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In risk management, the distribution of underlying random variables is not always known. Sometimes, only the mean value

and some shape information (decreasingness, convexity after a certain point,...) of the discrete density are available. The

present paper aims at providing convex extrema in some cases that arise in practice in insurance and in other fields. This

enables us to obtain for example bounds on variance and on Solvency II related quantities in insurance applications. In

this paper, we first consider the class of discrete distributions whose probability mass functions are nonincreasing on a

support Dn ≡ {0, 1, . . . , n}. Convex extrema in that class of distributions are well-known. Our purpose is to point out

how additional shape constraints of convexity type modify these extrema. Three cases are considered: the p.m.f. is globally

convex on N, it is convex only from a given positive point m, or it is convex only up to some positive point m. The

corresponding convex extrema are derived by using simple crossing properties between two distributions. The influence

of the choice of n and m is discussed numerically, and several illustrations to ruin problems are presented. These results

provide a complement to two recent works by Lefèvre and Loisel (2010), (2012).

Keywords: Discrete convex ordering, extrema, nonincreasing p.m.f., convexity type constraints, ruin problems.

1. Introduction

The convex order is a classical stochastic order that

compares any two distributions with equal means. More

precisely, a random variable (r.v.) X is smaller in the

convex sense than a random variable Y , which is denoted

by X ≤cx Y, if

E[f(X)] ≤ E[f(Y )] for all convex functions f. (1)

This implies that E(X) = E(Y ) as desired, and

V ar(X) ≤ V ar(Y ), hence sometimes the convex order

is named the variability order. Properties and applications

of the convex order can be found e.g. in the books

by Ross (1996), Rolski (1976), Müller and Stoyan

(2002), Goovaerts et al. (1990;1998) and Shaked and

Shanthikumar (2007).

The construction of convex extrema is an important

theoretical problem with many practical implications.

This problem has been investigated for discrete random

variables by e.g. Lefèvre and Utev (1996), Denuit and

Lefèvre (1997), Denuit et al. (1999a;1999c), Courtois et

al. (2006), Lefèvre and Picard (1993) and for continuous

random variables by e.g. Denuit et al. (1998;1999b); see

also the recent works by Lefèvre and Loisel (2010;2012).

In risk management, when one has limited information

about the risk distribution (e.g. mean value and some

information on the shape of the density), convex extrema

provide bounds on the variance of risky variables and on

some other risk indicators.

The present paper is concerned with r.v.’s that are

valued in a finite set Dn ≡ {0, 1, . . . , n}, for some fixed

n ∈ N∗. Let us recall that for such variables, a condition

of convex ordering equivalent to (1) is that

E(X) = E(Y ) and

n∑

i=k

FX(i) ≥
n∑

i=k

FY (i), (2)

where 0 ≤ k ≤ n and FX denotes the distribution

function (d.f.) of X .

More precisely, our starting point is the special class

of r.v.’s whose probability mass function (p.m.f.) is

nonincreasing on a support Dn ≡ {0, 1, . . . , n}.

Distributions of that type are met in various probability

models proposed in economics and biosciences. This is



2 M. Kacem, C. Lefèvre and S. Loisel

especially true in insurance for which the claim number

distributions are often observed to be nonincreasing.

Proposition 1 (Denuit et al. (1999c)) Let N be an arbi-

trary r.v. with a nonincreasing p.m.f. on Dn. Denote

ν = E(N). In this case Nmin ≤cx N ≤cx Nmax where

Nmax =

{
0 with probab. 1− 2ν/(n+ 1),
1, . . . , n with equal probab. 2ν/n(n+ 1),

(3)

and, defining ξ as the integer on [0, n− 1] satisfying

ξ < 2ν ≤ ξ + 1,

Nmin =





0, . . . , ξ with equal probab.

2(ξ + 1− ν)/((ξ + 1)(ξ + 2)),
ξ + 1 with probab. (2ν − ξ)/(ξ + 2).

(4)

These two extrema convex bounds are illustrated with a

numerical example in Figure 1.

Now, for certain situations, it may be possible to

obtain further information on the shape of the p.m.f. In

this paper, we make the assumption that the p.m.f. is not

only nonincreasing on Dn, but it is also convex, globally

on N or at least on some parts of N. Our purpose is to point

out how the convex extrema (3), (4) are modified under an

additional convexity constraint.

The method of proof will exploit some simple

crossing properties between two distributions that are

briefly presented in Section 2. Three different cases are

then discussed. Section 3 deals with the case where the

p.m.f. is assumed to be convex on N. This situation

has been studied in Lefèvre and Loisel (2012), but in

a more complex framework and using another approach

that is based on the concept of multiple monotonicity. In

Sections 4 and 5, convexity is assumed to hold only from

a fixed point m = 1 and m > 1, respectively. Section

6 is concerned with r.v.’s with p.m.f. that are decreasing
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Fig. 1. Convex extrema in the class of discrete r.v.’s with de-

creasing p.m.f. on a support Dn, ν = 0.69 and n = 10.

and convex up to a fixed point m ≥ 2. Finally, in Section

7, the influence of the choice of n and m on the extrema

is discussed numerically, and several applications to some

ruin problems are presented for illustration.

To simplify the presentation, positive (resp. negative)

a function means below nonnegative (resp. nonpositive),

and increasing (resp. decreasing) means nondecreasing

(resp. nonincreasing).

2. Crossing properties and convex ordering

This section recalls some simple crossing results that will

be used in the sequel. Although known, these results are

presented with a short proof for the ease of presentation.

Let S− be the operator which, applied to a function f ,

counts the number of sign changes of f over its domain,

zero terms being discarded. Two functions f and g cross

each other k times, k ≥ 0, if S−(f − g) = k. Let X and

Y be two r.v.’s valued on Dn, with (distinct) p.m.f. PX ,

PY and distribution functions (d.f.) FX , FY .

Proposition 2

If E(X) = E(Y ), then S−(PY − PX) ≥ 2. (5)

Proof. As
∑n

i=0[PX(i)−PY (i)] = 0, the two p.m.f. have

at least one crossing point. Suppose that there is a single

crossing. Then, one of the two r.v.’s has necessarily a

larger mean, which is in contradiction with the assumption

made. ⋄

Lemma 1

If S−(PY − PX) = 2, then S−(FY − FX) = 1. (6)

Proof. S−(PY − PX) = 2 means that the function

PY −PX has opposite signs on three consecutive intervals

I1, I2, I3 of Dn. Suppose that the sequence of signs is

+,−,+, for instance. Then, the function FY − FX is

positive increasing on I1, decreasing on I2, and negative

increasing on I3 since FY (n) = FX(n) = 1. Thus,

FY − FX has one sign change on I2. ⋄
We are now ready to derive a crossing type condition that

implies a convex ordering. This result is not new (see e.g.

Denuit and Lefèvre (1997)).

Proposition 3

If E(X) = E(Y ) and S−(PY − PX) = 2 with

PY ≥ PX near n, then X ≤cx Y.
(7)

Proof. The two means being equal, PY − PX has at least

two sign changes by Proposition 2. Thus, the assumption

that there are exactly two sign changes is admissible. By

Lemma 1, FY −FX has then one sign change. Moreover,

as PY ≥ PX near n, one has FY ≤ FX near n, so that the
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consecutive signs of FY − FX are +,−.

