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A multi-sensor calibration toolbox for Kinect :

Application to Kinect and laser range finder fusion

Jean-Clément Devaux, Hicham Hadj-Abdelkader and Etienne Colle1

Abstract— In most of indoor mobile robot navigation, obsta-
cle avoidance is a crucial task and should be reliable. Fusion
of sources of data can be used to detect any obstacle shapes.
Laser range finder is usually used to deal with this task in
presence of simple obstacles. 3D sensors as Kinect provide
3D information which can be used for more complex obstacle
detection. However, opposed to laser range finder, Kinect has
strong limitations like measuring range or the field of view. This
paper proposes a full calibration of different sensors which can
be coupled with the Kinect sensor by Microsoft. The approach
can also be applied to a large variety of 3D depth sensors
like time-of-flight cameras, 3D LIDAR or RADAR. The basic
idea is to compute the Euclidian transformation between each
sensor. In this paper, we show that chessboard methods used to
calibrate color cameras can be extended to deal with 3D depth
sensors like Kinect. We show in a real experiment, the benefit
of the fusion based on the calibration results, in order to detect
complex obstacles reliably.

I. INTRODUCTION

A good knowledge of the environment is essential for

most mobile robotic applications to allow robots to move

safely. For example, obstacle avoidance is often based on

distance sensors like laser range finders or ultrasound belts.

They provide very accurate and reliable depth data. However,

the efficiency of those sensors depends a lot on material and

shape of obstacles. In fact, obstacles like chair or table can

not be well detected by such sensors. Mostly, only their

legs are detected and the area between legs are exploited

as a free space by the robot navigation system. Several

and various solutions are proposed in the literature. The

authors in [1] explored the environment using a 3D laser

range finder which is built by mounting a basis 2D range

finder with a servomotor. Other works attempt to build a

3D representation of the environment using, at least, two 2D

laser range finders [2], [3], [4] or 3D laser scanners. Other

researchers are interested in fusing 2D laser data and stereo

vision camera which is less expensive and easier than using

3D laser technologies. In [5], 2D laser range finder and stereo

cameras data are exploited together to create an occupancy

grid for obstacle avoidance and trajectory planning.

Launched on November 4, 2010 in North America, Mi-

crosoft Kinect sensor is an interesting sensor for robotic

applications since it offers at a very low cost a solution to

get color and 3D description of the environment [6], [7],

[8]. However, compared to the laser range finders with a

horizontal field of view of more than 200◦, Kinect has a
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limited field of view (around 57◦). Furthermore, Kinect is

able to provide depth measurements between 80 and 500

cm whereas laser sensors can provide data from almost 0 to

hundreds of meters. In many indoor robotic applications, the

Kinect would be more interesting to look forward in order

to enhance the data describing the environment all around

the robot and which is delivered by the laser range finder.

Fusing different sources of data is a way to get a better

knowledge of the environment : both in the sense of field of

view and of accuracy. The main condition to deal with fusion

is to know the Euclidian transformation between sensor

frames where data are represented.

Many works have dealt with intrinsic and extrinsic color

camera calibration. Z. Zhang in [9] and [10] releases a

method widely used in calibration tools especially in Matlab

calibration toolboxes like Camera Calibration Toolbox for

Matlab by J.-Y. Bouguet [11].

Some works have proposed a solution to calibrate a laser

range finder with a camera when the laser beam is visible

by the camera [12], [13]. In the case when the laser beamer

is invisible in the image, Q. Zhang and R. Pless proposed,

in [14], a laser-camera extrinsic calibration process using a

checkerboard pattern plane. This paper extends their method

in section II-A and adapts it to the Kinect sensor.

The paper is organized as follow. Section II presents the

data modeling and the calibration process of the laser-kinect

system. Section III presents and analyzes results with real

world data for laser-Kinect calibration methods. Finally, an

application of data fusing for an efficient obstacle detection

is presented in section IV.

