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Modeling for isothermal cavitation with a four-equation model

Eric Goncalvès∗, Boris Charrière

LEGI-University of Grenoble, 1025 rue de la Piscine, 38400 St Martin d’Heres, France

Abstract

In a recent study, an original formulation for the mass transfer between phases has

been proposed to study one-dimensional inviscid cavitating tube problems. This

mass transfer term appears explicitly as a source term of a void ratio transport-

equation model in the framework of the homogenous mixture approach. Based on

this generic form, a two-dimensional preconditioned Navier-Stokes one-fluid solver

is developed to perform realistic cavitating flows. Numerical results are given for

various inviscid cases (underwater explosion, bubble collapse) and unsteady sheet

cavitation developing along Venturi geometries at high Reynolds number. Compar-

isons with experimental data (concerning void ratio and velocity profiles, pressure

fluctuations) and with a 3-equation model are presented.
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1. Introduction

Cavitation is a significant engineering phenomenon that occurs in fluid machin-

ery, fuel injectors, marine propellers, nozzles, underwater bodies, etc. In most cases,

cavitation is an undesirable phenomenon, significantly degrading performance, re-

sulting in reduced flow rates, lower pressure increases in pumps, load asymmetry,
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vibrations, noise and erosion. In most industrial applications, cavitating flows are

turbulent and the dynamics of the interface formed involves complex interactions

between the vapour and liquid phases. These interactions are not well understood

in the closure region of cavities, where a distinct interface may not exist and where

the flow is unsteady.

Several physical and numerical models have been developed to investigate cavi-

tating flows within the framework of averaged two-phase model. For the averaged

model, there are different approaches according to the assumptions made on the local

thermodynamic equilibrium and the slip condition between phases. A hierarchy of

models exists, with the numbers of equations ranging from seven to three only. The

full non-equilibrium two-fluid models with relaxation procedures have been tested on

inviscid high-speed applications (see for example (Petitpas et al., 2009; Zein et al.,

2010)), whereas one-fluid models have been massively used for industrial cavitating

flows.

By assuming the velocity, pressure and thermal equilibrium between phases, various

formulations of four-equation model have been expressed. A very popular formula-

tion has been developed to simulate turbulent cavitating flows (Merkle et al., 1998;

Kunz et al., 2000; Senocak and Shyy, 2002; Singhal et al., 2002; Venkateswaran

et al., 2002; Vortmann et al., 2003; Wu et al., 2005; Wang and Ostoja-Starzewski,

2007; Morgut et al., 2011; Ji et al., 2012). It is composed by three conservation

laws for mixture quantities (mass, momentum, energy) plus a mass equation for the

vapour or liquid density including a cavitation source term. The main difficulty is

related to the formulation of the source term and the tunable parameters involved

for the vaporization and condensation processes. Moreover, this family of models are

not thermodynamically well-posed and does not respect thermodynamic constraints
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(Goncalves and Patella, 2011). Another approach of source term term was proposed

in (Helluy and Seguin, 2006), based on a constrained convex optimization problem

on the mixture entropy.

With the assumption of complete thermodynamic equilibrium between phases (local

temperature, pressure and free Gibbs enthalpy equality between phases), we obtain

the 3-equation models or homogeneous equilibrium models (HEM). Vaporization or

condensation processes are assumed to be instantaneous. An equation of state (EOS)

is necessary to close the system. Different closure relations (tabulated EOS or com-

bination of pure phase EOSs) that link the pressure to the thermodynamic variables

have been proposed (Delannoy and Kueny, 1990; Saurel et al., 1999; Schmidt et al.,

1999; Ventikos and Tzabiras, 2000; Liu et al., 2004; Schmidt et al., 2006; Sinibaldi

et al., 2006; Ihm and Kim, 2008; Goncalves and Patella, 2009).

In addition, the turbulence modelling plays a determinant role in the capture of

unsteady behaviours. Cavitation sheets that appear on solid bodies are character-

ized by a closure region which always fluctuates with the existence of a re-entrant

jet. This one is mainly composed of liquid which flows upstream along the solid sur-

face. Moreover, compressibility effects on turbulence are involved. These effects and

interactions with two-phase structures are not yet well known and understood. For

usual applications, three-dimensional time-dependent computations obtained with

large eddy simulations (LES) or direct simulations (DNS) are not yet tractable. The

Reynolds decomposition is often used with an averaged statistical processing result-

ing in the RANS equations for the mean flow quantities. The limitation of the tur-

bulent viscosity evaluated with transport-equation turbulence models (through the

Boussinesq assumption) is a key point to capture realistic cavitation sheets. Different

methods have been investigated to limit or to correct standard turbulence models.
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One of the most popular limiter was proposed by Reboud to reduce the turbulent

viscosity (Reboud et al., 1998), and has successfully been used by different authors

(Coutier-Delgosha et al., 2002; Chen et al., 2006; Zhou and Wang, 2008; Srinivasan

et al., 2009; Goncalves, 2011).

In a recent study, an original source term including the mass transfer between

phases was proposed using a void ratio transport-equation model. A particular em-

phasis was placed on the thermodynamic coherence. The mass transfer was closed as-

suming its proportionality to the divergence of the homogeneous velocity field. First

validations on one-dimensional rarefaction tube problems showed the good behaviour

of the model and the low sensitivity to the involved constant (Goncalves, 2012, 2013).

In the present paper, the cavitation model is improved and implemented in a com-

pressible two-dimensional RANS/Euler solver. This new formulation is firstly tested

on inviscid test cases (solving the compressible one-fluid Euler equations) such as

underwater explosion and bubble collapse. Secondly, two turbulent sheets cavitation

appearing on Venturi geometries are simulated and compared with the available ex-

perimental data (time-averaged void ratio and velocity profiles, pressure fluctuations,

oscillation frequency). The influence of the constant is investigated, especially the

effect on the sheet cavitation dynamic. Moreover, a comparison with a 3-equation

model is proposed.

This paper is organized as follows. We first review the theoretical formulation

including physical models, the mass transfer formulation and elements of the numeri-

cal methods. The preliminary studies carried out in inviscid test cases are presented.