Now, E(X) = E(Y ) is equivalent to

n∑

i=0

FY (i) =

n∑

i=0

FX(i).

For any integer k ∈ [0, n− 1], this can be rewritten as

n∑

i=k+1

[FY (i)− FX(i)] = −
k∑

i=0

[FY (i)− FX(i)]. (8)

If k is before the sign change of FY − FX , then FY (i)−
FX(i) ≥ 0 for i = 0, . . . , k, so that the left hand side of

(8) is negative i.e.

n∑

i=k+1

FX(i) ≥
n∑

i=k+1

FY (i). (9)

If k is after the sign change of FY − FX , then FY (i) −
FX(i) ≤ 0 for i = k + 1, . . . , n, so that (9) holds too. In

other words, the condition (2) is satisfied, hence X ≤cx

Y . ⋄
Roughly speaking, Proposition 3 states that X is smaller

than Y in the convex order if the p.m.f. of Y is heavier on

the extremes (near 0 and n).

3. For decreasing p.m.f. that are convex on

N

Consider the class of r.v.’s which have discrete p.m.f.

Our aim is to derive explicit expressions of convex

extrema in this class of r.v.’s under constraint of global

decreasingness and convexity on N.

We start by introducing the following lemma which will

be useful in some following proofs.

Lemma 2 Consider two discrete r.v.’s X and Y valued on

Dn with globally decreasing and convex p.m.f. on [s,∞)
where s ∈ [1, n]. In particular we consider that the p.m.f.

of X in [s, n+ 1] is linear. If we have j ∈ [s, n] such that

P (Y = j) ≤ P (X = j), then by the decreasingness and

the convexity we have

P (Y = k) ≤ P (X = k) , ∀ k > j. (10)

Proof. Consider two r.v.’s as defined in Lemma 2 and

recall that by global decresingness P (Y = n + 1) =
P (X = n + 1) = 0. Let j and k be two positive integers

such that j ∈ [s, n] and k > j. In addition assume that

P (Y = j) ≤ P (X = j) and P (Y = k) ≥ P (X = k). It

is clear that, on [j, n], the p.m.f. of Y is above the segment

of line Z (see Figure 2). Hence we conclude that Y is not

convex which is absurd. ⋄
Denote by Jn the set of all r.v.’s with discrete distribution

function valued on Dn (i.e P (X = j) = 0 ∀ j ≥ n + 1),

with decreasing p.m.f. and fixed mean ν.

3.1. The upper bound. Let M and Ñmax be two

arbitrary r.v.’s in Jn that have globally convex p.m.f. on N

such that V ar(M) 6= V ar(Ñmax). Using a reasoning by

contradiction, we prove that the convex maximum bound

is attained for the r.v. Ñmax such that

Ñmax =

{
0 with probab. a,
i ∈ (1, . . . , n) with probab. b(n+ 1− i),

(11)

where a and b are defined such that (11) is a true p.m.f.,

with fixed mean ν i.e.
{

a+
∑n

i=1 b(n+ 1− i) = 1,∑n

i=1 b(n+ 1− i)i = ν,
(12)

hence, {
b = 6ν/(n(n+ 1)(n+ 2)),
a = 1− bn(n+ 1)/2.

(13)

In this case it is possible to have explicit expression for a
and b in function of ν and n. The p.m.f. of Ñmax is then

as defined in the following proposition:

Proposition 4 The convex maximum in the class of r.v.’s

with discrete distribution that are with globally decreasing

and convex p.m.f. on N is attained for the r.v. Ñmax where

for 0 < ν ≤ n
3

Ñmax =

{
0 with probab. 1−3ν

(n+2) ,

i ∈ (1, . . . , n) with probab.
6ν(n+1−i)

(n(n+1)(n+2)) .

(14)

To compare graphically bounds (14) and (3) see Figure

3. Note that the condition made on ν comes from the

constraints of global decreasingness and convexity on N.

The bound (14) is not in line with the one derived in

Lefèvre and Loisel (2010) for r.v.’s with decreasing and

convex p.m.f. in a support {0, . . . , n}. At the same

time this bound is in line with bound (3.15) in Lefèvre

and Loisel (2012) available for r.v.’s with decreasing and

convex p.m.f. on N.
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Fig. 2. Crossing situation, j = s = 4 and n = 20.
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Proof. The proof is based on Propositions 2 and 3. In

fact, according to Proposition 2, we have at least two

crossing points between p.m.f. of r.v.’s M and Ñmax. In

addition, if there exist exactly two crossing points such

that P
Ñmax

≥ PM near n, then under Proposition 3, we

conclude that M ≤cx Ñmax.

We denote by P (M = 0) = a1, P (Ñmax = 0) = a,

P (M = 1) = c1 and P (Ñmax = 1) = c.

1. a1 ≥ a
Assume that c1 ≤ c, in this case we observe, at

most, one crossing point in ]0, 1]. Furthermore, by

Proposition 2, it is necessary to have, at least, another

crossing point in ]1, n]. However, if this is the case

then under Lemma 2 the constraint of convexity is

violated. Thus this is absurd. Now consider that

c1 > c, then there is at most one crossing point over

Dn. This is absurd by Proposition 2.

2. a1 < a
Assume that c1 > c, then a crossing point is observed

in ]0, 1]. By Lemma 2, we cannot get more than

one crossing point in ]1, n]. If not, the convexity

constraint is not fulfilled. Hence, we have a situation

with at most two crossing points over Dn such that

PM ≤ P
Ñmax

near n. In this case under Proposition

3, M ≤cx Ñmax. The case where c1 ≤ c is absurd

according to Lemma 2 and Proposition 2.⋄

Consequently, the maximum variance denoted by

V ar(Ñmax) is obtained for

V ar(Ñmax) = ν(n+ 1)/2− ν2. (15)

3.2. The lower bound. Consider the class of r.v.’s with

discrete p.m.f. that are globally convex and decreasing on
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Fig. 3. The upper bound (14) vs the upper bound (3), ν = 0.69
and n = 10.

N. In this case the convex minimum order is given by the

Proposition (5).

Proposition 5 Let ξ be an integer in [0, n − 1] such that

ξ ≤ 3ν ≤ ξ + 1 where n ≥ ξ + 1. The convex minimum

Ñmin in the class of r.v.’s which have a globally decreasing

and convex distribution is as follows:

∀ i ∈ {0, . . . , ξ + 1}

P (Ñmin = i) = (ξ + 1− i)π1 + (ξ + 2− i)π2 , (16)

where π1 = 2(ξ + 1− 3ν)/((ξ + 2)(ξ + 1)) and

π2 = 2(3ν − ξ)/((ξ + 2)(ξ + 3)).

For a comparison between the bounds (16) and (4) see

Figure 4.