II. LASER - KINECT CALIBRATION

A. Sensors modeling

As Kinect depth sensor is based on IR camera, we assume

that it can be described by the usual pin-hole model. Con-

sider the rotation matrix RK and the translation vector tK
between the Kinect frame FK and the world frame FW . An

observed 3D point of coordinates in the world frame pW =
[xW , yW , zW ]⊤, can be expressed in the Kinect-depth image

plane into an image point of coordinates mK = [uK , vK ]⊤

using the known pin-hole projection:

mK ∼ KK(RK .pW + tK) (1)

with

KK =



fu suv cu
0 fv cv
0 0 1






is intrinsic parameters matrix of IR camera. cu and cv are the

coordinates of the principal point in the image plane. fu and

fv are the focal lengths in u and v axes. We assume that the

skew suv is neglected (equal zero) since pixels are square or

rectangular. Note that the exploited model does not take into

account lens distortion which is not significant for the Kinect

sensor. We will assume, without loss of generality, that the

Kinect and the world frames are superposed (RK = I3X3

and tK = [0, 0, 0]⊤). Equation (1) becomes:

mK ∼ KK .pK

where pK = [xK , yK , zK ]⊤ is the coordinate vector of the

observed 3D point. Since the zK component is provided by

the Kinect sensor (zK = depth(uK , vK)), the remaining

components can be computed as xK = zK
uK−cu

fu
and

yK = zK
vK−cv

fv
.

Let R and t be respectively the rotation matrix and the

translation vector, linking the Kinect frame FK and the laser

frame FL. The aim of the calibration between the kinect and

the laser sensors is to estimate R and t which are known as

the extrinsic parameters in the laser-Kinect calibration.

The relationship between the coordinate vectors pK and

pL, expressed in the kinect and the laser frames respectively,

of the observed 3D point is given by:

pK = R.pL + t (2)

Let (π) be a plane defined by the normal unit vector n

and the distance d expressed in the kinect frame FK . When

the observed 3D point lies onto the plane (π), the following

constraint can be derived using (2):

n⊤pK − d = n⊤(RpL + t)− d = 0 (3)

Consider now that the observed 3D point lies onto the

line defined by the intersection between the plane (π) and

the laser plane. The coordinate vector pL can be obtained

from the laser data. The plane parameters n and d can be

estimated from the kinect data as it will be described in the

next section. R and t can thus be estimated using constraints

in (3).

As laser range finder is only measuring obstacle distances

on a plane, we fix the laser frame FL such as the laser

plane is defined by the plane containing the axis x and

y. Consequently, the vector pL can be simplified to a R
2

homogeneous coordinates system p̃L = [XL, YL, 1]
⊤ and

(3) becomes:

n⊤Hp̃L − d = 0 (4)

Where H = R



1 0
0 1 t

0 0


.

B. Modeling data

In order to solve the calibration problem, depth image

and laser scan data are used. The plane parameters (n and

d) can be extracted from the depth image provided by the

Kinect sensor. The coordinates vector p̃L can be computed

using the laser scan data. We assume that the planar regions

of the calibration pattern are selected by the user from the

depth images and the laser scan. Usually, some points of

the selected region by the user are completely outside of

the calibration pattern. These outliers can be rejected using

a robust fitting based on RANSAC and a good estimation

of the plane parameters can be obtained. Figure 1 shows a

representation of an extracted plane from 3D point clouds

provided by the Kinect sensor (scale in cm). Blue dots

represent projection of the selected points with the plane

model using RANSAC. On the right part of the figure, the

same point cloud is represented with another point of view

to better see the accuracy of plane fitting. Then, robust fitting

allows user to quickly select the calibration pattern area in

the depth image without worrying about the effect of outliers.

Furthermore, RANSAC based fitting filters efficiently the

Kinect noise and improve the depth resolution (e.g. depth

is discrete and has 1 cm of accuracy as shown on figure 2).

Fig. 1. RANSAC plane fitting (blue dots) on Kinect 3D point cloud (red
dots) with great amount of outliers

Fig. 2. RANSAC plane fitting (blue dots) on Kinect 3D point cloud (red
dots) showing 1 cm max precision in depth

Laser range finder is also sensitive to noise which depends

on color and material of the detected object. Black and white

objects situated at the same distance with respect to the

kinect, are detected at different depths. So, it is better to

use a mono-color calibration plane to deal with that problem.