This is followed by sets of results on two turbulent Venturi flows and discussions.
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2. Governing equations and models

The numerical simulations are carried out using an in-house CFD code solving

the one-fluid compressible RANS or Euler system.

2.1. The homogeneous approach

The homogeneous mixture approach is used to model two-phase flows. The phases

are assumed to be sufficiently well mixed and the disperse particle size are sufficiently

small thereby eliminating any significant relative motion. The phases are strongly

coupled and moving at the same velocity. In addition, the phases are assumed to

be in thermal and mechanical equilibrium: they share the same temperature T and

the same pressure P . The evolution of the two-phase flow can be described by the

conservation laws that employ the representative flow properties as unknowns just

as in a single-phase problem.

We introduce αk the void fraction or the averaged fraction of presence of phase k.

The density ρ, the center of mass velocity u and the internal energy e for the mixture

are defined by (Ishii and Hibiki, 2006):

ρ =
∑

k

αkρk (1)

ρui =
∑

k

αkρkui,k (2)

ρe =
∑

k

αkρkek (3)

2.2. The mixture equation of state

To close the compressible system, an equation of state (EOS) is necessary to link

the pressure to the thermodynamic variables. Pure phases follow the stiffened gas

EOS. The barotropic law (Delannoy and Kueny, 1990; Goncalves and Patella, 2009)
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is considered for the mixture. When the pressure is between Pvap(T ) + ∆P and

Pvap(T ) − ∆P , the following relationship applies:

P (ρ) = Pvap +

(
ρsat

L − ρsat
V

2

)

c2
baro Arcsin

(
2ρ − ρsat

L − ρsat
V

ρsat
L − ρsat

V

)

(4)

where ∆P represents the pressure range of the law and, for a void ratio value of

0.5, the pressure is equal to the saturation pressure Pvap at the reference tempera-

ture. The cavitation phenomenon is assumed to be isothermal, thermal effects are

neglected.

The associated speed of sound in the mixture is

c2 =

(
∂P

∂ρ

)

s

=

(
∂P

∂ρ

)

T

=
c2
baro

2
√

α(1 − α)
(5)

Properties of the model (such as convexity conditions of the EOS) and the influence

of the parameter cbaro have been studied in (Goncalves and Patella, 2009).

2.3. A four-equation model with mass transfer

The model consists in three conservation laws for mixture quantities (mass, mo-

mentum and total energy) and an additional equation for the void ratio. It is obtained

from a reduction of a 5-equation model (Goncalves, 2013). The expression for the

void ratio equation is:

∂α

∂t
+ div (αV ) =









(

ρlc
2
l − ρvc

2
v

ρlc
2

l

1−α
+ ρvc2v

α

)

︸ ︷︷ ︸

= K

+α









div V +

(
c2v
α

+
c2
l

1−α

ρlc
2

l

1−α
+ ρvc2v

α

)

︸ ︷︷ ︸

=1/ρI the interfacial density

ṁ (6)

where ṁ is the mass transfer between phases and V the velocity vector. The term

K involves the speed of sound of pure phases ck and it reflects the effects of changes
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in volume of each phase.

By assuming that the mass transfer is proportional to the divergence of the velocity, it

is possible to build a family of models in which ṁ is expressed as (the demonstration

is presented in (Goncalves, 2013))

ṁ =
ρlρv

ρl − ρv

(

1 −
c2

c2
wallis

)

div V (7)

where cwallis is the propagation of acoustic waves without mass transfer (Wallis,

1967). This speed is expressed as the weighted harmonic mean of speeds of sound of

each phase:
1

ρc2
wallis

=
α

ρvc2
v

+
1 − α

ρlc2
l

(8)

When heat and mass transfer effects are involved in the flow, the sound speed c

decreases to the thermodynamic equilibrium one (Petitpas et al., 2009). This limit

speed is evaluated with the assumption of local thermodynamic equilibrium: equal-

ities of pressure, temperature and free enthalpy.

With this generic form for the mass transfer, we remark that all models in which the

mixture speed of sound is the Wallis one cannot produce void ratio during the phase

transition (that is the case of most of models proposed in the literature). The void

ratio is only modified through the term K div V .

A first model was built using the barotropic speed of sound and validated on inviscid

rarefaction tube problems by comparisons with two-fluid solutions (Goncalves, 2013).

Yet, the simulation for turbulent cavitating cases put in evidence a problem with this

model. Downstream the sheet cavities, the convected void ratio is not destroyed. The
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model is able to produce and to transport the void ratio but it does not destroy the

void ratio in the flow where the pressure is greater than the vapour pressure Pvap.

We propose to modify the formulation adding a destruction term

ṁ =
ρlρv

ρl − ρv

(

1 −
c2

c2
wallis

)

div V − Cdes
ρv

ρl

α
Max (0, P − Pvap)

0.5ρrefU2
ref

(9)

where Cdes is a tunable parameter.

This new formulation does not modify the mixture speed of sound c and the eigen-

values of the inviscid system. The system is hyperbolic with the characteristic waves

speeds: u − c, u, u, u, u + c where c is the barotropic speed of sound.

2.4. Reynolds-Averaged Navier-Stokes equations

For turbulent computations, the compressible one-fluid RANS equations are used,

coupled with a one- or two-equation turbulence model. For low Mach number appli-

cations, an inviscid preconditioner is introduced. These equations can be expressed

as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (10)

w =

















ρ

ρV

ρE

α

ρk

ρΨ

















; Fc =

















ρV

ρV ⊗ V + pI

(ρE + p)V

αV

ρkV

ρΨV

















; Fv =

















0

τ v + τ t

(τ v + τ t).V − Qv − Qt

0

(µ + µt/σk) grad k

(µ + µt/σΨ) grad Ψ

















where w denotes the conservative variables and the void ratio, Fc and Fv the convec-

tive and viscous flux densities and S the source terms, which concern the void ratio
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equation and the turbulent transport equations. k is the mixture turbulent kinetic

energy (TKE) and Ψ is a mixture turbulent variable. In multiphase flow, the di-

vergence of the fluctuating phase velocity is not zero (Decaix and Goncalves, 2013).