Proof. This bound is obtained as follows: we consider

that the distribution of Ñmin is defined by

P (Ñmin = i) = a− bi ∀ i ∈ {0, . . . , ξ + 1} , (17)

where 0 < b < a < 1 thus, we have P (Ñmin = ξ +2) =

0. Consider π2 = P (Ñmin = ξ + 1) where under the

convexity assumption P (Ñmin = ξ) ≥ 2π2. Consider

that P (Ñmin = ξ) = π1 + 2π2, with π1 > 0, then

immediately we have b = π1 + π2 and a = (1 + ξ)π1 +
(2 + ξ)π2, so (16) is true, where π1 and π2 are obtained

under the following constraints

{ ∑ξ+1
i=0 (ξ + 1− i)π1 + (ξ + 2− i)π2 = 1,∑n

i=1 i((ξ + 1− i)π1 + (ξ + 2− i)π2) = ν.
(18)

Let M and Ñmin be two arbitrary r.v.’s in Jn with p.m.f.

globally convex on N such that V (M) 6= V (Ñmin).

1. a1 > a
From Lemma 2 it is easy to see that it is impossible

to get more than two crossing points over Dn. This

0
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Fig. 4. The lower bound (16) vs the lower bound (4), ν = 0.69
and n = 10.
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is due to the assumptions of decreasingness and

convexity. Also, by the same Lemma, a situation

with exactly two crossing points is observed if and

only if there is i ∈ {0, . . . , ξ + 1} such that P (M =

i) < P (Ñmin = i) and P (M = ξ + 2) > 0. In this

case it is clear that P
Ñmin

< PM near n. Hence, by

Proposition 3, Ñmin ≤cx M .

2. a1 ≤ a
By convexity and decreasingness we have at most

one crossing point which is absurd by Proposition 2.⋄

Consequently, we have

V ar(Ñmin) = (ξ + 1)(ν − ξ/6)− ν2. (19)

Note that the lower bound (16) is in agreement with

Corollary 5.4 in Lefèvre and Loisel (2010) hold for

discrete r.v.’s with p.m.f. that are decreasing and convex

on Dn. It is also in agreement with bound (3.14) in

Lefèvre and Loisel (2012) hold for discrete r.v.’s with

p.m.f. that are decreasing and convex globally on N.

The bounds (16) and (14) are illustrated in Figure 5.

4. For decreasing p.m.f. that are convex in

[1,+∞)

Note that if a random variable X has a convex p.m.f.

in [1,+∞), then it is either convex (see Section 3) or

concave until 2. This section is devoted to extrema

convex for r.v.’s which have decreasing p.m.f. that are

convex in [1,+∞) and concave until 2. In application, a

typical example is to consider a Poisson distribution with

parameter (λ): (2−
√
2) < λ ≤ 1.

4.1. The upper bound.
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Fig. 5. Convex extrema in the class of decreasing p.m.f. that are

convex on N with ν = 0, 69 et n = 10

Proposition 6 Consider 1
3 < ν < n

3 . Consider the class

of r.v.’s with discrete decreasing p.m.f. that are concave

until [0, 2] and convex in [1,+∞). The convex maximum

in this class of r.v.’s is obtained for the r.v. Ñmax defined

by (20)

Ñmax =





0 with probab.
2n(n+4)+6−6 ν (n+1)

3(n+2)(n+1) ,

1 with probab.
n(n+4)−3 ν (n−2)

3(n+2)(n+1) ,

i ∈ (2, . . . , n) with probab.
2(3 ν−1)(n+1−i)
(n−1)(n+2)(n+1) .

(20)

The proof of Proposition 6 is given in Appendix A. For a

comparison between (20) and (14) see Figure 6.

Consequently, we have

V ar(Ñmax) = (n/2 + 1)ν − n/6− ν2. (21)

Corollary 1 Let X be a r.v. in Jn valued on Dn. In ad-

dition, consider that the p.m.f. of X is decreasing on N

and convex in [1,∞). We know that in the set [0, 2] the

distribution of X is either convex or concave (see Section

3). Then the upper bound of X is the supremum of the

two bounds (20) and (14). From bounds (21) and (15) the

supremum is attained when the random variable is convex

on the set [0, 2] i.e for (15).

4.2. The lower bound.

4.2.1. Case: 1
3 ≤ ν ≤ 1

2 .

Proposition 7 Consider the class of discrete r.v.’s which

have a decreasing p.m.f. that are concave until [0, 2] and
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Fig. 6. The upper bound (20) vs the upper bound (14) with ν =
0.69, n = 10.



6 M. Kacem, C. Lefèvre and S. Loisel

convex in [1,+∞). The convex minimum is attained for

the r.v. Ñmin given by (22)

Ñmin =





0 with probab. 1− ν,
1 with probab. ν,
2, . . . , n with equal probab. 0,

(22)

Proof. Let M be a r.v. in Jn with a p.m.f. concave in [0, 2]
and convex in [1,+∞). It is easy to see that there cannot

exist more than two crossing points between p.m.f. of M
and Ñmin.

In addition if a two crossing situations holds, then

necessarily we must have P (M = 2) > P (Ñmin = 2)

hence Ñmin ≤cx M. ⋄
Consequently we have,

V ar(Ñmin) = ν(1− ν). (23)

4.2.2. Case: ξ < 3ν ≤ ξ+1+ 2
(ξ+4) where 3ν−ξ > 2

ξ+3

for all ξ ≥ 1 and n ≥ ξ + 1.

Proposition 8 Consider ξ < ξ + 2
(ξ+3) < 3ν ≤ ξ + 1 +

2
(ξ+4) where 3ν − ξ > 2

ξ+3 . Taking the class of discrete

r.v.’s with decreasing p.m.f. that are concave until [0, 2]
and convex in [1,+∞), the convex minimum is attained

for the r.v. Ñmin given by

Ñmin =





0 with probab.

π2 (1 + ξ) + π1ξ,
i ∈ (1, . . . , ξ + 1) with probab.

π2 (2 + ξ − i)
+π1 (1 + ξ − i) ,

ξ + 2, . . . , n with equal probab. 0,
(24)

where

π1 =
2
(
ξ2 − 3 ν ξ + 5 ξ − 12 ν + 6

)

((ξ + 2) (ξ + 5) ξ)
, (25)

and

π2 =
2
(
−3 ξ − 2 + 9 ν − ξ2 + 3 ν ξ

)

((ξ + 5) (ξ + 1) (ξ + 2))
, (26)

where π1 ≥ 0 and π2 ≥ 0.

For a comparison between bounds (24) and (16) see

Figure 7. The proof of Proposition 8 is given in Appendix

B. Consequently, we have

V ar(Ñmin) = (1/12) (2 + ξ) (1 + ξ)
(
π1ξ

2 + π2ξ
2 + π1ξ + 5π2ξ + 6π2

)
− ν2.
(27)

In Figure 8 we present the upper bound (20) and the lower

bound (24) for illustration.

5. For decreasing p.m.f. that are convex in

[m,+∞) for fixed m > 1

In this section we consider discrete r.v.’s with decreasing

p.m.f. that are convex from a fixed point m > 1. Our aim

is to find the convex extremal bounds in this family. We

first consider the upper bound.