However, we will be not able to calibrate an extended system

including kinect, laser range finder and conventional camera

sensors. When the calibration plane is a chessboard pattern,

laser data has a particular shape which looks like battlements

since the chessboard is seen as alternate white and black

cells. Figure 4 represents a sample of different calibration

planes at several orientations and distances. As can be shown

on the left side of the figure, the battlement phenomena

appears and increases proportionally to the distance between

the laser and the plane. Further, a low incident angle (e.g.

30◦) will imply loss of data along the segment (as shown in

the bottom-left figure). Roughly, we can say that the quality

of laser scans decreases when increasing the distance and

decreasing the incident angle.



Battlements show that the color of material also has some

effects on sensor results. We propose a modified chessboard

pattern (right part of the figure 3) in order to deal with this

problem and improve the quality of the laser scans as shown

in the right side of figure 4. A white band has been added

all along the width to improve the laser data. The height

of this band has to be chosen depending on the maximum

leaning angle (pitch). As it is shown in figure 3, black crosses

are added in the white band to keep the possibility to cali-

brate the conventional cameras. Furthermore, the chessboard

pattern is kept on the bottom of the calibration plane since

the laser will never impact this part. It should improve the

accuracy of the concentional camera calibration by adding

more points along the vertical axis.

Fig. 3. Chessboard plane to calibrate conventional cameras (left) and
modified chessboard pattern to be compliant with laser range finder (right)

Fig. 4. Laser scan of calibration plane (blue dots) with fitted data (red
crosses) (representation in cartesian plane, distance in meters), left column
with traditional chessboard plane, right column with modified calibration
plane

Since the calibration chessboard is a plane, the laser range

finder detects that plane as a segment. A least square method

is used to fit a line containing that segment. The fitted line

is then re-sampled to generate a set of n points p̃L in order

to solve (4).

C. Calibration

This section explains and compares linear and several

nonlinear solutions to (4). We use the linear solution to

initialize the nonlinear least square Levenberg-Macquardt

optimizations.

1) Linear solution: So as to solve the constraint (4), a set

of data is made up of n points (re-sampled laser segment) of

each m samples taken at several positions and orientations

of the calibration plane. Since 9 unknown parameters have

to be estimated, at least 9 equations are needed to solve the

problem. Usually, an over determined system is used to deal

with the noise measurements. The over determined linear

problem can be written as m equations of:

(n⊤

j ⊗P⊤

Lij
)h = dj ⊗ 1n (5)

where ⊗ is the Kronecker product, i = 1 · · ·n is the point

number, j = 1 · · ·m is the plane number and 1n is a column

vector of n elements all equal to 1. PLij
is the matrix of n

coordinates vectors p̃Li
stacked on n rows. The column vec-

tor solution h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]
⊤

contains elements of an estimated Ĥ matrix.

Thanks to the construction of H, we can easily extract R̂

and t̂ from the estimated vector columns ĥk, (k = 1 · · · 3),

as:

R̂ = [ĥ1, ĥ2, ĥ1 × ĥ2] (6)

t̂ = R̂ĥ3 (7)

However, (4) does not include any constraint on the H
matrix where the first two columns should be orthogonal

(rotation group SO(3)). However, the estimated R̂ will not

be a rotation matrix.

In [15], the rotation matrix R can be approximated using

badly formed estimated matrix R̂ by the rotation matrix

R̃ which minimizing Frobenius norm

∥∥∥R− R̃

∥∥∥
f

under

constraint R̃R̃⊤ = I3 using singular value decomposition:

R̂ = UΣV⊤

R ≈ R̃ = UV⊤

t ≈ R̃h3

Note that other techniques can be used to extract R̂ and

t̂. Any of these techniques can be used since the extracted

parameters are only used to initialize the non-linear methods.

Even if H is representing a rotation and a translation,

because of equation form we have to estimate 9 parameters

instead of 6 (3 for rotation and 3 for translation). Each laser

segment has two degrees of freedom. Then, we need at least

five different plane positions to solve (5).