Therefore, supplementary terms appear in the mixture TKE equation (pressure-

dilation term, dilatational dissipation rate), which are not taken into account in the

present paper.

The exact expression of the eddy-viscosity µt and the source terms depends on the

turbulence model as well as constants σk and σΨ.

The total stress tensor τ is evaluated using the Stokes hypothesis, Newton’s law and

the Boussinesq assumption. The total heat flux vector Q is obtained from the Fourier

law involving a turbulent thermal conductivity λt with the constant Prandtl number

hypothesis.

τ = τ v + τ t = (µ + µt)

[

( grad V + ( grad V )t) −
2

3
( div V )I

]

+
2

3
ρkI

Q = Qv + Qt = − (λ + λt) grad T with λt =
µtCp

Prt

(11)

In pure phases, the viscosity is assumed to be constant. The mixture viscosity is

defined as the arithmetic mean of the liquid and vapour viscosities (fluctuations of

viscosity are neglected) (Ishii and Hibiki, 2006):

µ(α) = αµV + (1 − α)µL (12)

The mixture thermal conductivity λ is also defined as the arithmetic mean of the

liquid and vapour values:

λ(α) = α
µV CpV

PrV

+ (1 − α)
µLCpL

PrL

(13)

The turbulent Prandtl number Prt is set to 1.
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2.5. The turbulence model

The present study is based on the one-equation Spalart-Allmaras (SA) turbulence

model (Spalart and Allmaras, 1992) in witch the Reboud correction is added.

2.6. Wall functions

For the modelling of flow close to the wall, a two-layer wall law approach is used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ =
u

Uτ

; y+ =
yUτ

νw

; U2
τ =

τw

ρw

(14)

where κ = 0.41 is the von Karman constant and the subscript ’w’ is used for a wall

value.

We assume that wall functions are similar in a two-phase flow and in a single-phase

flow. For unsteady flows, the existence of a wall law is assumed to be valid at each

instant. These assumptions have been studied in (Goncalves and Decaix, 2012) and

comparisons were proposed with a thin boundary layer approach.

With regard to the turbulent quantities, the production of k is computed according

to the formulation proposed by Viegas and Rubesin (Viegas and Rubesin, 1983).

The value of ℓ in the first cell is obtained using a classical mixing length: l = κy.

3. Numerical methods

The numerical simulations are carried out using an implicit solver for multi-

domain structured meshes. This solver is based on a cell-centered finite-volume

discretization.
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3.1. Spatial discretization

For the mean flow, the convective flux density vector on a cell face is computed

with the Jameson scheme (Jameson et al., 1981). The artificial viscosity includes

a second-order dissipation term D2 and a fourth-order dissipation term D4, which

involve two tunable parameters k(2) and k(4).

The viscous terms are discretized by a second-order space-centered scheme. For

the turbulence transport equations, the upwind Roe scheme (Roe, 1981) is used to

obtain a more robust method. The second-order accuracy is obtained by introducing

a flux-limited dissipation (Tatsumi et al., 1995).

3.2. The low Mach number preconditioner

For low Mach number applications, a well-known problem concerns the stiffness

on the solution convergence. In this situation, the dominance of convection terms

renders the system stiff and compressible solvers converge slowly. To overcome this

difficulty, a preconditioning method is necessary. The physical acoustic waves are

replaced by pseudo-acoustic modes that are much closer to the advective velocity, re-

ducing the stiffness and enhancing the convergence. The method is based on the mod-

ification of the derivative term by a premultiplication with a suitable preconditioning

matrix. In order to simplify the formulation, we present below the one-dimensional

formulation. With the primitive variables W = (P, u, e, α) the preconditioned Euler

equations can be expressed as:

P−1
e

∂W

∂t
+ Ae

∂W

∂x
= 0 (15)

We use the preconditioning matrix based on the Turkel approach (Guillard and

Viozat, 1999; Turkel, 1987) :
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Pe =











β2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











; Ae =











u ρc2 0 0

1/ρ u 0 0

0 P/ρ u 0

0 −K 0 u











β is a parameter on the order of the Mach number. In our study, we have chosen

the form given by Choi and Merkle (Choi and Merkle, 1993):

β2 = min
[
max

(
M2, θM2

∞

)
, 1

]
(16)

This form implies that there is no preconditioning used in transonic and supersonic

flow regions (in the mixture). When β2 = 1, the preconditioning matrix becomes

the identity matrix and the system returns to its classical non preconditioned form.

Moreover, for a very small flow velocity, β2 is not allowed to be less than a given

percentage of the freestream velocity, determined by the coefficient θ.

The eigenvalues of the preconditioned system are:

u; u ; λ± =
1

2

[

u(1 + β2) ±
√

(β2 − 1)2u2 + 4β2c2
]

(17)

For the variables w = [ρ, ρu, ρE, α], the corresponding form is:

P−1
c

∂w

∂t
+ Ac

∂w

∂x
= 0 (18)

where the preconditioning matrix P−1
c =

∂w

∂W
P−1

e

∂W

∂w
and Ac is the Jacobian ma-

trix of the convective fluxes. Expressions of matrices are given in appendix A.

The preconditioned matrix can be written as P−1
c = Id +

(1 − β2)

β2
× M where Id

is the identity matrix and the expression of the matrix M is given in Appendix B.
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The matrix M is idempotent and the inverse matrix Pc can be easily computed:

Pc = Id + (β2
− 1) × M .

In the mixture area (compressible zone), β2 = 1 and Pc = Id therefore the classical

compressible system is integrated.

3.3. Temporal discretization

Time integration is achieved using the dual time stepping approach and a low-

cost implicit method consisting in solving, at each time step, a system of equations

arising from the linearization of a fully implicit scheme. The derivative with respect

to the physical time is discretized by a second-order formula. The main advantage

of this method is that the storage of the Jacobian matrix is completely eliminated,

which leads to a low-storage algorithm (Goncalves and Patella, 2009).