5.1. The upper bound.

Proposition 9 Let n and m be integers and let ν be a pos-

itive real number such that 0 < 3ν ≤ (m2 + nm +m +
n2+2n)/(m+n+2). The convex maximum order in the

class of r.v.’s with p.m.f. that are globally decreasing on N

and convex from a fixed point m > 1 is attained for the
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Fig. 7. The lower bound (24) vs the lower bound (16), ν =
0.69, n = 10.
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Fig. 8. The lower bound (24) vs the upper bound (20), ν =
0.69, n = 10.
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r.v. Ñmax given by

Ñmax =





0 with probab.

1− 3ν(n+m)
m2+nm+m+n2+2n ,

1, . . . ,m− 1 with equal probab.
6ν(n+1−m)

m+n3+3n2+2n−m3 ,

i ∈ (m, . . . , n) with probab.
6ν(n+1−i)

m+n3+3n2+2n−m3 .
(28)

See Figure 9 for an illustration. The proof of Proposition

9 is given in Appendix C. Consequently, the supremum of

the variance is attained for the predefined r.v. Ñmax where

for all 1 < m ≤ n, we have

V ar
(
Ñmax

)
=

ν
(
m2

(
1−m2

)
+ n

(
2 + n3 + 4n2 + 5n

))

2 (m+ n3 + 3n2 + 2n−m3)
− ν2.

(29)

Remark 1 If m = 1 or m = 0, then this bound corre-

sponds to the bound (15) obtained for discrete r.v.’s with

globally decreasing and convex p.m.f.

Remark 2 Let Fm be a set of decreasing r.v.’s valued on

Dn with equal mean ν and with convex p.m.f. for a fixed

point m: 1 < m ≤ n. Let us denote by Ñmax,m the

convex maximum bound in the set Fm and define the more

general set G = (Fm)(m∈{1,...,n−1}). As Fp ⊂ Fm for

all p ≤ m, we deduce that the convex maximum bound in

the set G is Ñmax,n.

5.2. The lower bound.

5.2.1. Case: 0 ≤ ξ < 2ν ≤ (ξ + 1) ≤ m.

0

0,05

0,1

0,15

0,2

0,25

0,3

0 2 4 6 8 10 12

P 

i 

N_max  (Proposition 9)

Fig. 9. The upper bound (28), m = 8, ν = 3.8, n = 10.

Proposition 10 Let n and m be two integers and ν be

a non-negative real number such that 0 ≤ ξ < 2ν ≤
ξ + 1 ≤ m. The convex minimum in the class of r.v.’s with

p.m.f. that are globally decreasing on N and convex from

a fixed point m > 1 is attained for the r.v. Ñmin where

Ñmin =





0, . . . , ξ with equal probab.
2(ξ+1−ν)
(ξ+1)(ξ+2) ,

ξ + 1 with probab.
(2ν−ξ)
(ξ+2) ,

ξ + 2, . . . , n with equal probab. 0

(30)

Note that this bound is equal to the bound (3.12) in

Lefèvre and Loisel (2012) obtained for discrete r.v.’s with

decreasing p.m.f. globally on N.

It is also equal to the bound (5.3) derived in Lefèvre and

Loisel (2010) for discrete r.v.’s with decreasing p.m.f. on

Dn. Consequently,

V ar
(
Ñmin

)
= −ξ

3
(ξ − 4 ν + 1) + ν − ν2. (31)

The proof of Proposition 10 is given in Appendix D.

5.2.2. Case: m < ξ ≤ 3ν ≤ ξ + 1,
m(m+1)
m+ξ+2 ≤ 3ν − ξ

and n ≥ ξ + 1.

Proposition 11 Let m, ξ and n be three integers where

1 < m < n and ν be nonnegative real number such that

m < ξ ≤ ξ + m(m+1)
(m+2+ξ) ≤ 3ν ≤ ξ + 1 + m(m+1)

(m+3+ξ) and

m(m+1)
m+ξ+2 ≤ 3ν − ξ. The convex minimum in the class of

r.v.’s with p.m.f. that are globally decreasing on N and

convex from a fixed point m > 1 is attained for the r.v.

Ñmin such that

Ñmin =





0, . . . ,m with equal probab.

π2 (2 + ξ −m)
+π1 (1 + ξ −m) ,

i ∈ (m+ 1, . . . , ξ + 1) with probab.

π2 (2 + ξ − i)
+π1 (1 + ξ − i) ,

ξ + 2, . . . , n with equal probab. 0,
(32)

where

π1 =
m(m− 3 ν + ξ + 2 ) + 3− 9 ν + ξ(ξ + 4− 3 ν )

2−1(ξ + 2)(2m+ ξ + 3)(ξ + 1−m)
,

(33)

and

π2 =
6 ν −m (m+ ξ + 1− 3 ν )− ξ(ξ + 2− 3 ν )

2−1(2m+ ξ + 3)(ξ + 2−m)(ξ + 2)
, (34)

where π1 ≥ 0 and π2 ≥ 0.

See Figure 10 for an illustration of the lower bounds (32)

and (30). Consequently we have,



8 M. Kacem, C. Lefèvre and S. Loisel

V ar
(
Ñmin

)
=

(1 + ξ −m)

(
1

6
π1m (m+ 1) (2m+ 1)

+
1

6
(π1 (1 + ξ) + π2 (2 + ξ))

(
2m2 + 5m+ 2ξm+ 6 + 7ξ + 2ξ2

)

−(π1 + π2)(
1

4
m+

1

2
+

1

4
ξ)(m2 +m+ 2 + 3 ξ + ξ2)

)

+
1

6
π2 (2 + ξ −m)m (m+ 1) (2m+ 1)− ν2.

(35)

Note that if we take m = 1 and ξ = 1, then in this case this

bound coincides with the bound obtained in Proposition 7.

The proof of Proposition 10 is given in Appendix E.

6. For decreasing p.m.f. that are convex up

to a point m ≥ 2

6.1. The upper bound.

Proposition 12 Let ν be a positive real number such that

2ν < n + 1. The convex maximum order in the class of

r.v.’s with p.m.f. that are globally decreasing on N and

convex up to a fixed point m where m ≥ 1 is attained for

the r.v. Ñmax given by

Ñmax =





0 with probab. 1− 2ν/(n+ 1),
1, . . . , n with equal probab.

2ν/(n(n+ 1)).
(36)

See Figure 11 for illustration. Note that this bound is equal

to the bound obtained in Lefèvre and Loisel (2010) in

Corollary 5.2 valid for r.v.’s with p.m.f. that are decreasing

and convex on Dn.

0,00
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0,06
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0,12

0,14

0,16

0 2 4 6 8 10 12 14 16

p 

i 

 (m=2, Proposition 11)

(m=1, Proposition 11)

(m > 7, Proposition 10)

Fig. 10. The lower bounds for decreasing p.m.f. that are convex

on [m,+∞), ν = 3.8, n = 15 for m = 2, m = 1 and

m > 7.

Proof. Denote by P (M = 0) = a1, P (Ñmax = 0) = a,

P (M = 1) = b1 and P (Ñmax = 1) = b.

1. a1 > a
As the sum of probabilities must be equal we have a

crossing point on [1,∞). As Ñmax is decreasing, we

cannot have a second crossing point between M and

Ñmax.