2) Nonlinear optimization of t: The linear solution is not

sufficiently accurate but provides a good initialization for

the nonlinear optimizations. After observation of reprojection

data from the kinect frame to the laser frame using the linear

estimation, we made assumption that rotation matrix R̃ was

not so bad. In this section, our optimization focuses only on

the nonlinear estimation of the translation t̃.

The aim here involves to minimize the projection error

of the laser points in the Kinect coordinate system. The

orthogonal distance to the plane is used as a metric to

optimize t̆:

min

m∑

j=1

n∑

i=1

∥∥∥nj .(R̃pLij
+ t̆)− dj

∥∥∥
2

(8)



3) Nonlinear optimization of R and t using H: To

confirm if the linear solution of the rotation matrix was

correct, we both optimize rotation and translation at the

same time. Using the same metric as in (8) and the same

decomposition of H as in (4), the problem becomes a

constrained minimization problem:

min
H̆

m∑

j=1

n∑

i=1

∥∥∥nj .H̆pLij − dj

∥∥∥
2

s.c.
∥∥∥h̆1

∥∥∥ =
∥∥∥h̆2

∥∥∥ = 1 and h̆1.h̆2 = 0

Those constraints imply to finally have a correct rotation

matrix from (6) because it forces h̆k columns to be unit

orthogonal vectors. So R̆ and t̆ can be extracted from H̆ in

the same way as in (6) and (7).

4) Beam metric: Dupont et al. in [16] introduce a different

metric to improve calibration in outdoor context. Instead of

using orthogonal distance between the point re-projection

and the plane, they propose to use residual distance along

laser beam. We used this metric in the non-linear opti-

mizations of calibration to compare it with the orthogonal

distance. The distance db along the laser beam is given by:

db =
∥∥pK − s+−→

r e
∥∥

where s is the source of beam position (in other words, the

origin of FL expressed in the Kinect frame FK), −→r is the

beam vector and e is the time of collision between plane and

source:

s = Rt
−→
r = pK − s

e =
d− n.s

n.−→r

Minimization problem (8) becomes now:

min
R,t

m∑

j=1

n∑

i=1

db
2

ij(R, t).

III. SENSOR NETWORK CALIBRATION RESULTS

A. Sensor network setup

Affordable service robots in indoor environments usually

have low cost on-board sensors. An example of such robot is

given by figure 5. In this experiment, we calibrate a low cost

laser range finder with a low range (maximum 4 meters), a

Kinect sensor and a color camera mounted on our mobile

robot (see figure 5). Our data set was taken in a real use

case configuration.

Two data sets are considered in the calibration experiment.

The first one is composed of 16 samples of a 80 × 80 cm

traditional chessboard pattern (with 89× 89 mm cells) taken

at different positions and orientations (mainly around pitch

and yaw axis). The second data set is produced, in the same

configuration as the first one, using the modified chessboard

pattern.

Fig. 5. Sensor positions on Lina robot (from Droı̈ds Company)

B. Kinect and laser range finder calibration results

To compare the calibration methods presented in the pre-

vious section, means and standard deviations of two errors,

orthogonal and beam distances, are presented in Figure 6.

These statistics parameters were produced for each calibra-

tion method (linear solution, optimization of t, optimization

of R and t using orthogonal distance and beam metric) and

for each data set (using traditional and modified chessboard

patterns).

The figure 6 shows that the calibrations using the orthog-

onal distance and the beam metric roughly provide the same

results. In both cases, linear solution produces a higher error

than the non-linear methods which is typically expected.

Fig. 6. Mean and standard deviation of reprojection error. Computed with
orthogonal distance (left) and beam metric (right) for the chessboard plane
data set (A) and the modified chessboard plane data set (B)

Even if linear results are not enough for sensor network

calibration, the rotation is always well estimated before the

non-linear optimization since its estimation from the matrix

H is constrained by the SO(3) properties. However, the

translation is in R
3 which is less restrictive and its estimation

should be improved by the non-linear optimization. It is also

important to note that the modified calibration pattern im-

proves significantly the linear estimation and thus increases

the performances of the non-linear optimization. In fact, a

good linear solution reduces the risk of local minimum and

increases the speed of the optimization algorithms.