With the preconditioned method, the dissipation matrices are modified and the pre-

conditioned matrix P−1
c remains in the formulation. By judiciously exploiting the

idempotence propriety of the matrix M , it is possible to preserve a low-cost system

where matrix operations and matrix-vector products can be easily computed.

For the turbulence transport equations, the diffusive flux Jacobian matrix is replaced

by its spectral radius. The source term needs special treatment (Merci et al., 2000).

Only the negative part of the source term Jacobian matrix is considered and replaced

by its spectral radius. The system obtained is solved with a line-alternated Jacobi

relaxation algorithm.

3.4. Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of the

preconditioned characteristic relations of Euler equations. The number of variables
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to impose at boundaries is given by the number of characteristics directed into the

domain of interest. The characteristic relations obtained for the preconditioned sys-

tem, in two-dimensional flows, are:

−c2(ρc
− ρs) + (P c

− P s) = 0 (19)

V c
t − V s

t = 0 (20)

ρ(αc
− αs) − K(ρc

− ρs) = 0 (21)

(λ+ − Vn)(P c
− P s) + ρβ2c2(V c

n − V s
n ) = 0 (22)

(λ− − Vn)(P c
− P s) + ρβ2c2(V c

n − V s
n ) = 0 (23)

The variables with superscript c denote the variables to be computed at the boundary.

Variables with superscript s denote the variables obtained by the current numerical

scheme. Vt and Vn are the tangential and the normal component of the mean velocity,

respectively.

At inflow, we impose the stagnation pressure Pi, the stagnation temperature Ti, the

direction of the velocity and the initial values of the void ratio. The pressure is

evaluated with the relation (23) and all variables can be evaluated at the boundary.

At outflow, the static pressure is imposed. The conservative variables are computed

with four characteristic relations (19)-(22).

4. 2D inviscid problems

For these cases, computations were performed solving the one-fluid compressible

Euler equations.

4.1. Underwater explosion with cavitation

The cylindrical underwater explosion near a flat free surface is considered. A sim-

ilar case has been studied in (Liu et al., 2001; Xie et al., 2007). The initial conditions
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are given as follows. A high-pressured gas cylinder with a radius of 0.5 m is located

at the origin (0,0) and the initial flow parameters for explosive gas, water and air are:

ρg=1270 kg/m3, Pg=8290 bar, ug=vg = 0.0. and γg=2; ρl=1150 kg/m3, Pl=1 bar,

ul=vl= 0 and γl = 2.35; Ppair=1 bar, ρair=1 kg/m3, uair=vair=0 and γair = 1.4. The

stiffened gas parameters are given in Table 1. The constant cbaro is set to 0.92 m/s

and Cdes = 0. The vapor pressure Pvap= 51000 Pa. The computational domain is a

rectangular region with x × y ∈ [−6, 6] × [6, 6] and the free surface is located at the

straight line y = 2 m (see Figure 1). An uniform grid composed by 800×800 nodes is

distributed in computational domain. The top and bottom boundary conditions are

walls. On other frontiers, variables are extrapolated. The time step is set to 10−6 s.

Figure 2 illustrates a series of pressure contours as time progresses where the shock

and free surface interaction and cavitation evolution are clearly observed. At t=1.0

ms (Fig. 2(a)), the initial shock generated by the explosion has impacted the free

surface and reflected with strong rarefaction waves (Prandtl-Meyer rarefaction waves)

while a transmitted shock is propagating into the air medium. This transmitted

shock cannot be discerned in figures because it is much weaker than the reflected

rarefaction waves due to the much lower acoustic impedance of the air medium. The

Prandtl-Meyer rarefaction waves are propagating in the opposite directions along

the water-air interface and cause the water pressure just below the free surface to

drop very rapidly. With the decrease of the water pressure, a small cavitation pocket

appears just below the free surface as shown in Fig. 2(b) at t=1.5 ms. Figs. 2(c)

and 2(d) show the growth of the cavitation pocket below the free surface as the

propagation of the rarefaction waves goes on. Overall, results are in good agreement

with those presented in (Xie et al., 2007).
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4.2. Compression of a vapour bubble

Our code is tested on the case of a bubble compression with a collapsing pro-

cess. Similar cases were simulated in (Faccanoni, 2008; Faccanoni et al., 2012). We

consider a 1 m side-length square domain discretized over a 400×400 cells mesh. A

vapour bubble is located on the center of the domain and is surrounded by liquid

phase (Figure 3). The radius of the bubble is initially 0.2 m. The initial temperature

T0 is 354 K and the fluid is initially at rest in the whole domain. Both phases are

supposed to be at saturation at t = 0 and the vapour pressure is Psat(T0)=51000

Pa. We suppose the left boundary to be a piston and the velocity up is set to 30

m/s. Other boundary conditions are reflective walls. The stiffened gas parameters

are those used in the previous cases. During the collapse, high pressures are reached

and the mass transfer model is not activated. The vapour phase is considered to be

non condensable. The time step used for the simulation is 10−7 s.

Figure 4 shows the evolution of the void ratio (iso-lines) for time varying from t =

0 ms to t = 8 ms. The moving piston generates a pressure wave that compresses

the gas. Due to the pressure difference between back and forth of pressure waves,

the bubble is asymmetrically contracted with concave shape. As time moves on, the

bubble becomes kidney shaped and spreads laterally in the process. This change in

shape is driven by vorticity generated at the edge of the bubble due to the passage

of the wave which induces a jet of water along the axis of flow symmetry. When this

jet impinges on the water at the downstream edge of the bubble, the bubble forms a

pair of distinct vortical structures (time t=7 ms and after).

Such physical phenomena were described in the case of shock-bubble interactions.

According to the sign of the difference of acoustic impedance of pure phases dR =
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ρvcv − ρlcl, two scenarii are depicted. In our case, dR < 0 and this situation is

commonly referred to as divergent geometry (Ranjan et al., 2011). After several

shockpassage times, the features observed in the flow field are dominated by the

vortical motion. The vorticity-generation mechanism in the absence of dissipative

effects is due to the baroclinic term and the noncollinearity of the local pressure and

density gradients.
Dω

Dt
=

1

ρ2
~grad P ∧ ~grad ρ (24)

The iso-surfaces of the baroclinic term modulus are plotted in Figure 5 (the unit is

1/s2) at two times. At time t=0.5 ms, the maximum misalignment is at the diame-

tral vertical plane, and the maximum vorticity is deposited at this location. At time

t=1.5 ms, the maximum values of vorticity have moved, creating the asymmetric

shape.