2. a1 < a and b1 ≤ b
It is clear that we do not have any crossing point

between M and Ñmax.

3. a1 < a and b1 > b
It is clear that we can have a situation with two

crossing points between M and Ñmax. Near n, as

b1 > b, we have PM < P
Ñmax

. Hence we have

M ≤cx Ñmax. ⋄

Consequently we have

Ṽ armax = (1/3) (2n+ 1) ν − ν2. (37)

6.2. The lower bound.

6.2.1. Case: m ≤ ξ ≤ 2ν < ξ + 1 ≤ n.

Proposition 13 The convex minimum in the class of r.v.’s

with p.m.f. that are globally decreasing on N and convex

up to a fixed point m where m > 2 and such that m ≤
ξ ≤ 2ν < ξ + 1 ≤ n, is attained for the r.v. Ñmin where

Ñmin =





0, . . . , ξ with equal probab.
2(ξ+1−ν)
(ξ+1)(ξ+2) ,

ξ + 1 with probab.
2ν−ξ

(ξ+2) ,

ξ + 3, . . . , n with equal probab. 0.

(38)
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N_max (Proposition 12)

Fig. 11. The upper bound (36) for r.v.’s with p.m.f. that are

decreasing and convex up to a point m > 1 , ν = 0.69,

n = 10.
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Note that this bound has the same shape as the one

obtained in Proposition 10.

Proof.

Denote by P (M = 0) = a1 and P (Ñmin = 0) = a.

1. a1 > a
Three cases arise :

• If P (M = ξ) < a, then it is easy to see that we

can have at most one crossing point in ]ξ, ξ +
2[. This is the case where P (M = ξ + 1) >

P (Ñmin = ξ + 1).

• If P (M = ξ) > a, then we have at most

two crossing points. This is the case when

P (M = ξ + 1) < P (Ñmin = ξ + 1) and

P (M = ξ + 2) > 0. Hence Ñmin ≤cx M.

• If P (M = ξ) = a then at most we can have

one crossing point which is absurd.

2. a1 ≤ a
In this case we can easily see that we have at least

one crossing point. This is absurd.⋄

6.2.2. Case: ξ ≤ 3ν ≤ ξ + 1 and m ≥ [2ν] + 1.

Proposition 14 The convex minimum in the class of r.v.’s

with p.m.f. that are globally decreasing on N and convex

up to a fixed point m where m ≥ 2 such that ξ ≤ 3ν ≤
ξ+1 and m ≥ [2ν]+1, is attained for the r.v. Ñmin where

∀ i ∈ {0, . . . , ξ + 1}

P
(
Ñmin = i

)
= (ξ + 1− i)π1 + (ξ + 2− i)π2, (39)

where π1 = 2 (ξ + 1− 3ν) / ((ξ + 2) (ξ + 1)) and π2 =
2 (3ν − ξ) / ((ξ + 2) (ξ + 3)).

Note that this bound coincides with the one obtained

in Proposition 5 for r.v.’s with p.m.f. that are globally

decreasing and convex on N.

Proof.

Denote by P (M = 0) = a1 and P (Ñmin = 0) = a.

1. a1 ≤ a
By assumption of decreasingness and convexity we

cannot have more than one crossing point between

p.m.f. of r.v.’s M and Ñmin which is absurd.

2. a1 > a
In this case we have a two-crossing situation if and

only if P (M = ξ + 2) > P (Ñmin = ξ + 2). In this

case it is clear that P
Ñmin

< PM near n, hence by

Proposition 3, Ñmin ≤cx M.⋄

7. Some numerical illustration

Since 2001, the European Commission has begun to

establish the new regulation ‘Solvency II’ common

to all countries members of the European Union.

This regulation will be applied from October 2014.

In particular, it sets the harmonization of methods

of valuation of liabilities with a risk margin and the

implementation of new rules to estimate the solvency

capital requirement (SCR). This last is the main

monitoring tool of the control authorities and is calculated

so that all risks to which the entity is exposed are taken

into consideration. The Basic SCR is estimated firstly for

each business line, then all individual SCR are aggregated

with respect to a correlation matrix. Insurance companies

have the choice between two options: they can either

adopt a standard approach or an internal model.

In the standard model of ‘Solvency II’ we distinguish

two approaches: a scenario based approach and a factor

based approach. In the scenario based approach, we

measure the sensitivity to a shock of each individual risk

and in the factor based approach we apply fixed factors

to approximate the risk. In this last case the SCR is

defined by SCR = qσ where σ is the standard error of

the random loss and q > 0 is called a quantile factor. So,

q = 3 is usually chosen for claim amount with a moderate

tail distribution. For heavy tailed risks, a more relevant

value is q = 5 or 6. In the sequel we use a factor based

approach to approximate the SCR.

Traditionally, computing or approximating the

distribution function of the aggregate claim amount has

been one of the central points in insurance mathematics.

In order to investigate the distribution of the aggregate

claim amount we consider individual model or collective

model. Note that a collective risk model is often adopted

to describe the occurrence of large claim. The total

number N of claim occurring in a given period is

random, typically it has a Poisson, binomial or negative

binomial distribution. Further r.v.’s claim size W are

strictly positive and are assumed to be independent and

identically distributed and independent of N.

Consider the r.v. S =
∑N

i=1 Wi describing the

aggregate claim amount. In this case we say that S has

a compound distribution where E(S) = E(N)E(W )
and V ar(S) = E(N)V ar(W ) + [E(W )]2V ar(N).
In practice, we have limited information about the

distribution of N . In fact, in general only the mean E(N)
is available and the distribution of N is assumed to be

Poisson with parameter λ. For example with respect to

some French data , one could use Poisson distribution

with parameter λ(C27) = 0.37 for business line C27

(drought and earthquake) and λ(C35) = 0.69 for business
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line C35 (construction-damages to building). Recall that

we are in a situation where a large amount of claim

occurs without being in a catastrophic situation. In reality

practitioners consider that observing more than a certain

number n of claims correspond to a catastrophe. For this

reason we consider that n is fixed.

Instead of Poisson distribution we consider

distributions that are decreasing on N which are globally

or partially convex. Recall that the probability mass

function of a Poisson distribution is decreasing convex if

λ ≤ 2−
√

(2) and decreasing but not convex if

2 −
√
(2) < λ ≤ 1. The bounds for SCR = qσ are

simply given by

SCR(Ñmin) = q

√
V ar (W )E (N) + E2 (W )V ar(Ñmin),

(40)

and

SCRÑmax) = q

√
V ar (W )E (N) + E2 (W )V ar(Ñmax).

(41)

In the numerical illustrations we choose, E[W (C27)] =
1000, V ar[W (C27)] = 25002 and E[W (C35)] = 2000,

V ar[W (C35)] = 70002(in thousand of euros).

7.1. Convex extrema for decreasing convex distribu-

tion globally on N. This gives V ar(Ñmax) = 1.898

and SCR(Ñmax) = 12311.85 for business line C27

where n(C27) = 10. These bounds are of course sharper
than those obtained for distribution that are decreasing and
convex not globally on N studied by Lefèvre and Loisel

(2010) which are recalled here: V ar(Ñmax) = 2.453 and

SCR(Ñmax) = 13098.2.
(For maximum bounds see Tables 1 and 2 and for
minimum bounds see Table 3).

