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Abstract

The experimental estimation of frequency response functions characterizing SISO
linear systems is a well established topic. Several estimators are defined in the liter-
ature, each estimator being optimal depending upon the assumptions with respect
to the balance of noise between the input and output of the system. H1 and H2 have
to be used in case of presence of noise on output and input, respectively. The HV

or Hs estimator is chosen if input and output are assumed to have equivalent SNR.
These estimators are also established for MIMO linear systems, with additional dif-
ficulties due to the necessity of inversing cross spectral matrices. A transmissibility
function is generally defined as a linear relationship between two outputs of a lin-
ear system. For SIMO systems, transmissibility functions are uniquely defined. The
Hs estimator is thus advised if both outputs are of equivalent SNR. In the case of
MIMO systems, transmissibility functions are no more defined by the system only,
it also depends on the input quantities. It is however possible to define a transmissi-
bility matrix between two sets of outputs that is, under some assumptions, uniquely
defined. This approach is especially the base of Operational Transfer Path analysis,
an engineering method benefiting of a strong research effort in the last few years.
This paper deals with the use of the application of MIMO system estimators to the
experimental assessment of transmissibility matrices. Transmissibility matrices are
generally estimated using a H1 like approach in the literature. The possibility of
using H2 and Hs is presented in this work, from the theoretical point of view and
with numerical and practical illustrations.

Key words: Transmissibility matrix , MIMO systems , linear system estimation,
Hs estimator
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1 Introduction

The transmissibility functions are generally defined as linear relationships be-
tween two reponses of a linear system. They have particular properties, in
comparison with standard transfer functions representing classical excitation-
response relationships. The standard transfer function, for instance, is entirely
defined by the studied system, while transmissibility between two responses
depends also on the excitation configuration. Another important difference is
that the standard transfer functions have peaks at the resonances of the sys-
tem, while transmissibilities have peaks at frequencies corresponding to zeros
of one of the considered response. Transmissibilities are thus more difficult to
handle, but they are also easier to measure, because it is generally easier to
mount a response sensor than an excitation sensor (which has to be inserted
between the excitation device and the structure). That’s why several trans-
missibility based methods have been developed in the literature, for instance
in structural health monitoring [1], output only modal analysis [2,3], or Oper-
ational Transfer Path Analysis [4,5], in which the concept of transmissibility
functions has to be extended to transmissibility matrices [6] between two sets
of responses. The present work focusses on the experimental estimation of
such transmissibility matrices.

Several estimators are known for the experimental assessment of transfer func-
tions between one input and one output : H1 has to be used when the noise is
on the output and H2 when the noise is on the input [7]. Another estimator,
Hs, has been proposed by Wicks and Vold [8], based on a total least squares
approach, that consider noise on both the input and the output. This estima-
tor has been extended to MIMO systems in [9] [10]. The Hs approach seems
particularly interesting for the estimation of transmissibility matrices, because
the inputs and outputs of a transmissibility system are both responses, the
SNR (Signal to Noise Ratio) has thus no reason to be higher on input or out-
put responses.

The general principles of the transmissibility matrix approach is briefly treated
in the first section of the paper. Then the concept of H1, H2, and Hs estimates
for transmissibility matrices is addressed from a theoretical point of view. The
two last parts are dedicated to numerical and experimental illustrations, re-
spectively.

N.B.: Throughout this paper, bold capitals are used for matrices (including

∗ Corresponding author. Fax: 33.4.72.43.87.12. E-mail address:
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2



vectors) and non-bold capitals for scalars. Note that all matrices are dependent
upon frequency. For sake of brevity this dependency is not mentioned explicitly
in the equations.

