate of convergence
is obtained if the nonincreasing sequence {¢;} is replaced by the sequence min(eg, cx |||}, {ck}
being a nonincreasing sequence 0 < ¢x4+1 < Ck.

The convergence proof of this approach for the first-order formula has been given by Bertsekas
in 1982 [19]. The algorithm can then be synthesized as follows.

First, a trial solution for the stresses is chosen. Linear elastic solution obtained by considering
all constraints bilateral with imposed displacements equal to the gaps is used. Then the following
steps are performed.

Step 1.
Fix 61 Y aO’ €min; €max) tol.
Step 2.
1
(k) — mi (k-1) =12
e'®) = min {emax,e » o= 121 } :
er = max{e®, emin}.
Step 3.
s§") = arg [sup I (So,#(k_l))}
80 €
Step 4.
- _ k
Step 5

If “ﬁs,,k)” >4 ”ﬁgk—l)” , then a(k+l) - pa("),
Step 6. Convergence test:

if ||B=[| < tol, then terminate the computation; else go to Step 2.

In this algorithm, the employment of the penalty parameter increment scheme (Step 5) and
the asymptotic convergence in the variables so enforced by the sequence &, (Step 2) guarantee
an efficient and reliable computation of the saddle point.

4.5. Computation of the Nodal Displacements

The nodal displacements of the finite elements mesh can be obtained from the Euler-Lagrange
equations of the extended Hellinger-Reissner functional. In fact, the variation with respect to the
nodal stresses s gives the following discrete compatibility equations:

CTu=Fs-H i-Qw+Q'w-—g. (50)

Introducing the partition of the compatibility matrix as in (39), the equations (50) split into
the following two:

Cou=Fos —Hj@-Qq W+ QW (51)
Clu=F;s-Hi-Q/w+Q/w-g,
where the subscripts 0 or 1 refer to a partition of the matrices analogous to that used for C.

Nodal displacements are computed from the second of (51), the matrix C; being nonsingular.
The first equation of (51) coincides with the compatibility condition VII, = 0, as can be seen
substituting the displacements u calculated from the other equation.



5. NUMERICAL EXAMPLES

The method presented has been applied to the engineering problem of Figure 10, relative to
the internal shell of a deep tunnel, whose section is made by two circular arcs of radii 5.55m
and 10.60m. The width is 11.10 m, the height 9.8 m, and the thickness is 0.60 m in the bottom
part and 0.8m in the upper part. The tunnel lies in a soil with a weight per unit volume of
20.6 KN/m?3, a friction angle of 25°, and a cohesion of 24.5 KN/m2. The loading distribution
has been determined using the classical Terzaghi theory. The objective of the application is to
evaluate contact pressures, in order to improve Terzaghi’s hypothesis.

Figure 10. Tunnel section and loading.

The analysis has been carried out using four nodes linear isoparametric elements in plane strain,
discretizing half of the structure, and considering unilateral frictionless supports along the whole
boundary. The program starts its execution assuming as first trial solution the linear elastic
solution computed considering all supports as bilateral and imposing boundary displacements
equal to the gaps (zero in this example). The final solution is then found using the augmented
Lagrangian iteration. The Signorini conditions were not violated during the iterations. The final
diagrams of the bending moment and of the axial force are reported in Figure 11, while the
maximum and minimum principal stresses are plotted in Figure 12.

Bending Moment Axial Force

Figure 11. Bending moment, axial force, and displacements for the structure of
Figure 10.

The second example is the classical Hertz problem of a circular semicylinder of infinite length
pushed against a rigid plane obstacle. This simple example has been used for showing the type
of convergence exhibited by the method. The problem has been analyzed starting from the linear
* elastic solution with supports displacements equal to the gaps. The solution has been sought
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Figure 12. Maximum and minimum principal stresses for the structure of Figure 10.
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Figure 13. Final displacements and minimum principal stress for the Hertz problem.

04+ 211 2 Newton's steps 1.60E+02
0.35§l '\111111111 1.40E+02

1.20E402
1.00E+02
8.00E+01

6.00E+01
4.00E+01

—#— Released node
—&— Contacting node

~—— Released node
—4&— Contacting node

Displacement

[=] o
23R R
Notrmai reaction

01 2.00E+01
0.05 0.00E+00
ol , . ; -2.00E+401 15
4] ) 10 18 -4.00E+01
Number of dual terations Number of dual terations
Figure 14. Convergence for displacements and reactions of two nodes in the Hertz
problem.

using a very low initial penalty parameter (0.001), in order to slow down convergence and to
show the typical behavior of the numerical algorithm.

In the graphs of Figures 13 and 14, two nodes unilaterally constrained have been considered.
The first remains in contact also in the final solution, while the second is released during the
iterations. It is interesting to note that during the iterations the program automatically increases
the penalty parameter in order to obtain convergence in the dual variables. When the penalty



parameter becomes bigger than a threshold, there is a jump in the value of the displacement
of the “released node” from the initial assigned value to a second one very close to the final
displacement. In the subsequent iterations, the solution is refined to the required precision.
In the graph we also reported the number of Newton’s steps preceding the multiplier update.
Usually, the rate of convergence was very good, once the program automatically selected “good”
values for the penalty parameters (that can be different from node to node).

6. CONCLUSIONS

A generalized complementary energy principle has been used for implementing an algorithm
for the analysis of contact problems, which is believed to be particularly convenient for problems
concerning no-tension or no-compression materials. Regularization of the governing functional
has been achieved by introducing an augmented Lagrangian function, continuous with its second
gradient in the neighbourhood of the solution, so that numerical convergence of the algorithm is
ensured.

The use of convex potentials of the contact variables in the formulation makes the application of
the algorithm to more general constitutive laws of the unilateral constraints very easy, provided
they are reversible. Indeed, in the example presented in Section 2, it is only needed to add
a further augmented Lagrangian function, and the algorithm would preserve its convergence
properties.
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