7.2. Convex extrema for decreasing distributions that are

concave until 2 and convex on [1,∞). For business line C27,

V ar(Ñmax) = 0.416 and SCR(Ñmax) = 9911.68 where

n(C27) = 10. For business line C35 (construction-damages

to building), V ar(Ñmax) = 3.781 and SCR(Ñmax) =
41971.70 for n(C35) = 20. It is clear that these bounds are

sharper than those derived in Section 7.1. (For maximum bounds

see Tables 4 and 5 and for minimum bounds see Table 6.)

Table 1. Maximum bounds for decreasing convex distribution

globally on N for business line C27.

n V ar(Ñmax) SCR(Ñmax)
5 0.973 10875.73
10 1.898 12311.85
20 3.748 14770.97
30 5.598 16875.47
40 7.448 18745.18

7.3. Decreasing distribution globally on N and convex on

[m,+∞) for fixed m ≥ 1. For different fixed values of n and

m we evaluate the variance and the SCR. (For maximum bounds

see Tables 7, 8, 9 and 10, and for minimum bounds see Table

11.)

In Table 11 we note that for business line C27 we use Proposition

10 for any fixed m ≥ 1 in fact, for this business line 0 < 2 ×
0.37 ≤ 1. For business line C35 we use Proposition 11 for

m = 1 and Proposition 10 for all m > 1 as 1 < 2 × 0.69 ≤ 2.

Table 2. Maximum bounds for decreasing convex distribution

globally on N for business line C35.

n V ar(Ñmax) SCR(Ñmax)
5 1.594 11858.77
10 3.319 41171.37
20 6.769 46817.53
30 10.219 51852.50
40 13.669 56440.07

Table 3. Minimum bounds for decreasing convex distribution

globally on N for business lines C27 and C35.

C27 C35

V ar(Ñmin) 0.27 0.594

SCR(Ñmin) 9641.7 36092.7

Table 4. Maximum bounds for decreasing distributions that are

concave until 2 and convex on [1,∞) for business line

C27.

n V ar(Ñmax) SCR(Ñmax)
5 0.324 9742.01
10 0.416 9911.68
20 0.600 10239.22
30 0.783 10556.59
40 0.966 10864.67

Table 5. Maximum bounds for decreasing distributions that are

concave until 2 and convex on [1,∞) for business line

C35.

n V ar(Ñmax) SCR(Ñmax)
5 1.105 37099.22
10 1.997 38790.82
20 3.781 41971.70
30 5.564 44926.18
40 7.347 47698.30

Table 6. Minimum bounds for decreasing distributions that are

concave until 2 and convex on [1,∞) for business lines

C27 and C35.

C27 C35

V ar(Ñmin) 0.233 0.467

SCR(Ñmin) 9572.96 35838.24
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From Tables 7, 8, 9 and 10 we remark that for fixed n the choice

of the maximal value m influences considerably the value of the

variance and of the SCR. Also, for fixed m we observe that the

choice of the maximal value n influences considerably the value

of the variance and of the SCR.

7.4. Convex extrema for decreasing distribution globally

on N and convex up to a point m ≥ 2. Consider r.v. with

p.m.f. that are decreasing globally on N and convex up to a point

m ≥ 2. In Table 12 we have maximum bounds and in Table 13

we have minimum bounds. We note that for minimum bounds

Table 7. Maximum variances for decreasing distribution glob-

ally on N and convex on [m,+∞) for fixed m ≥ 1 (

business line C27).

n \m 1 2 18
5 0.973 0.995 −
10 1.898 1.906 −
20 3.748 3.750 4.69
30 5.598 5.599 6.182
40 7, 448 7.449 7.840

Table 8. Maximum SCR for decreasing distribution globally on

N and convex on [m,+∞) for fixed m ≥ 1 (line of

business C27).

n \m 1 2 18
5 10875.73 10911.75 −
10 12311.85 12322.95 −
20 14770.98 14773.65 15877.23
30 16875.49 16876.65 17487.19
40 18745.18 18745.75 19118.17

Table 9. Maximum variances for decreasing distribution glob-

ally on N and convex on [m,+∞) for fixed m ≥ 1
(line of business C35).

n \m 1 2 18
20 6.769 6.773 8.525
30 10.219 10.221 11.307
40 13.669 13.670 14.400

Table 10. Maximum SCR for decreasing distribution globally

on N and convex on [m,+∞) for fixed m ≥ 1(line

of business C35).

n \m 1 2 18
20 46817.53 46823.99 49444.95
30 51852.50 51855.28 53343.07
40 56440.07 56441.60 57365.65

Table 11. Minumum bounds for decreasing distribution glob-

ally on N and convex on [m,+∞) where m ≥ 1.

C27 C35

V ar(Ñmin) 0.233 0.467

SCR(Ñmin) 9572.96 35838.24

we use Proposition 14.

7.5. The influence of the choice of n and m. Let us prove

algebraically that a is an increasing function of n and that b is

a decreasing function of n. From (28) for all fixed m ≥ 1 we

denote by

a(n) = 1−
3ν(n+m)

m2 + nm+m+ n2 + 2n

= 1−
3ν

(m+ 1) + n(n+1)
m+n

.

Hence the behavior of a(n) follows the behavior of β(n) =
n(n+1)
m+n

, where

∂β(n)

∂n
=

(n+m)(2n+ 1)− n(n+ 1)

(n+m)2
.

Note that the sign of this derivative always follows the sign of

the numerator. We note that (n + m)(2n + 1) − n(n + 1) =
2n2 + 2nm + m = 0 has a general form of a second degree

equation where the value of the discriminant denoted by ∆ is

equal to 4m(m − 1). Two cases arise: the first one is when m
is equal to 1. In this case ∆ = 0 and we have a double solution

equal to −1. As n is a positive integer, the sign of the partial

derivative is always positive in the first case. The second case

is when m > 1. In this case ∆ > 0 and the equation has two

distinct solutions denoted by n1 = −m−
√

m(m− 1) and by

n2 = −m +
√

m(m− 1) which are both negative. As n > 0
the sign of this polynomial is always positive on [1,∞). Hence

we deduce that a(n) is an increasing function of n for all fixed

m ≥ 1. Similarly, denote by

b(n) =
6ν

m−m3 + n(n2 + 3n+ 2)
.

We note that the behavior of b(n) when n varies follows the

inverse behavior of α(n) = (n(n2 + 3n + 2))−1. Hence for

all fixed m ≥ 1, it is very easy to see that b(n) is a decreasing

function of n. By the same argument we can prove that for fixed

n

a(m) = 1−
3ν(n+m)

m(m+ n+ 1) + (n2 + 2n)

is a decreasing function of m and

b(m) =
6ν

m(1−m2) + n(n2 + 3n+ 2)

Table 12. Maximum bounds for decreasing distribution and

convex up to m ≥ 2.

n V ar(ÑmaxC27) V ar(ÑmaxC35)
10 2.453 4.354
20 4.920 8.954
40 9.853 18.154

Table 13. Minumum bounds for decreasing distribution and

convex up to m ≥ 2 where n = 10.