2 Transmissibility matrices : definition

Let us consider a linear dynamic system relating a set of n excitation dofs
F (size n × 1) to two different sets of response dofs, named indicator dofs Y

(n × 1) and output dofs X (m × 1) :







X

Y






=







H

Φ






F (1)

where Φ and H are transfer matrices relating excitation dofs to response
dofs. A linear relationship can be then defined between X and Y, under the
condition of invertibility of Φ :

X = HΦ−1Y = TY (2)

where T = HΦ−1 is the transmissibility matrix and where −1 denotes a matrix
inverse. The existence of T thus depends on these two major conditions :

• the definition of a set of excitation dofs F

• the invertibility of matrix Φ relating Y to F

3 Transmissibility matrices : experimental estimation

3.1 Methodology

The relation (2) between inputs and outputs can be written using cross spec-
tral matrices

Gxy =TGyy (3)

Gxx =TGyx (4)
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where element (p, q) of matrix Gxy is the cross spectrum between the pth el-
ement of X and the qth element of Y. However, the cross-spectral matrices
obtained for a single operational condition are in general non invertible. Ma-
trices Gyy and Gyx are indeed rarely of full rank and even less often well
conditioned. A potential solution to this problem is to assess transmissibility
matrices from non-stationary operating conditions, like run-up or down.

One approach is to gather several steady-state operating condition in one
system:

XK = [X1X2...Xk] YK = [Y1Y2...Yk]

where Xi and Yi are response vectors obtained during one operating con-
dition, using a phase reference sensor or more sophisticated techniques like
Conditioned Spectral Analysis [7] or Virtual Source Analysis [11]. If more
than one uncorrelated processes are identified (this is the case if the coherence
function between channels is not close to unity), several response vectors can
be extracted from each acquisition. Finally, cross spectral matrices can still
be calculated from such results :

Gxy = XKYK
′ Gyy = YKYK

′ Gxx = XKXK
′

where ′ denotes the complex conjugate transpose. The experimental assess-
ment of these matrices is not always easy, because the computation of T re-
quires inversions of these matrices, that have to be consequently of full rank.
This condition is rarely fulfilled using only one operating condition of the
studied system ; as was said earlier, it is often necessary to gather information
from several operating conditions, using several steady state operating points
or run-up-down acquisitions.

3.2 H1 and H2 estimators

For a scalar transfer function, the H1 and H2 estimators are given by

H1[T ] = GxyG
−1

yy (5)

H2[T ] = GxxG
−1

yx (6)

The H1 and H2 estimates of the transmissibility matrix are, by analogy to
equations (5) and (6) and by inversion of systems (3) and (4), defined by
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H1[T] =Gxy Gyy
−1 (7)

H2[T] =Gxx Gyx
+ = Gxx Gyx (Gyx Gxy)−1 (8)

where + denotes the pseudo-inverse. It is worth nothing that the estimator
H2[T] requires m ≥ n, which is a necessary condition for (Gyx Gxy) to be of
full rank.

3.3 Hs estimator

For a scalar transfer function, the Hs estimator is based on the eigenvalue
decomposition of







s2Gxx sGxy

sGyx Gyy





 =







Ux Vx

Uy Vy













λ1 0

0 λ2













Ux Vx

Uy Vy







′

where s is a positive scaling factor used to balance the magnitude of x and y.
Assuming that the smallest eigenvalue is representing noise, Hs is defined as
the ratio between contributions of the largest eigenvalue (λ1) at x and y :

Hs =
Ux

sUy

(9)

which is explicitely given by the both following formulas

Hs =
s2Gxx − Gyy +

√

(s2Gxx − Gyy)2 + 4s2|Gyx|2
2s2Gyx

(10)

=
2Gxy

Gyy − s2Gxx +
√

(s2Gxx − Gyy)2 + 4s2|Gyx|2
(11)

It can be noted that eq. (10) is equivalent to H2 when s → ∞, and that eq.
(11) is equal to H1 when s = 0.

The Hs estimate of the transmissibility matrix is based on an analysis of
the physical rank of the global cross spectral matrix. The system (1) can be
formulated in terms of cross spectra :

Gxyxy =







Gxx Gxy

Gyx Gyy






=







H

Φ






Sff







H

Φ







′

(12)
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The columns of Gxyxy are thus linear combinations of the columns of [H′Φ′]′.
The rank of Gxyxy can not be greater than the number of input loads. The Hs

estimate of the transmissibility matrix is obtained from the following scaled
eigenvalue decomposition







sx 0

0 sy













Gxx Gxy

Gyx Gyy













sx 0

0 sy






=







U

V






Λ







U

V







′

(13)

where Λ is the diagonal matrix of eigenvalues, [U′V′]′ the matrix of eigenvec-
tors, and sx and sy diagonal scaling matrices. Considering that the number
of input loads is equal to n (as well as the number of indicators Y), the rank
of the (scaled) Gxyxy matrix is lower or equal to n. The m smallest singular
values of Λ are thus considered as representing noise, and can be rejected:







Un

Vn






Λn







Un

Vn







′

=







sx 0

0 sy













H

Φ






Sff







H

Φ







′ 





sx 0

0 sy






, (14)

where Λn the diagonal matrix of the n largest eigenvalues and [Un
′Vn

′]′ are
the n corresponding eigenvectors. Let us write for convenience the eigenvalue
decomposition of the cross spectral matrix of unknown forces :

Sff = PΣP′

System (14) can be written as follows :











UnΛnUn
′ = sxHPΣP′H′sx

VnΛnVn
′ = syΦPΣP′Φ′sy

(15)

that can be written in a more simple way











UnΛn
1/2 = sxHPΣ1/2

VnΛn
1/2 = syΦPΣ1/2

(16)

Then, Φ−1 and H are expressed as follows











H = sx
−1UnΛn

1/2Σ−1/2P′

Φ−1 = PΣ1/2Λn
−1/2Vn

−1sy

(17)
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to finally obtain the expression of Hs[T]

Hs[T] = HΦ−1 = sx
−1UnVn

−1sy (18)

It can be noted that if response vectors are extracted from several operat-
ing conditions to build XK and YK, the eigenvector decomposition of the
whole matrix given by equation (13) can be replaced by the singular value
decomposition :







sxXK

syYK






=







U

V






A W′ =







U

V






Ψ, (19)

where [U′V′]







U

V






= WW′ = I, and where A is the diagonal matrix of singu-

lar values. The product A W′ = Ψ can be considered as a matrix of forces, and
U and V as transfer matrices between Ψ and responses, respectively XK and
YK (cf. equation 1). Considering the number of forces exciting the structure
equal to n as an a priori information, the m smallest singular values can be
zeroed. Finally, noting [Un

′Vn
′]′ the left singular vectors corresponding to the

n largest singular values, the expression of Hs[T] is the same as in equation
(18). The computation of Un and Vn leads indeed to equal results based on
the eigen-decomposition of the whole cross spectral matrix (eq. 13) or from
the singular value decomposition of the response vectors (eq. 20).

3.4 Effects of scaling matrices on Hs

The truncation of singular values can be seen as a way to denoise measure-
ments, because smallest zeroed ones are considered as representing noise. The
denoised XK and YK matrices, noted ỸK and ỸK, are then given by :







X̃K

ỸK






=







sx
−1Un

sy
−1Vn






An Wn

′ (20)

with An the diagonal matrix of the n largest singular values, and [Un
′Vn

′]′

and Wn the corresponding left and right singular vectors, respectively.

Let us consider scaling matrices sy = syI and sx = sxI, with ǫ = sx/sy and
m = n (as many response as indicator sensors) for the sake of simplicity. Then
it can be shown that :
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lim
ǫ→0

An = AY lim
ǫ→0

Wn = WY lim
ǫ→0

Vn = syVY

lim
ǫ→∞

An = AX lim
ǫ→∞

Wn = WX lim
ǫ→∞

Un = sxUX

where AY and WY are singular values and right singular vectors of YK, and
AX and WX are singular values and right singular vectors of XK , according
to following SVDs

XK = UXAXWX
′ YK = VYAYWY

′

It means that the n largest singular values are governed by only YK when
ǫ → 0 and by only XK when ǫ → ∞. In the first case, ỸK is equal to YK and
rows of X̃K are projected on left singular vectors WY. In the second case, X̃K

is equal to XK and lines of ỸK are projected on left singular vectors WX :

lim
ǫ→0







X̃K

ỸK






=







XKWYWY
′

YK






lim
ǫ→∞







X̃K

ỸK






=







XK

YKWXWX
′







which means that in the former case the noise is considered as contaminating
XK only, and in the latter case YK only. Limits of Un and Vn when ǫ → 0
or ∞ are identified from the previous equations :

lim
ǫ→0

Un = sxXKWYAY
−1 lim

ǫ→∞

Vn = syYKWXAX
−1

Finally, the limits of Hs[T] = sx
−1UnVn

−1sy when ǫ → 0 or ∞ are obtained :

lim
ǫ→0

Hs[T] =XKWYAY
−1VY

′ = XKYK
+ = H1[T] (21)

lim
ǫ→∞

Hs[T] =UXAX(YKWX)−1 = XKXK
′(YKXK

′)−1 = H2[T] (22)

