Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A

Abstract : We are interested in the structure of the crystal graph of level l Fock spaces representations of U_q(sl^_e). Since the work of Shan [26], we know that this graph encodes the modular branching rule for a corresponding cyclotomic rational Cherednik algebra. Besides, it appears to be closely related to the Harish-Chandra branching graph for the appropriate finite unitary group, according to [8]. In this paper, we make explicit a particular isomorphism between connected components of the crystal graphs of Fock spaces. This so-called "canonical" crystal isomorphism turns out to be expressible only in terms of: - Schensted's classic bumping procedure, - the cyclage isomorphism defined in [13], - a new crystal isomorphism, easy to describe, acting on cylindric multipartitions. We explain how this can be seen as an analogue of the bumping algorithm for affine type A. Moreover, it yields a combinatorial characterisation of the vertices of any connected component of the crystal of the Fock space.
Type de document :
Article dans une revue
Algebras and Representation Theory, Springer Verlag, 2015
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00911791
Contributeur : Thomas Gerber <>
Soumis le : vendredi 21 février 2014 - 10:20:29
Dernière modification le : mardi 4 décembre 2018 - 01:19:40
Document(s) archivé(s) le : mercredi 21 mai 2014 - 10:51:41

Fichiers

iso.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00911791, version 2

Collections

Citation

Thomas Gerber. Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A. Algebras and Representation Theory, Springer Verlag, 2015. 〈hal-00911791v2〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

126