C27 C35

V ar(Ñmin) 0.27 0.594

SCR(Ñmin) 9641.7 36092.7
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is an increasing function of m.
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Appendix A

Proof of Proposition 6

This bound is obtained as follows: we assume that

Ñmax =





0 with probab. a,
1 with probab. c,
i ∈ (2, . . . , n) with probab. b(n+ 1− i),

(A1)

where a, b and c are such that (A1) is a true p.m.f. with fixed

mean ν. Moreover, note that if N is a r.v. with p.m.f. that is

concave in [0, 2] and convex in [1,+∞) , then by the constraint

of convexity we must have

P (N = 2)−P (N = 1) ≤ (P (N = 3)−P (N = 1))/2 (A2)

and by concavity constraint we have

P (N = 0)− P (N = 1) ≤ (P (N = 0)− P (N = 2))/2.
(A3)

These constraints lead to
{

bn ≤ c,
a− c ≤ c− b(n− 1).

(A4)

Following Proposition 3 we have X ≤cx Y if the p.m.f. of the

r.v. Y has heavier values on extremes than those taken by the r.v.

X . For this we shall consider that

P (N = 0)− P (N = 1) = (P (N = 0)− P (N = 2))/2.

Hence a, b and c are determined by solving the following system





a− c = c− b(n− 1),
a+ c+

∑n

i=2 b(n+ 1− i) = 1,
c+

∑n

i=2 b(n+ 1− i)i = ν,
where 0 < bn < c < a < 1.

(A5)

Consider two r.v’s M and Ñmax in Jn with p.m.f. concave in

[0, 2] and convex in [1,+∞). Denote by P (M = 0) = a1,

P (M = 1) = c1, P (M = 2) = d1 and P (Ñmax = 2) = d.

1. a1 < a and c1 > c
In this case we observe a crossing point in ]0, 1[. By

Proposition 2 there must exist, at least, another crossing

point in ]1, n]. Two cases arise:

1.1 If d1 ≤ d, then we have a crossing point in ]1, 2[. In

addition, by global convexity in [1,∞) there cannot

exist another crossing point in ]2, n] (see Figure A1

for illustration).

1.2 If d1 > d, then we have a single crossing point in

]2, n] by Lemma 2 (see Figure A2 for illustration).

Note that in the previous two cases the p.m.f. of M and

Ñmax have exactly two crossing points in the set Dn. In

addition, near n, PM ≤ P
Ñmax

. Thus, by Proposition 3

we have M ≤cx Ñmax.

2. a1 < a and c1 = c
Two cases arise:

2.1 if d1 > d then in this case a first crossing point

is observed in ]0, 2]. In addition, by Proposition 2

we have exactly one crossing point in ]2, n] where

near n we have PM ≤ P
Ñmax

(see Figure A3 for

illustration).

2.2 if d1 ≤ d, then the two crossing points must be in

]2, n] which is not possible by Lemma 2. Hence,

this case is absurd.

3. a1 < a and c1 < c
Two cases arise:
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3.1 If d1 > d, then the constraint of concavity is not

fulfilled.
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Fig. A1. The upper bound (20) vs the case 1.1. ν = 0.69, n =
10.
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Fig. A2. The upper bound (20) vs the case 1.2. ν = 0.69, n =
10.
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Fig. A3. The upper bound (20) vs the case 2.1. ν = 0.69, n =
10.

3.2 If d1 ≤ d, then it is clear that there is no crossing

point until the point 2. In addition by Lemma 2,

in order to ensure the constraint of convexity, there

is no crossing between p.m.f. of M and Ñmax in

]2, n]. So, the constraint of equal mean is violated.

4. a1 ≥ a and c1 ≥ c
In this case by Lemma 2 we have at most one crossing

point over Dn.

5. a1 ≥ a and c1 ≤ c
In this case, to ensure the assumption of concavity, we

must have d1 < d. Hence we have a crossing point in

]0, 2[. So, if a second crossing point exists, then it is

necessarily in ]2, n]. If it is the case, then by Lemma

2, the constraint of convexity is violated. So, this case is

absurd.

Appendix B

Proof of Proposition 8

The lower bound (24) is derived such that the distribution of

Ñmin has the following p.m.f. where a and b are two positive

integers :

Ñmin =





0 with probab. a− b,
i ∈ (1, . . . , ξ + 1) with probab. a− bi,
ξ + 2, . . . , n with equal probab. 0,
where 0 < b < a < 1.

(B1)

Therefore, a and b are derived such that (B1) is a true p.m.f. and

such that the mean of the r.v. Ñmin is equal to ν.

{
a− b+

∑ξ+1
i=1 (a− bi) = 1,

a− b+
∑ξ+1

i=2 (a− bi)i = ν.
(B2)

Hence it follows that

a =
2 ((2 ξ + 3)(ξ + 2)(ξ + 1)− 3 ν (4 + ξ2 + 3 ξ))

ξ(ξ + 5)(ξ + 2)(ξ + 1)
, (B3)

and

b =
6 (ξ + 1− 2 ν)

ξ(ξ + 5)(ξ + 1)
, (B4)

where 0 < b < a < 1 and ξ < 2ν < ξ + 1.

Note that from (B1) we have P (Ñmin = 2) = a − 2b and

P (Ñmin = 0) = P (Ñmin = 1) = a− b. So, the assumption of

concavity in [0, 2] is valid. Assume that P (Ñmin = ξ+1) = π2.

Moreover, we have P (Ñmin = ξ + 2) = 0, then by constraint

of convexity we must have P (Ñmin = ξ) = π1 + 2π2. Hence,

it follows that b = (π1 + π2) and a = π2(2 + ξ) + π1(ξ + 1).

Denote by P (Ñmin = 0) = P (Ñmin = 1) = a∗, P (M =

0) = a∗

1, P (M = 1) = c1, P (M = 2) = d1, and P (Ñmin =
2) = d∗.

1. a∗

1 > a∗ and c1 ≥ a∗

In this case we remark that in ]0, 1[ we have no crossing

point. Now, assume that a first crossing point is observed

in [1,∞[. This means that there is j ∈ [1, ξ + 1[ such that

P (M = j) < P (Ñmin = j). Further, consider that a

second crossing point exists then, this means that there is

k ∈ [j + 1, ξ + 1[ where j < k ≤ ξ such that P (M =
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k) > P (Ñmin = k). If a third crossing point exists, then

the constraint of convexity is violated. Hence at most, we

have two crossing points where near n, PM > P
Ñmin

.

Then Ñmin ≤cx M (see Figure B1 for illustration).

2. a∗

1 > a∗ and c1 < a∗

In this case we have a first crossing point in ]0, 1[. By the

constraint of convexity we have at most one crossing point

in ]1, ξ + 2[. Hence we are in a situation with exactly two

crossing points. As a∗

1 > a∗ it follows immediately that

near n, PM > P
Ñmin

. So, by Proposition 3, Ñmin ≤cx M
(see Figure B2 for illustration).