The mixture temperature profile in a horizontal cutting plane y = 0.5 m is plotted in

Figure 6 at different times from t=0.5 ms to t=4 ms (a logarithmic scale is used for

the temperature). A temperature increase up to 3500 K is observed at time t=2 ms.

After this time, the temperature decreases to reach 360 K at the end of the simulation.

In comparison with other simulations (Nourgaliev et al., 2006; Muller et al., 2010),

the maximal temperature value is not incoherent. The lack of viscosity and heat

conduction in the present simulations may significantly affect the extremal values of

thermodynamic quantities. Moreover, it was observed that the grid refinement could

lead to an excessive smearing of interfaces and numerical instabilities.

4.3. Compression of four vapour bubbles

The same test case is considered with four bubbles. Similar cases were simulated

in (Faccanoni, 2008; Faccanoni et al., 2010). Four vapour bubbles are surrounded
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by liquid phase located in the domain as illustrated in Figure 7. The radius of each

bubble is initially 0.1 m. The initial temperature T0 is 354 K and the fluid is initially

at rest in the whole domain. Both phases are supposed to be at saturation at t = 0

and the vapour pressure is Psat(T0)=51000 Pa. We suppose the left boundary to be a

piston and the velocity up is set to 30 m/s. Other boundary conditions are reflective

walls. The stiffened gas parameters are those used in the previous cases. The time

step used for the simulation is 10−7 s.

Figure 8 shows the iso-lines of the volume fraction for time varying from t = 0

ms to t =8 ms. From the top to the bottom the following sequence can be seen:

the moving piston generates a pressure wave that compresses the vapour. As the

pressure increases the vapour starts to condense and the bubble shrinks. Due to the

pressure difference between back and forth of the compression wave, the bubbles are

asymmetrically contracted as observed in the previous case. At this time, a sort of

microjet is formed and eventually it impinges on the rear surface of the bubble with

reflection. Bubble is gradually shrunken, pressure in the bubble reaches maximum

value around 220 bar and a rebound wave occurs. This wave propagates to liquid

region and the bubble is expanded with time. The bubble collapsing behaviour with

rebound is well simulated with the solver.

5. 2D turbulent Venturi cases

5.1. Experimental data

Both the Venturi geometries were tested in the cavitation tunnel of the CREMHyG

(Centre d’Essais de Machines Hydrauliques de Grenoble). The first one is character-

ized by a divergence angle of 4◦ and the second by a divergence angle of 8◦, illustrated
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in Fig. 9. The pressure Pinlet was lowered until the desired cavitation number allow-

ing two specific behaviours of the sheet cavity. The cavitation number in the inlet

section is defined as: σinlet =
Pinlet − Pvap

0.5ρU2
inlet

, where Pvap is the vapour pressure at 20◦C

and Pinlet, Uinlet are the pressure and velocity respectively at the reference section

upstream of the Venturi. The geometrical data and flow configurations are given in

Table 2.

With these previous parameters and according to experimental observations (Barre

et al., 2009; Patella et al., 2006), cavitation sheets developed from the Venturi throat.

The obtained cavity length is ranging from 70 mm to 85 mm for case 1 and having

a relatively stable aspect (see Figure 10). The attached cavity length corresponding

to the end of the re-entrant jet is around 30 mm. For this case, no periodic cycles

with large shedding were observed.

For case 2, a typical self-oscillation behaviour was observed with quasi-periodic

vapour clouds shedding and the maximum cavity length (before the break-off of

the cavity) was 45 ± 5 mm. Figure 10 shows an instantaneous photograph of the

cavity with a large structure shedding. The cloud shedding frequency was about 45

Hz. The divergent part was equipped with eight probe holes to take various measure-

ments such as the instantaneous pressure, local void ratio and velocity in the sheet

cavity. Specific probe locations are presented in Figure 9 for the two tested cases.

The relative uncertainty on the void ratio measurement was estimated at roughly

15% (Barre et al., 2009).

5.2. Numerical data, parameters and meshes

Both grids are a H-type topology. A special contraction of the mesh is applied

in the main flow direction just after the throat to better simulate the two-phase flow
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area (Fig. 11).

The parameter cbaro was set to 0.92 m/s as previously. The parameters of the stiff-

ened gas EOS are given in Table 3.

For the non cavitating regime, computations are started from an uniform flow-field

using a local time step. For the unsteady cavitating regime, computations are per-

formed with the dual time stepping method and are started from the non cavitating

numerical solution. The numerical parameters are given in Table 4.

All numerical values are obtained by a time-averaged treatment on a physical time

around 2.5 s. For case 2, a direct Fourier transformation (DFT) of the vapour volume

signal was performed to evaluate the frequency.

5.3. Case 1: aperiodic oscillating partial cavity

Five calculations were performed by varying the parameter Cdes from 0 to 100

(0, 0.1, 1, 10, 100). The goal was to obtain a time-averaged cavitation sheet whose

length varied between 70 - 85 mm with a re-entrant jet. The time of simulation is

around 4 s. For all simulations, the inlet cavitation number varied between 0.59 and

0.6.

A qualitative description of the dynamic of cavity sheets is proposed with the plotting

of the contours of the density gradient modulus (Schlieren-like visualizations) and

the iso-lines of the Q-criterion. Positive values of the Q-criterion, defined as the

second invariant of the velocity gradient tensor ∂ui

∂xj
(Hunt et al., 1988),

Q =
1

2

[(
∂ui

∂xi

)2

−
∂ui

∂xj

∂uj

∂xi

]

(25)
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are used to identify vortices and local rotational areas. A dimensionless quantity is

built with the inlet velocity and the reference length. Iso-lines levels vary between

0.01 and 1.

