G. Huminic and A. Huminic, Application of nanofluids in heat exchangers: A review, Renewable and Sustainable Energy Reviews, vol.16, issue.8, pp.5625-5638, 2012.
DOI : 10.1016/j.rser.2012.05.023

W. Daungthongsuk and S. , A critical review of convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews, vol.11, issue.5, pp.797-817, 2007.
DOI : 10.1016/j.rser.2005.06.005

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. , A review of the applications of nanofluids in solar energy, International Journal of Heat and Mass Transfer, vol.57, issue.2, pp.582-594, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2012.10.037

J. M. Wu and J. Zhao, A review of nanofluid heat transfer and critical heat flux enhancement???Research gap to engineering application, Progress in Nuclear Energy, pp.66-79, 2013.
DOI : 10.1016/j.pnucene.2013.03.009

S. Nadeem, A. Rehman, and M. E. Ali, The boundary layer flow and heat transfer of a nanofluid over a vertical, slender cylinder, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, vol.226, issue.4, pp.226-230, 2012.
DOI : 10.1177/1740349912453806

S. Nadeem, R. Mehmood, and N. S. Akbar, Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer, International Journal of Heat and Mass Transfer, vol.57, issue.2, pp.55-3964, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2012.10.019

S. Choi, Enhancing thermal conductivity of fluids with nanoparticules, In Developments Applications of Non-Newtonians Flows, Americain Society of Mechanical Engineers, vol.66, pp.99-105, 1995.

X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, vol.46, issue.1, pp.1-19, 2007.
DOI : 10.1016/j.ijthermalsci.2006.06.010

D. Wen, S. Lin, S. Vafaei, and K. Zhang, Review of nanofluids for heat transfer applications, Particuology, vol.7, issue.2, pp.141-150, 2009.
DOI : 10.1016/j.partic.2009.01.007

T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret et al., Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger, Experimental Thermal and Fluid Science, vol.35, issue.8, pp.1535-1543, 2011.
DOI : 10.1016/j.expthermflusci.2011.07.004

M. S. Liu, M. C. Lin, I. T. Huang, and C. C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, vol.32, issue.9, pp.1202-1210, 2005.
DOI : 10.1016/j.icheatmasstransfer.2005.05.005

H. Xie, H. Lee, W. Youn, and M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, vol.94, issue.8, pp.4967-4971, 2003.
DOI : 10.1063/1.1613374

H. Wang, Dispersing carbon nanotubes using surfactants, Current Opinion in Colloid & Interface Science, vol.14, issue.5, pp.364-371, 2009.
DOI : 10.1016/j.cocis.2009.06.004

L. Vaisman, H. D. Wagner, and G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, vol.128, issue.130, pp.128-130, 2006.
DOI : 10.1016/j.cis.2006.11.007

S. Ferrouillat, A. Bontemps, J. P. Ribeiro, J. A. Gruss, and O. Soriano, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, vol.32, issue.2, pp.424-439, 2011.
DOI : 10.1016/j.ijheatfluidflow.2011.01.003

J. P. Mayer, T. J. Mc-krell, and K. Grote, The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes, International Journal of Heat and Mass Transfer, vol.58, issue.1-2, pp.597-609, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2012.11.074

J. Philip and P. D. Shima, Thermal properties of nanofluids, Advances in Colloid and Interface Science, vol.183, issue.184, pp.183-184, 2012.
DOI : 10.1016/j.cis.2012.08.001

Y. Ding, H. Alias, D. Wen, and R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, vol.49, issue.1-2, pp.240-250, 2006.
DOI : 10.1016/j.ijheatmasstransfer.2005.07.009

Z. Meng, D. Wu, L. Wang, H. Zhu, and Q. Li, Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior, Particuology, vol.10, issue.5, pp.614-618, 2012.
DOI : 10.1016/j.partic.2012.04.001

W. Yu and S. U. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, Journal of Nanoparticle Research, vol.5, issue.1/2, pp.167-171, 2003.
DOI : 10.1023/A:1024438603801

L. Chen, H. Xie, Y. Li, and W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochimica Acta, vol.477, issue.1-2, pp.477-481, 2008.
DOI : 10.1016/j.tca.2008.08.001

D. S. Wen and Y. L. Ding, Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids), Journal of Thermophysics and Heat Transfer, vol.18, issue.4, pp.481-485, 2004.
DOI : 10.2514/1.9934

M. J. Assael, I. N. Mataxa, J. Arvanitidis, D. Christophilos, and C. Lioutas, Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants, International Journal of Thermophysics, vol.83, issue.3, pp.26-647, 2005.
DOI : 10.1007/s10765-005-5569-3