These results show that the Hs estimator for transmissibility matrices has a
similar behavior with respect to H1 and H2 than for scalar transmissibilities.
When the weight sy of indicator sensors increases, Hs gets similar to H1, and
when the weight sx of response sensors increases, Hs gets similar to H2. In
the former case the SNR will be a priori considered to be higher on indicator
sensors YK (i.e. more noise on XK) and in the latter case on XK (i.e. more
noise on YK).
The correct scaling of the system has to be done with respect to noise, but also
with respect to different units or overall levels of each sensor. This is crucial if
different type of sensors are used, for instance accelerometers and microphones.
In such a case, a global scaling has to be applied so that overall scaled levels
are almost equal (see [12,13] for details). If this step is not correctly carried
out, then the Hs estimator will be arbitrarily closer to H1 or H2, not because
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of SNR balance assumptions but because of strong level differences due to the
use of different units.

3.5 An indicator for the validity of Hs

The validity of equation (14) depends on the hypothesis that the n largest
eigenvalues are representing the signal, and the m smallest ones the noise. This
hypothesis can be verified by inspecting the ratio between the nth eigenvalue,
representing the energy of the smallest incoherent process being part of signal,
and the (n+1)th eigenvalue representing the energy of largest noise component.

R =
λn

λn+1

=
a2

n

a2
n+1

(23)

where λk is the kth largest eigenvalue of Λ in equation (13) and ak is the kth

largest singular value of A in equation (20). Note that this check could also be
performed to verify the rank of the cross-spectral matrix in case an H1 or an
H2 matrix estimate is used. Indeed, whilst for H1 and H2 only n singular values
are extracted from Gyy and Gyx, respectively, it is also for these estimators of
prime importance that the physical rank of the cross-spectral matrix is equal
to n.

4 Numerical simulation

A numerical simulation has been conducted to validate the proposed approach.
An analytic model of a thin rectangular plate ((L1 × L2) = (0.6 × 0.5)m2)
has been used for simulations, with simply supported boundary conditions
(physical parameters : aluminum, thickness 5mm, modal damping ratio 1%).
Three excitation points ([x1, x2] = [0.05, 0.01]; [0.05, 0.4]; [0.45, 0.25]) and six
response points (same position as excitations for indicator responses Y and
[x1, x2] = [0.3, 0.2]; [0.5, 0.42]; [0.3, 0.1] for output responses X) have been con-
sidered. The response cross spectral matrix Gxyxy has been computed using
equation (12), using transfer matrices H and Φ obtained with the analyti-
cal model and a cross spectral matrix Sff of uncorrelated unitary excitations.
Measurement noise is added on the cross spectral matrix, using the approach
described in appendix A. Gaussian incoherent noise is added on each indicator
and output responses, with rms values adjusted to get a 30dB SNR for all re-
sponses and with periodogram parameters N = 3000, M = 100. One element
of the transmissibility matrix is drawn in Figure 1, directly computed using
equation (2) from noise-free H and Φ matrices, and estimated from noisy re-
sponses Gxyxy. All response channels are accelerations, and the global SNR is
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the same on all responses. Scaling factors are thus chosen equal to unity for
this numerical illustration. It can be seen that Hs behaves globally better than
H1 and H2, particularly at low frequencies. In the low frequency range, the
SNR is lower because the simulated response level is lower than in mid and
high frequency. The global SNR is indeed fixed to 30dB, but the noise spectral
density is constant (white noise) while the simulated accelerations are more
energetic in high and mid frequency than in low frequency. The SNR spectrum
is thus higher in mid and high frequency than in low frequency. Above 400Hz,
the three estimations are in good agreement with the true transmissibility.
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Fig. 1. #(3,1) element of the transmissibility matrix. reference T (Solid gray) H1

(dotted blue), H2 (dash-dotted black) and Hs (dashed red) estimates

The estimation error is computed as a function of frequency for each estimator
using