Figure 12 illustrates both contours of density gradients (on the left) and the dimen-

sionless Q-criterion (on the right), at two instants, obtained with the value Cdes=1.

The cavity interface is well exhibited by the density gradient contours. Around the

abscissa x = 0.35 m, we can observe the attached cavity closure and downstream the

fluctuating recirculation with two-phase structures shedding. The generated shear

layer with vortical clouds of cavitation is clearly shown with the Q-criterion. For this

case, the wall jet is probably not intense enough to break the sheet and to induce

cyclic clouds shedding. It is a transitional behaviour between a stable cavity and a

self-oscillating one.

5.3.1. Velocity and void ratio profiles

Local analyses concern void ratio and velocity profile comparisons inside the cav-

ity. The experimental void ratio and velocity profiles are obtained for five stations

by a double optical probe (Fig. 9).

Figure 13 shows the longitudinal velocity profiles (on the left) for the experiments

and the five computations. The overall agreement seems good between the experi-

mental data and the simulations. For stations 1 and 2, no re-entrant jet phenomena

occurs in the experiment. With the value of Cdes = 100, the flow is near to separate

at station 2. Further downstream, for stations 3, 4 and 5, experimental observation

indicates a recirculating behaviour with a re-entrant jet extending roughly through

half the sheet thickness. This recirculating behaviour with a re-entrant jet is well
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simulated by all computations. At station 3, the intensity and the thickness of the

recirculating area are in better agreement with the experimental data when the de-

struction term is activated. The influence of Cdes is weak, a small discrepancy being

noticeable on the thickness of the recirculation. At station 4, all simulations pro-

vided a similar result, in correct agreement with the measurement. At station 5, the

intensity of the recirculation area is under-estimated by all simulations.

Figure 13 illustrates experimental and numerical results concerning the void ratio

profiles (on the right). For the two first stations, close to the throat, the vaporiza-

tion phenomenon is clearly represented. This is a relatively strong effect, and the

void ratio value can reach 98%. For all computations, the cavity thickness is very well

estimated. At station 3, the re-entrant jet becomes noticeable, as observed before in

the velocity field analyses. The decrease of the void ratio values inside the cavity is

different according to the model. Without the destruction term, the maximum value

is over-predicted (80% instead of 60% for the experimental data) and the decrease

up to the wall is monotonic. The numerical wall value is also over-predicted (60% in-

stead of 30% in the experimental data). When the destruction term is activated, the

maximum value is in better agreement with the experimental data. Yet, we observed

a non monotonic behaviour with a decrease on the half top of the cavity following by

an increase up to the wall. At station 4, the shape of the void ratio profile is similar

for all simulations with an over-prediction of the maximal value. At the last station,

excepted without the destruction term, the void ratio values are under-estimated.

To conclude, the results given by the new model are in good agreement with the

experimental data. The influence of the parameter Cdes seems weak for the time-

averaged profiles.
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5.3.2. Wall pressure and RMS fluctuations

The time-averaged wall pressure distribution is plotted in Fig. 14 versus the dis-

tance x−xinlet. The first five data are located inside the cavity (where the void ratio

and velocity profiles are measured). For all computations, the pressure remains at

an almost constant value Pvap in the cavity. Downstream, all computations provided

a similar result. Only small discrepancies are noticeable for the cavity length.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Fig. 15 ver-

sus the distance x − xinlet. The pressure fluctuation is divided by the time-averaged

pressure Pav. For all computations, the statistical treatment was performed on a

simulation time of 1 s. Experimental data indicate an augmentation of pressure fluc-

tuation at the end of the cavity sheet, with a peak located at the fifth station.

All simulations predicted a large peak of fluctuations at the end of the cavity, be-

tween the fourth and the fifth station. The peak position and the intensity do not

vary between simulations including the destruction term. Downstream, from station

6 to 9, the level of fluctuations is well computed with all the simulations including

the destruction term. Without this term, the peak of fluctuations is more extended

and, downstream, the plateau of fluctuations is largely over-estimated.

The importance of the destruction term through the parameter Cdes is clearly illus-

trated. From 0.1 to 100, the value of Cdes has a very weak influence on the RMS

pressure fluctuations.

5.3.3. Comparison with a barotropic model

In relation to previous numerical studies developed on the same Venturi geometry

using a barotropic 3-equation model (Goncalves, 2011; Goncalves and Decaix, 2012),

the new results obtained with Cdes = 1 are quite similar. In Fig. 16 are plotted

23



the time-averaged void ratio and velocity profiles at station 3 and 4, and the wall

pressure evolution. The velocity profiles are very similar. At station 4, the void

ratio profile is better predicted by the 4-equation model. The time-averaged wall

pressure evolution is quite identical. About the RMS wall pressure fluctuations, a

small discrepancy is noticeable about the peak location.

In conclusion, for this partial cavity, the 4-equation model does not allow to clearly

improve the previous simulations obtained with a barotropic model.

5.4. Case 2: periodic oscillating partial cavity

Different calculations were performed by varying the value of the parameter Cdes,

summarized in Table 5. The goal was to obtain a periodic cavitation sheet with a

frequency close to 45 Hz. The simulation time is around 3 s.

About the inlet cavitation number, for all simulations it varied between 2.18 and

2.25 (the experimental value was 2.15 ± 0.06). All calculations captured a periodic

self-oscillating cavity but discrepancies are noticeable according to the value of the

parameter Cdes. Between 1 and 20, the influence of Cdes is strong on the frequency.

Up to Cdes = 6, simulations provided a quasi cyclic phenomenon with a frequency

around 45 Hz. For higher values, the frequency decreases as the value increases.

With Cdes = 20, the frequency is around 7 Hz. The dynamic of the sheet cavitation

driven by the re-entrant jet is clearly influenced by the destruction term.

Figure 17 illustrates both contours of density gradients modulus (on the left) and the

dimensionless Q-criterion (on the right), during one period, obtained with Cdes = 1.