3. a∗

1 ≤ a∗

In this case by the assumption of decreasingness we must

have c1 ≤ a∗. Three cases arise:

3.1 If P (M = ξ + 1) > P (Ñmin = ξ + 1), then,

by the assumption of convexity we have at most one

crossing point in the set Dn. This is absurd under

Proposition 2.

3.2 If P (M = ξ+1) ≤ P (Ñmin = ξ+1) and P (M =
ξ+2) > 0, then we observe a crossing point in ]ξ+
1, ξ+2[. In addition, by the assumption of convexity

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 2 4 6 8 10 12

P 

i 

M: Case 1 N_min (Proposition 8)

Fig. B1. The lower bound (24) vs the case 1. ν = 0.69, n = 10.
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Fig. B2. The lower bound (24) vs the case 2. ν = 0.69, n = 10.

and according to Lemma 2 we have no crossing point

in [0, ξ + 1]. So, this case is absurd because of the

assumption of equal means which requires at least

two crossing points.

3.3 If P (M = ξ+1) ≤ P (Ñmin = ξ+1) and P (M =
ξ+2) = 0, then under Lemma 2 we have no crossing

point over Dn. This is absurd.

Appendix C

Proof of Proposition 9

This bound is obtained as follows:

Ñmax =





0 with probab. a,
1, . . . ,m− 1 with equal probab.

b(n+ 1−m),
i ∈ (m, . . . , n) with probab.

b(n+ 1− i),

(C1)

where 0 < b(n+ 1−m) < a < 1 and such that
{

a+ (m− 1)b(n+ 1−m) +
∑n

i=m
b(n+ 1− i) = 1,

b(n+ 1−m)
∑m−1

i=1 i+
∑n

i=m
b(n+ 1− i)i = ν,

(C2)

Next we present a reasoning by contradiction to prove

Proposition 9. Let M be a random variable in Jn with a p.m.f.

that is decreasing globally on N and convex from a fixed point

m > 1, where 0 < 3ν ≤ (m2+nm+m+n2+2n)/(m+n+2).

Denote by P (M = 0) = a1, P (M = 1) = c1, P (Ñmax =

0) = a and P (Ñmax = 1) = c. For this, we enumerate all

possible p.m.f. that may be taken by the r.v. M and we prove

that in all cases M ≤cx Ñmax.

1. a1 < a and c1 ≤ c
In this case by Lemma 2 there cannot be a crossing point

on Dn which is absurd.

2. If a1 < a and c1 > c, then we have a first crossing point

in ]0, 1[.

2.1 In addition, if P (M = m− 1) ≤ P (Ñmax = m−
1), then by nonincreasingness we have necessarily,

a crossing point in ]1,m − 1[. In addition, under

Lemma 2 there is not any crossing point in ]m,∞).

2.2 If P (M = m − 1) > P (Ñmax = m − 1), then

by Lemma 2 there is at most one crossing point

on ]m,n[. Hence in both cases we have exactly

two crossing points over Dn where near n we have

M ≤cx Ñmax.

3. a1 ≥ a and c1 > c
In this case, by the same reasoning as in the previous case,

there cannot exist more than one crossing point over Dn

which is absurd. In fact, if P (M = m− 1) < P (Ñmax =
m−1), then we observe only one crossing point in ]0,m−
1[ and by Lemma 2 there is not another crossing point on

]m − 1, n[. If P (M = m − 1) ≥ P (Ñmax = m − 1),
then by Lemma 2 there cannot exist more than one crossing

over Dn.

4. a1 ≥ a and c1 ≤ c
In this case we observe a first crossing point in ]0, 1[ but, by

the assumption of decreasingness and according to lemma

2 there is no other crossing point over Dn which is absurd.
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Appendix D

Proof of Proposition 10

This bound is obtained as follows: we assume that

Ñmin =





0, . . . , ξ with equal probab. a,
ξ + 1 with probab. b,
ξ + 2, . . . , n with equal probab. 0,

(D1)

where a and b are such that this is a true p.m.f., with fixed mean

ν i.e. {
(ξ + 1) ∗ a+ b = 1,
ξ(ξ + 1) ∗ a/2 + (ξ + 1) ∗ b = ν,

(D2)

Note that we do not have any constraint related with convexity

below point ξ + 1 as m ≥ ξ + 1 > 1. Denote by P (M = 0) =

a1 and by P (Ñmin = 0) = a.

1. a1 > a and P (M = ξ) < P (Ñmin = ξ)
In this case, by assumption of nonincreasingness, we have

exactly one crossing point on ]0, . . . , ξ[. Two cases arise:

1.1 P (M = ξ + 1) > P (Ñmin = ξ + 1).

1.2 P (M = ξ + 1) < P (Ñmin = ξ + 1).

Note that in these two cases we have at most two crossing

points. In addition in the presence of two crossings, we

have P
Ñmin

≤ PM near n. Hence, Ñmin ≤cx M .

2. a1 > a and P (M = ξ) > P (Ñmin = ξ)
In this case we have at most two crossing points over Dn.

More precisely this case arises if and only if we have

P (M = ξ + 1) < P (Ñmin = ξ + 1) and P (M) =
ξ + 2) > 0, (see Figure D1 for illustration). Thus in this

case P
Ñmin

≤ PM near n.

So, by Proposition 3 we conclude that Ñmin ≤cx M .

It is clear that if P (M = ξ) = (Ñmin = ξ), then we have

at most one crossing which is absurd under Proposition 2.

3. a1 ≤ a
We note that we have at most one crossing point over Dn

which is absurd following Proposition 2.
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Fig. D1. The lower bound (30) vs the case 2., m = 8, ν = 3.8,

n = 10.

Appendix E

Proof of Proposition 11

The distribution of Ñmin is obtained as explained in the

following optimization program:

Ñmin =





0, . . . ,m with equal probab. a− bm,
i ∈ (m+ 1, . . . , ξ + 1) with probab. a− bi,
ξ + 2, . . . , n with equal probab. 0,

(E1)

where 0 < b < a < 1 and

{
(m+ 1)(a− bm) +

∑ξ+1
i=m+1(a− bi) = 1,

m(m+ 1)(a− bm)/2 +
∑ξ+1

i=m+1(a− bi)i = ν.
(E2)

From (E1), we have P (Ñmin = ξ+2) = 0 and P (Ñmin = ξ+
1) = π2. In addition, to ensure the constraint of convexity, we

consider that P (Ñmin = ξ) = π1 + 2π2 where π1 ≥ 0. Hence,

we can deduce that b = (π1+π2) and a = π2(2+ξ)+π1(ξ+1).

Denote by P (M = m) = a1 and by P (Ñmin = m) = a.

1. a1 > a
In this case there are, at most, two crossing points near n
P
Ñmin

≤ PM . Thus, by Proposition 3, Ñmin ≤cx M .

2. a1 < a
According to the assumptions of nonincreasingness and

convexity, there exist at most two crossings over Dn such

that near n P
Ñmin

≤ PM . Thus, by Proposition 3,

Ñmin ≤cx M .

3. If a1 = a, then by convexity and nonincreasingness it is

clear that there exists at most one crossing, which is absurd

under Proposition 2.
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