Ei(f) =
||T − Hi(T)||F

||T||F
(24)
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(dash-dotted black) and Hs (dashed red) estimates.
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This error is drawn in Figure 2 for i = 1, 2, s. It is clear that the error Es is
significantly lower than E1 and E2, except in low frequency (below 100Hz),
where E1 is the lowest one. This can be explained by a too low SNR in low
frequency. If the SNR is too low, the eigenvalues representing noise in Gxyxy

can be higher than the eigenvalues representing the signal. In this case, keeping
the n largest eigenvalues leads to an erroneous estimation of T. This can be
illustrated by the value of the Hs indicator R as introduced in section 3.5. This
indicator R is equal to 0dB below 200Hz, which means that the n and n + 1th

eigenvalues are about the same level. It is thus hard to separate signal from
noise. Above 200Hz, the ratio becomes significantly greater than 1, resulting
in a better estimation.

0 500 1000 1500
0

10

20
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40

Frequency (Hz)
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dB
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Fig. 3. Hs indicator R given by equation (23)

In the current case, an equal amount of noise is used on all outputs to simulate
measurement noise. For this reason Hs with equal scaling factors gives the
best estimate, as can be seen from Figure 2. In case different signal-to-noise
ratios are present for the indicator responses Y and the output responses X, a
different scaling factor for the indicator responses Y and the output responses
X, respectively, would in that situation give the best Hs estimate.

5 Experimental illustration

An experimental validation has been carried out to validate the proposed
approach. The experiment took place in two rooms which are acoustically
connected with each other by means of an aluminum plate with a thickness of
1mm and a dimension of 60 x 40 cm. Twenty microphones –the set of output
responses– were placed on the reception room side. The plate was excited from
the emission room side by means of two shakers and one loudspeaker, consti-
tuting two structure borne paths and one airborne path. Two accelerometers
were mounted on the plate, near shaker connection points, and one micro-
phone was placed in the emission room : these three responses were chosen as
indicators (the accelerometers for the two shakers and the microphone for the
loudspeaker). In a first step, each source has been excited successively with
white noise to measure directly transfer functions between inputs (signals sent
to the shakers and loudspeaker) and responses, to build matrices H and Φ.
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For each excitation configuration with only one active source, the transfer
functions have been estimated using a H1 approach, which is well suited for
transfer function measurements with a low noise on inputs. This assump-
tion seems reasonable because input signals are directly measured (without
acoustic or vibration transmission) and because they are white (the energy
is distributed continuously on the whole frequency range). The transmissibil-
ity matrix assessed with H and Φ (equation 2) is considered as the reference
transmissibility matrix in the following.
In a second step, the three physical sources were driven by three uncorrelated
generators simultaneously to measure the whole response cross-spectral ma-
trix Gxyxy. H1 and H2 estimators of the transmissibility matrix have been
assessed, as well ad Hs. For the latter, a scaling has to be applied because dif-
ferent kinds of sensors are used (accelerometers and microphones). The scaling
strategy was to normalize all measurement channel by its rms value, thus as-
suming that the SNR ratio is the same on all channels. One element of the
transmissibility matrix is drawn in Figure 4. All estimators fit the reference
transmissibility well on the whole frequency range, even if some errors are
visible in low frequency.
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Fig. 4. #(5,2) element of the transmissibility matrix, whole (top) and low (bottom)
frequency ranges. Solid gray : T based on reference measurements, H1 (dotted blue),
H2 (dash-dotted black) and Hs (dashed red) estimates

The normalized errors, which are computed by means of equation 24, are
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drawn in Figure 5. It is clear that the estimation error is significantly lower
with the Hs estimator on the whole frequency range. In low frequency, Hs and
H2 are similar, and globally better than H1. In the high frequency range, Hs

is similar to H1, even slightly better, and both are significantly better than
H2.
It can be said globally that the Hs estimator gives better results in this ex-
periment than H1 and H2. The applied scaling strategy (normalization of the
global levels) was however very basic, and could be improved and optimized
to obtain even more satisfying results.
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Fig. 5. 500Hz frequency band integrated relative errors of H1 (dotted blue), H2

(dash-dotted black) and Hs (dashed red) estimates.