Table I summarizes (in cm) the mean, the standard devi-

ation, the minimum and the maximum of orthogonal and

beam re-projection errors, to be able to compare, in the

same error space, all presented estimation methods for the

both calibration patterns. As can be observed on figure 6,

the differences between the translation optimization and the



global optimizations based on the orthogonal distance and

beam metric, are lower than 1cm. Green cells represent the

best values in their categories.

TABLE I

REPROJECTION ERRORS FOR LASER-KINECT CALIBRATION IN CM,

CALIBRATION WITH TRADITIONAL AND MODIFIED CHESSBOARD PLANE

Traditional chessboard calibration plane
Stat Reproj. err Linear t opt. R & t opt. beam opt.

Mean
Orthogonal 11.62 2.55 2.33 2.42

Beam 13.80 3.00 2.71 2.79

Std
Orthogonal 7.11 1.92 1.85 1.79

Beam 9.54 2.43 2.45 2.29

Min
Orthogonal 0.03 0.03 0.03 0.00

Beam 0.03 0.03 0.03 0.00

Max
Orthogonal 26.01 7.92 10.58 8.81

Beam 41.01 12.49 15.64 13.23

Modified chessboard calibration plane
Stat Reproj. err Linear t opt. R & t opt. beam opt.

Mean
Orthogonal 4.66 1.75 1.64 1.71

Beam 6.37 2.37 2.30 2.23

Std
Orthogonal 2.74 1.27 1.16 1.27

Beam 4.01 1.69 1.77 1.54

Min
Orthogonal 0.51 0.02 0.04 0.02

Beam 0.15 0.02 0.04 0.02

Max
Orthogonal 12.35 6.60 4.89 6.66

Beam 16.91 8.05 7.71 6.80

The Kruskal-Wallis test results in the table II presents

the significance of the comparison. We note that the P-

value is always lower than 10−6 when the test is performed

between the linear method and any non-linear optimization.

It means optimization of t, optimization of R and t using

orthogonal distance and beam metric are all very significantly

more accurate than the linear solution neither with traditional

chessboard pattern nor with the modified one. Overall, and

as it is shown in the table III, the difference between using

a traditional chessboard pattern and the modified one is

statistically significant for all calibration methods when the

orthogonal distance error is minimized, and for the linear

and the non-linear minimization of the beam metric when

the beam distance error is considered.

TABLE II

KRUSKAL-WALLIS TEST RESULTS BETWEEN THE THREE NON-LINEAR

OPTIMIZATION METHODS AND THE LINEAR SOLUTION

Traditional chessboard calibration plane
p > KW Linear t opt. R & t opt. beam opt.

Linear X < 10
−6

< 10
−6

< 10
−6

t opt. X X 0.3428 0.6856

R & t opt. X X X 0.5203

Modified chessboard calibration plane
p > KW Linear t opt. R & t opt. beam opt.

Linear X < 10
−6

< 10
−6

< 10
−6

t opt. X X 0.6999 0.8438

R & t opt. X X X 0.8514

Even if we cannot conclude on accuracy (the three non-

linear methods are different with no statistical significance in

term of residual error), we need to choose one optimization

TABLE III

KRUSKAL-WALLIS TEST RESULTS BETWEEN CHESSBOARD AND

MODIFIED CALIBRATION PLANE

p > KW Linear t opt. R & t opt. beam opt.

Orthogonal < 10
−6

< 10
−3

< 10
−2

< 10
−3

Beam < 10
−6

0.7125 0.1242 < 10
−1

method to complete the calibration process. In the sequel, the

global optimization and calibration both refer to non-linear

optimization of R and t.

Since the ground truth to evaluate the rotation and trans-

lation estimation is hard to be obtained, we can only use

the re-projection error. This error seems compliant with the

final aim of fusing data sensors for most robotic applications.