A. Nasiri, M. Shariaty-niasar, A. Rashidi, A. Amrollahi, and R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid, Experimental Thermal and Fluid Science, vol.35, issue.4, pp.717-723, 2011.
DOI : 10.1016/j.expthermflusci.2011.01.006

T. X. Phuoc, M. Massoudi, and R. H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, International Journal of Thermal Sciences, vol.50, issue.1, pp.12-18, 2011.
DOI : 10.1016/j.ijthermalsci.2010.09.008

P. Garg, L. A. Jorge, C. Marsh, T. A. Carlson, D. A. Kessler et al., An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, vol.52, issue.21-22, pp.5090-5101, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2009.04.029

Y. Yang, E. A. Grulke, Z. G. Zhanh, and G. Wu, Thermal and rheological properties of carbon nanotube-in-oil dispersions, Journal of Applied Physics, vol.99, issue.11, pp.99-114307, 2006.
DOI : 10.1063/1.2193161

A. Indhuja, K. S. Suganthi, S. Manikandan, and K. S. , Rajan Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: Influence of MWCNT concentration and temperature, J. Taiwan Institute Chem. Eng, pp.44-474, 2013.

Q. Chen, C. Saltiel, S. Manickavasagam, L. S. Schadler, R. W. Siegel et al., Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension, Journal of Colloid and Interface Science, vol.280, issue.1, pp.91-97, 2004.
DOI : 10.1016/j.jcis.2004.07.028

J. Ponmozhi, F. A. Gonçalves, A. G. Feirrera, I. M. Fonseca, S. Kanagaraj et al., Thermodynamic and Transport Properties of CNT-Water Based Nanofluids, Journal of Nano Research, vol.11, pp.101-106, 2010.
DOI : 10.4028/www.scientific.net/JNanoR.11.101

B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret et al., Experimental investigations of the viscosity of nanofluids at low temperatures, Applied Energy, vol.97, pp.876-880, 2012.
DOI : 10.1016/j.apenergy.2011.12.101

URL : https://hal.archives-ouvertes.fr/hal-00707410

P. Estellé, S. Halelfadl, N. Doner, and T. Maré, Shear History Effect on the Viscosity of Carbon Nanotubes Water-based Nanofluid, Current Nanoscience, vol.9, issue.2, pp.225-230, 2013.
DOI : 10.2174/1573413711309020010

S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, International Journal of Thermal Sciences, vol.71, pp.71-111, 2013.
DOI : 10.1016/j.ijthermalsci.2013.04.013

URL : https://hal.archives-ouvertes.fr/hal-00821792

L. Chen, H. Xie, W. Yu, and Y. Li, Rheological Behaviors of Nanofluids Containing Multi-Walled Carbon Nanotube, Journal of Dispersion Science and Technology, vol.32, issue.4, pp.550-554, 2011.
DOI : 10.1016/j.ijthermalsci.2007.05.004

B. C. Pak and Y. I. Cho, HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES, Experimental Heat Transfer, vol.4, issue.2, pp.151-170, 1998.
DOI : 10.1016/0017-9310(91)90028-D

H. O. Hanley, J. Buangiorno, T. Mckrell, and L. W. Hu, Measurement and model validation of nanofluid specific heat capacity with Differential Scanning Calorimetry, Adv. Mech. Eng, 2012.

V. Kumaresan and R. Velraj, Experimental investigation of the thermo-physical properties of water???ethylene glycol mixture based CNT nanofluids, Thermochimica Acta, vol.545, pp.180-186, 2012.
DOI : 10.1016/j.tca.2012.07.017

M. F. Pakdamana, M. A. Akhavan-behabadi, and P. Razi, An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes, Experimental Thermal and Fluid Science, vol.40, pp.103-111, 2012.
DOI : 10.1016/j.expthermflusci.2012.02.005

S. Halelfadl, A. M. Adham, N. Mohd-ghazali, T. Maré, P. Estellé et al., Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Applied Thermal Engineering, vol.62, issue.2, pp.492-499, 2014.
DOI : 10.1016/j.applthermaleng.2013.08.005

URL : https://hal.archives-ouvertes.fr/hal-00858245

J. W. Goodwin and R. W. Hughes, Rheology for Chemists: An Introduction, pp.2008-264

R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, vol.89, issue.13, pp.89-133108, 2006.
DOI : 10.1063/1.2356113

E. V. Timofeeva, J. L. Routbort, and D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics, vol.106, issue.1, p.14304, 2009.
DOI : 10.1063/1.3155999