The relative error of Hs is drawn in Figure 6 (top) in narrow frequency bands
in the low frequency range, together with the R indicator defined in equation
(23). It can be seen that the indicator is in good agreement with the estimation
error : it can be said roughly that when the indicator is greater than 10dB,
then the relative estimation error is below 10%. On the other hand, when the
indicator drops to almost 0dB, then the relative error increases and can exceed
100%.

Conclusion

Transmissibility matrices are generally estimated using a H1 like approach.
The possibility to use H2 and Hs estimators for transmissibility matrices is
presented. The Hs approach is particularly interesting for the estimation of
transmissibility matrices, because the inputs and outputs of a transmissibil-
ity system are both responses, the SNR (Signal to Noise Ratio) has thus no
reason to be higher on input or output responses. The Hs estimate of the
transmissibility matrix is based on the eigenvalue decomposition of the global
cross spectral matrix of input and output responses. After a rigorous deriva-
tion of the expressions to calculate Hs, it is theoretically shown that Hs tends
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Fig. 6. Relative errors of Hs[T ] (top) and corresponding SNR indicator (bottom) in
the low frequency range.

to H1 and H2, depending on the scaling ratios. It is worth nothing that the
estimator H2 only exists if the number of output dofs m is equal or larger
than the number of indicator dofs n. Both a numerical simulation and a phys-
ical experiment have been conducted to validate the proposed transmissibility
estimates. In the numerical simulation a simply supported rectangular plate
was considered. In the experiment a plate was excited by means of two shakers
and one loudspeaker, constituting two structure borne paths and one airborne
path. Both accelerometers and microphones were used, which required some
scaling of the data in order to optimize the Hs estimate. For both the nu-
merical simulation and the physical experiment it was found that Hs behaves
globally better than H1 and H2. In addition, an indicator for the validity of
Hs is introduced, which checks that there is a clear separation between the n
largest eigenvalues (representing the signal), and the m remaining eigenvalues
(representing noise). By approximation, and at least for numerical and experi-
mental illustrations presented in this work , it can be said that for values of the
indicator larger than 10dB, the relative error in the transmissibility estimate
is below 10%.
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Appendix A : simulation of cross-spectral matrices of uncorrelated

finite gaussian signals estimated by the periodogram method

The aim of this appendix is to explain how cross spectral matrices are ran-
domly generated for measurement simulations. Studied signals are considered
to be Gaussian :

x[n] = N (0 ; x) ,

where x stands for the rms value of the signal. The discrete Fourier Transform
of x is given by

Xk =
1

N

N−1
∑

n=0

x[n]e−j2πkn/N

with the following expected value and variance

E(Xk) = 0 V(Xk) = x2/N

with E(Xk) = 0 and V(Xk) = x2/N . Xk follows a complex gaussian law for
k 6= {0, N/2}, the real and imaginary parts following real centered gaussian
laws of variance x2/2N . For k = {0, N/2} , Xk follows a real centered gaussian
law of variance x2/N , but this case will not be treated here for the sake of
brevity. The double sided instantaneous autospectrum for k 6= {0, N/2} is
equal to

Si
xxk

= 2|Xk|2 = 2R (Xk)
2 + 2I (Xk)

2 =
x2

N
χ2

2

with the following expected value and variance

E(Si
xxk

) =
2x2

N
V(Si

xxk
) =

4x4

N2

The expected value and variance of the double sided instantaneous cross spec-
trum Si

xyk
= 2XkY

∗

k of two independent signals x and y are

E(Si
xyk

) = 0 V(Si
xyk

) =
4x2y2

N2

When applying the averaged periodogram method, auto and cross spectra are
averaged over a number M of time windows :

Sxxk
= 〈|Xk|2〉M Sxyk

= 〈XkYk〉M

Assuming that M is sufficiently high to apply the central limit theorem, then
averaged auto and cross spectra are following gaussian distributions :

Sxxk
= N

(

2x2

N
;

2x2

N
√

M

)

Sxyk
= N

(

0 ;
2x y

N
√

M

)

, k ∈]0, N/2[
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It is finally possible to simulate whole cross spectral matrices of uncorrelated
signals using a gaussian random generator, from signals rms values, fixing
values for N (number of samples of a time window) and M (number of time
windows).
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