Microwave properties of diluted composites made of magnetic wires with giant magneto impedance effect

Olivier Acher, Marc Ledieu, Olivier Reynet, Anne-Lise Adenot

To cite this version:

HAL Id: hal-00911564
https://hal.archives-ouvertes.fr/hal-00911564
Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MICROWAVE PROPERTIES OF DILUTED COMPOSITES MADE OF MAGNETIC WIRES WITH GIANT MAGNETO IMPEDANCE EFFECT

O. Acher, M. Ladjel, O. Reyret, and A.-L. Adenot
CEA Le Ripault, BP16, F-37260 Monts, France

Introduction
The possibility of engineering microwave composites with new and attractive properties has attracted considerable attention, since the pioneering work of Pendry [1] and Smith [2]. These composites have a negative refraction index due to a negative permeability and permittivity. They are denoted either left-handed materials, negative index materials or metamaterials. The negative permeativity properties are commonly achieved through a wire media consisting of an array of wires. We report here significant advances on wire media based on magnetic microwires. We have established the theoretical description of wire media made of magnetic wires, supported by experimental results [3]. In particular, we show that there is a close link between the Giant Magneto Impedance Effect (GMI) and the free-space microwave properties of the composite wire media. As a consequence, the extended knowledge on GMI materials and effects developed in recent years may be readily used to design wire media with new dielectric properties. For example, the demonstration of composites with tunable dielectric constant under a static magnetic field is easily described using the GMI approach.

Experimental details and results
Lattices of continuous parallel wires have been manufactured using several types of amorphous glass-coated Co/FeSiB microwires with different magnetic properties. The size of the lattices are 300nm x 300nm. Free-space reflection and transmission microwave measurements have been performed to determine the effective permittivity of these composites, in a configuration sketched on Fig. 1. The permittivity of a wire media made of wires with an axial magnetization is reported in Fig. 2. Unlike traditional metallic lattices [1], the dielectric response is clearly resonant. Large negative permittivities are obtained in the 4.3 to 11 GHz range. In contrast, wire media made using wires with circumferential magnetization exhibit properties similar to that of metallic non magnetic wire media.

Analytical model
An electric field is produced by the microwire in response to the incident plane wave. The effective permittivity of the wire media is the ratio of the spatial average of electrical displacement (\(\mathbf{D}\)) over the spatial average of the electric field (\(\mathbf{E}\)). \(\mathbf{D}\) is essentially affected by the conductivity of the wire over the skin depth. This leads to a factor in the expression of the effective permittivity that is dependent on the ratio of the microwave impedance over DC resistance. This is the same quantity that can be measured through GMI experiments. \(\mathbf{D}\) is affected by the long range radiation of the different wires in the whole space, leading to a factor similar to that established for metallic non magnetic wires.

The effective permittivity of the wire media is shown to be:

\[
\varepsilon_{eff} = \varepsilon_0 \left(\frac{1 + \frac{2\sigma}{\omega \mu_0}}{1 + \frac{2\sigma}{\omega \mu_0}} \right)
\]

where \(\varepsilon_0\) is the vacuum permittivity, \(\varepsilon\) is the effective permittivity of the wire media, \(\sigma\) is the conductivity of the wire, \(\omega\) is the angular frequency, and \(\mu_0\) is the permeability of free space.

References