Q-criterion iso-lines levels vary between 0.01 and 0.1. We can observe the self-

oscillating cavity cycle: the cavity attached to the wall grows up to the generation
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of a re-entrant jet. This one flows upstream along the wall and leads to the break-off

of the downstream part of the cavity. The resulting cloud of vapour is then carried

away by the main stream, until it enters a higher-pressure zone and collapses. The

remaining part of the attached cavitation sheet re-expands and a new cycle starts.

5.4.1. Velocity and void ratio profiles, wall pressure evolution

Figure 18 shows the evolution of the longitudinal velocity (on the left) and void

ratio time-averaged profiles (on the right) for the experiments and computations with

Cdes=0, 1, 4 and 6. For the velocity profiles, experimental data are given for the first

two stations. At station 1, all calculations provided a similar result in good agree-

ment with the experimental data. At station 2, the intensity of the recirculation is

under-predicted with the model without the destruction term. When this term is

activated, the recirculating area is largely reduced. With Cdes=6, the time-averaged

velocity is no more negative.

About the void ratio profiles, experimental values are weak, even at station 1. For

this station, all simulations largely over-predicted the void ratio, with a factor of 2.

At stations 2 and 3, the void ratio is still over-predicted. The influence of the pa-

rameter Cdes can be well observed: higher is the value, smaller is the void ratio value.

The time-averaged dimensionless wall pressure distribution is plotted in Figure 19

versus the distance x− xinlet. Results obtained with all models are in correct agree-

ment with the experimental data. Discrepancies are noticeable near the throat at

station 1. Higher is the Cdes value, more the dimensionless pressure value is over-

estimated.
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5.4.2. Comparison with a barotropic model

In comparison with previous simulations on the same Venturi geometry using a

barotropic 3-equation model (Goncalves, 2011; Goncalves and Decaix, 2012), the new

results provided a shedding phenomenon in better agreement with the experimental

data.

With the barotropic model, we simulated a periodic phenomenon with a frequency

close to 46 Hz. The unsteady behaviour of the cavity was clearly different, as illus-

trated by the density gradient and the Q-criterion in Figure 20. We can observe a

small attached cavity, and downstream the fluctuating recirculation with two-phase

structures shedding. These shedding are not extended and are rapidly eliminated.

In comparison with the experimental visualizations and the 4-equation simulations,

the attached cavity and the clouds shedding are largely under-estimated.

In Figure 21 are plotted the time-averaged velocity and void ratio profiles obtained

with the 3-equation model and the 4-equation model with Cdes = 1. Large discrep-

ancies are highlighted on the void ratio profiles. Near the throat, the void ratio is

largely over-estimated using the 3-equation model, whereas at the last station, the

averaged value is null. As commented previously, the cloud shedding is not enough

developed. On the contrary, it is more intense with the 4-equation model.

Discrepancies on the recirculating area and the re-entrant jet are noticeable at sta-

tion 2. With the 4-equation model, the recirculating area is largely under-predicted.

Finally, the time-averaged dimensionless wall pressure is presented in the same figure.

Both models provided a result in correct agreement with the experimental data.
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6. Conclusion

In this paper, a 4-equation model was developed to study cavitation pockets

which can occur in a variety of practical cases. This model is composed by three

conservations law for mixture quantities (mass, momentum, total energy) and an

additional transport equation for the vapour volume fraction, where mass transfer

rate due to cavitation is modelled. The new formulation is based on the assumption

of proportionality of the mass transfer with the divergence of velocity and includes a

destruction term involving a tunable parameter. The model has been implemented in

a compressible RANS solver including a low Mach number preconditioning algorithm

and has been applied for the simulation of various unsteady cavitation problems (for

both inviscid and turbulent cases).

First validations on inviscid cases shown the ability of the model to simulate the

cavitation development in an underwater explosion and the asymmetrical bubble

collapse by a pressure wave. Secondly, RANS simulations were performed to pre-

dict the unsteady behaviour of partial cavities developing along Venturi geometries

(quasi-stable and unstable cases). Numerical results obtained from the new model

have been validated against experimental data and the influence of the destruction

term was investigated. Moreover, the new model was compared with a barotropic 3-

equation model previously developed in our team. These test-cases lead to different

concluding remark:

- For the quasi-stable cavity, a good agreement between numerical results and ex-

perimental data has been obtained with the model. The destruction term weakly

influenced the time-averaged profiles. On the contrary, its activation was determi-

nant for the RMS pressure fluctuations prediction. In comparison with the 3-equation

simulations, both models provided similar results. The new model did not clearly
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improve the previous simulations.

- For the periodic self-oscillating cavity, the overall results suggest that the model rea-

sonably simulated the sheet dynamic. The influence of the destruction term thought

the tunable parameter Cdes was strong with regard to the phenomenon frequency.

Only values smaller than 6 allowed to predict the good frequency. In comparison

with the 3-equation model, the two-phase structures shedding was more intense and

in better agreement with the experimental data.

Additional works are in progress to pursue comparative analyses between turbulence

and cavitation models and to optimize the calibration of the model parameters.

Appendix

Appendix A: Expression of matrices ∂w
∂W

and ∂W
∂w

Starting from the differential of ρe expressed with variables (P, ρ, α)

d(ρe) = Adρ + BdP + Cdα

A =

(
∂ρe

∂ρ

)

P,α

= α(qv − ql)

(
∂ρv

∂ρ

)

α

B =

(
∂ρe

∂P

)

ρ,α

=
α

γv − 1
+

1 − α

γl − 1
=

1

γ − 1

C =

(
∂ρe

∂α

)

ρ,P

= ρv(ev − qv) − ρl(el − ql) + ρI(qv − ql)

From the conservation law for the vapour mass, we have

d ρv

d t
=

1

α

(

ṁ − ρv
dα

d t

)

− ρv
∂u

∂x

=
ρI

α

(

1 −
ρv

ρI

)
dα

d t
+

ρI

ρ

(
K

α
+

ρv

ρI

)
d ρ

d t

We introduce the speed of sound c̃ defined as

1

c̃2
=

1 − α

c2
l

+
α

c2
v
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The expression of the quantity A is

(
∂ρv

∂ρ

)

α

=
ρI

ρ

(
K

α
+

ρv

ρI

)