In particular, the laser-Kinect mean re-projection error (2.33

cm with global optimization method) is lower than the

battlement depth (5.76 cm on battlements on figure 4). That

means calibration accuracy can be better than our laser range

finder accuracy for black & white objects. It also means

that the Kinect sensor is less sensitive to colors (there is

no battlement on kinect point cloud) and that a smart fusion

with Kinect data will be able to improve laser data.

IV. KINECT - LASER RANGE FINDER FUSION

FOR RELIABLE OBSTACLE AVOIDANCE

A. Fusion model

In order to fuse laser and Kinect data to detect difficult

obstacles such as tables and chairs, the ground has to be

removed from Kinect point cloud. We rotate and translate

kinect point cloud to bring the ground parallel to the laser

plane and then we remove all the points under that plane.

Once the ground and the ceiling are removed, all objects

detected by the Kinect sensor are a potential obstacle.

The kinect data can be fused with the laser range data to

improve the obstacle detection efficiency. In order to realize

that fusion, each 3D point provided by the kinect sensor,

of coordinates (xi yi zi) expressed in the laser frame, is

projected onto the laser plane. For the data consistency,

projected points are given in the polar coordinates (lK , θK)
in the laser frame with:

θK = 7π
6
− tan−1(zi/xi) and lK =

√
x2

i + z2i

The fusion is simply realized by considering the closer

obstacles:

d(θ) = min (l(θ), lK(θ))

with l and d maps are respectively the laser data and the

fusion result distances. Missing data or errors are supposed

at +∞ in l and d.

B. Experimental results

Improvements of the laser data with the Kinect sensor is

independent to the laser range finder accuracy and can be

observed in many situations. In figure 7, the Kinect depth

image is shown besides the range finder map. This map

contains a black circle of 4m radius (corresponding to the



maximum detection range of the low cost laser) and color

dots. Blue dots represent the detected obstacles by the laser

range finder which have not been modified by the Kinect-

Laser fusion (either because no data are available from the

Kinect, or laser and Kinect distance data are equal). Green

dots represent obstacles which have been observed only by

the Kinect sensor whereas red dots show what the laser range

finder would have detected in that same direction.

(a) Kinect depth image (b) Fusion

Fig. 7. Vertical obtacle in front of Kinect and Laser sensors. The black
arrow is centered on robot position and represents its orientation

Figure 7 shows a vertical panel detected by both the Kinect

and the laser range finder. The panel is drawn in two colors

(blue and green) since it has been detected by both sensors.

However, the person standing on the left side of the panel

is detected by the laser range finder at only the level of his

legs whereas his body is larger than his legs. Fortunately,

the kinect-laser fusion enhances the detection by adding the

detected body in the obstacle map (green dots).

Another interesting situation is presented in Figure 8

where a table is completely insensible by the laser. Thanks

to the Kinect, the top of the table is detected and visible in

the green color. Obviously, an obstacle avoidance algorithm

using only laser would have a collision with the table. This

collision can be avoided easily when fusing Kinect and laser

detection data. This experimental situation is provided in the

attached video to this paper. It shows real experiment of

complex obstacle (like table) avoidance.

(a) Kinect depth image (b) Fusion

Fig. 8. A table in front of Kinect and Laser sensors. The black arrow is
centered on robot position and represents its orientation

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method to calibrate a

laser range finder and 3D sensors like Kinect. The proposed

method requires the use of a large enough chessboard plane

pattern. We have shown through experiments that the pro-

posed calibration technique is enough for fusing Kinect data

with other sensors data to improve the complex obstacles

detection such as table and chair. This fusion is helpful

to pass beyond the Kinect limitations (field and range of

view) and insure a reliable obstacle avoidance. Concerning

the kinect and laser calibration, we have proposed a modified

calibration pattern and shown that it significantly increases

the calibration accuracy with the low cost laser sensors.

We have extended the Camera calibration toolbox for

Matlab [11] to propose a multi-sensor calibration toolbox in-

cluding conventional camera, Laser range finder and Kinect.

Our toolbox is available at http://goo.gl/OlJmGX.

In the future works, we would like to calibrate the internal

sensors of the Kinect without accessing to the IR raw images

and improve the fusion of the two sensors.
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