=
c̃2

c2
v

A = α(qv − ql)
c̃2

c2
v

The differentials of u, e and P expressed with conservatives variables and the

void ratio are

du =
1

ρ
d(ρu) −

u

ρ
dρ

ρde =

(
u2

2
− e

)

dρ − ρud(ρu) + d(ρE)

BdP = d(ρe) − Adρ − Cdα = d(ρE) − ud(ρu) +

(
u2

2
− A

)

dρ − Cdα

Moreover, using the equation for the pressure, we have

1

c̃2
dP = dρ + (ρl − ρv)dα

We deduce the differential of the void ratio

[
Bc̃2(ρl − ρv) + C

]
dα = d(ρE) − ud(ρu) +

(
u2

2
− A − Bc̃2

)

dρ

Finally, the expression of the matrix ∂W
∂w

is

∂W

∂w
=














(γ − 1)

(
u2

2
− A

)

−(γ − 1)u (γ − 1) −(γ − 1)C

−u/ρ 1/ρ 0 0

u2 − E

ρ
−

u

ρ

1

ρ
0

u2

2
− A − Bc̃2

Bc̃2(ρl − ρv) + C

u

Bc̃2(ρl − ρv) + C

1

Bc̃2(ρl − ρv) + C
1
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We introduce the quantities F and G

F =
c̃2

γ − 1
(ρl − ρv) + C

G = (e − A)(F + C) − C
c̃2

γ − 1

The expression of the inverse matrix ∂w
∂W

is

∂W

∂w
=















F

G(γ − 1)
0 −

ρ(F + C)

G

FC

G
F

G(γ − 1)
u ρ −

ρ(F + C)

G
u

FC

G
u

F

G(γ − 1)
E ρu −

ρ

G

[

(F + C)(
u2

2
+ A) + C

c̃2

γ − 1

]
FC

G
E

−
e − A −

c̃2

γ−1

G(γ − 1)
0 −

ρc̃2

G(γ − 1)

F (e − A

G















Appendix B: Preconditioning matrix

The preconditioned matrix can be written as P−1
c = Id +

(1 − β2)

β2
× M . We

introduce the quantity J =
1 −

γ−1
c̃2

(e − A)

(ρl − ρv) + C
(

γ−1
c̃2

) . The expression of the matrix M is

M =
F

G
×













u2

2
− A −u 1 −C

(
u2

2
− A)u −u2 u −Cu

(
u2

2
− A)E − uE E −CE

(
u2

2
− A)J − uJ J −CJ
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Table 1: Parameters of the stiffened gas EOS for water at T = 355K.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m3)

liquid 2.35 109 -0.1167 107 4267 1149.9

vapor 1.43 0 0.2030 107 1487 0.31
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Table 2: Geometrical data and flow configuration, Venturi geometries

experimental parameters case 1 case 2

angle of the divergent 4◦ 8◦

reference length Lref 252 mm 224 mm

inlet velocity Uinlet 10.8 m/s 7.04 m/s

inlet pressure Pinlet 0.35 bar 0.52 bar

cavitation parameter in the inlet section σinlet 0.547 ± 0.05 2.15 ± 0.06

Reynolds number ReLref
2.7 106 1.57 106

sheet cavity smoothly fluctuating self-oscillating

clouds shedding frequency none 45 Hz

time-averaged cavity length 80 mm -
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Table 3: Parameters of the stiffened gas EOS for water at T = 293K.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m3)

liquid 1.01 1.211 107 -0.1142 107 4183 998.16

vapor 1.32 0 0.1985 107 1883 0.0173
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Table 4: Numerical data and meshes

numerical parameters case 1 case 2

meshes 251 × 62 174 × 56

y+ values in first cells 12 to 27 9 to 31

preconditioning parameter 3 4

CFL number 0.4 0.3

implicit Jacobi iterations 15 15

2nd and 4th order dissipation parameter 1 ; 0.04 1 ; 0.055

dual time stepping sub-iterations 100 100

dimensionless time step, ∆t∗ =
∆tUinlet

Lref

1.93 10−2 1.91 10−3
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Table 5: Unsteady computations performed on the 8◦ Venturi

Cdes time-averaged σinlet frequency (Hz)

0 2.18 44 Hz

1 2.19 42 Hz

4 2.23 40 Hz

6 2.22 36 Hz

8 2.25 25 Hz

10 2.24 16 Hz

20 2.15 7.5 Hz
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Figure 3: Compression of a vapour bubble, t=0 (extracted from Faccanoni et al. (2012)).
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Figure 4: Time evolution of the volume fraction from t=1 ms to t=8 ms, compression of a vapour

bubble.
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Figure 5: Modulus of the baroclinic torque, times 0.5 ms and 1.5 ms, compression of a vapour

bubble.
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Figure 7: Compression of four vapour bubbles, t=0 (extracted from Faccanoni et al. (2012)).
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Figure 9: Venturi design and probe locations, 4◦ divergence angle (left) and 8◦ angle (right).
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Figure 10: Photograph of cavities, 4◦ Venturi (left) and 8◦ Venturi (right).
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Figure 12: Dimensionless Q-criterion and density gradient modulus at two instants, 4◦ Venturi.
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Figure 13: Time-averaged velocity (right) and void ratio (left) profiles from station 1 to 5, 4◦

Venturi.
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Figure 16: Models comparison: 3-equation versus 4-equation with Cdes = 1, void ratio, velocity

and pressure, 4◦ Venturi.
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Figure 17: Density gradient modulus (left) and dimensionless Q-criterion (right) during one period,

Cdes = 1, 8◦ Venturi.
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Figure 18: Time-averaged velocity (left) and void ratio (right) profiles from station 1 to 3, 8◦

Venturi.
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Figure 19: Time-averaged wall pressure evolution, 8◦ Venturi.
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Figure 20: Density gradient modulus (left) and dimensionless Q-criterion (right) during one period,

barotropic 3-equation model, 8◦ Venturi.
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Figure 21: Models comparison: 3-equation versus 4-equation with Cdes = 1, void ratio, velocity

and pressure, 8◦ Venturi.
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