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ON THE GROUND STATE OF THE LAPLACIAN WITH A
MAGNETIC FIELD CREATED BY A RECTILINEAR CURRENT

VINCENT BRUNEAU AND NICOLAS POPOFF

ABSTRACT. We consider the three-dimensional Laplacian with a magnetic field created by an

infinite rectilinear current bearing a constant current. The spectrum of the associated hamilton-

ian is the positive half-axis as the range of an infinity of band functions all decreasing toward

0. We make a precise asymptotics of the band function near the ground energy and we exhibit

a semi-classical behavior. We perturb the hamiltonian by an electric potential. Helped by the

analysis of the band functions, we show that for slow decaying potential, an infinite number of

negative eigenvalues are created whereas only finite number of eigenvalues appears for fast de-

caying potential. The power-like decaying potential determining the finiteness of the negative

spectrum is different than for the free Laplacian.

1. INTRODUCTION

1.1. Motivation and problematic.

‚ Physical context. We consider in R
3 the magnetic field created by an infinite rectilinear

wire bearing a constant current. Let px, y, zq be the cartesian coordinates of R3 and assume

that the wire coincides with the z axis. Due to the Biot & Savard law, the generated magnetic

field writes

Bpx, y, zq “ 1

r2
p´y, x, 0q

where r :“
a
x2 ` y2 is the radial distance corresponding to the distance to the wire. Let

Apx, y, zq :“ p0, 0, log rq be a magnetic potential satisfying curlA “ B. We define the

unperturbed magnetic hamiltonian

HA :“ p´i∇ ´ Aq2 “ D2
x ` D2

y ` pDz ´ log rq2; Dj :“ ´iBj
initially defined on C8

0 pR3q and then self-adjoint in L2pR3q. It is known (see [24], and [25]

for a more general setting) that the spectrum of HA has a band structure with band functions

defined on R and decreasing from `8 toward 0. Then the spectrum of HA is absolutely

continuous and coincide with r0,`8q. In that case the presence of the magnetic field does not

change the spectrum (i.e. SpHAq “ Sp´∆q), that may be expected since the magnetic field

tends to 0 far from the wire. In this article we study the ground state of HA and its stability

under electric perturbation. These questions are related to the dynamic of spinless quantum

particles submitted to the magnetic field B and perturbed by an electric potential.
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2 VINCENT BRUNEAU AND NICOLAS POPOFF

‚ Comparison with the free hamiltonian. In general the spectrum of a Laplacian may be

higher in the presence of a magnetic field (see [2]). As already said, in our model we still

have SpHAq “ R`. However the dynamics are very different from the free motion, see

[24] for a description of the classical and quantum dynamics of this model. As we will see,

the behavior of the negative spectrum under electrical perturbation is also different that what

happens without magnetic field.

If V is a multiplication operator by a real electric potential V such that V pHA ` 1q´1 is

compact then the operator HA,V :“ HA ´ V is self-adjoint, its essential spectrum coincides

with the positive half-axis and discrete spectrum may appear under 0.

Let us recall that, due to the diamagnetic Inequality (see [2, Section 2]), the operator

V pHA ` 1q´1 is compact as soon as V p´∆ ` 1q´1 is compact. Moreover, if NA,V pλq de-

notes the number of eigenvalues of HA ´ V below ´λ ă 0, we have ([2, Theorem 2.15]):

(1.1) NA,V p0`q ď C

ż

R3

V`px, y, zq 3

2dxdydz, V` :“ maxp0, V q.

In particular, HA ´ V has a finite number of negative eigenvalues provided that V` P L 3

2 pR3q.

But this condition, also valid for ´∆ ´ V , is not optimal in presence of magnetic fields as the

results of this article will show.

We will prove that the discrete spectrum of our operator HA ´ V below 0 is less dense than

for ´∆ ´ V (see Theorem 1.3 and Corollary 1.4), more precisely for some V the operator

´∆ ´ V has infinitely many negative eigenvalues whereas NA,V p0`q ă `8. In some sense,

that means that the absolutely continuous spectrum of HA near 0 is less dense that the one of

the free Laplacian ´∆.

‚ Magnetic hamiltonian and band functions. Several models with constant magnetic field

have been studied in the past years. We recall some of them below. In most cases the system

has a translation-invariance direction and the magnetic Laplacian is fibered through partial

Fourier transform, therefore its study reduces to the study of the band functions that are the

spectrum of the fiber operators. The spectrum of the hamiltonian is the range of the band

functions (see [9] for a general setting) and the ground state is given by the infimum of the first

band function. The number of eigenvalues created under the essential spectrum by a suitable

electric perturbation depends strongly on the shape of the band functions near the ground state

as shown on the examples below:

For the case of a constant magnetic field in R
n, the perturbation by electric potential is

described for example in [23] or [18]. When n “ 2, the band functions are constant and equal

to the Landau levels. In [20] the authors deal with very fast decaying potential. In that case

they prove that the perturbation by an electric potential even compactly supported generates

sequences of eigenvalues which converge toward the Landau levels, that is very different from

what happens without magnetic field where only a finite number of eigenvalues are created by

compactly supported electric perturbation.

In general the band function associated with a Schrödinger operator are not constant. The

case where the band functions reach their infimum is described in [19] where the author study

the perturbation of a Schrödinger operator with periodic electric potential and no magnetic
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field, whose band functions have non-degenerated minima, providing localization in the phase

space. Let us come back to the case with constant magnetic field. When adding a boundary,

the band functions may not be constant anymore. For example when the domain is a two-

dimensional infinite strip of finite width with constant magnetic field, it is proved that all the

band functions are even with a non-degenerate minimum, see [8]. In [4], the authors investigate

the behavior of the spectral shift function near the minima of the band functions, providing the

number of eigenvalue created under the ground state when perturbing by an electric potential.

Other examples of such a situation is the case of a half-plane with constant magnetic field and

Neumann boundary condition, see [6, Section 4], the case of an Iwatsuka model with an odd

discontinuous magnetic field, [15, Section 5] and also the case of the Dirichlet Laplacian on a

twisted wave guide, [3].

The case of a half-plane with a constant magnetic field and Dirichlet boundary condition

is more intriguing and somehow closer to our model: in that case the bottom of the spectrum

of the magnetic Laplacian is the first Landau level, but the associated band function does not

reach its infimum. In [6], the authors gives the precise behavior of the counting function when

perturbing by a suitable electric potential. Analog situations based on Iwatsuka models are

described in [5] or [14].

All the above described situations deal with constant magnetic field. In this article we deal

with a three dimensional variable magnetic field going to 0 far from the z-axis and invariant

along this axis, therefore the situation is quite different-one may think roughly that the varia-

tions of the magnetic field will create non-constant band function as the addition of a boundary

does in the case of a constant magnetic field. Moreover in the above described models the band

functions are well separated near the ground state in the sense that the infimum of the second

band function is larger than the ground state. In our case there are infinitely many band func-

tions that accumulate toward infSpHAq, see Figure 1, adding a technical challenge when

studying the ground state.

In this paper, we give more precise description of the spectrum ofHA near 0 with asymptotic

expansion of the band functions. Then, we study the finiteness of the number of the negative

eigenvalues of HA ´ V for relatively compact perturbations V . On one hand, we display

classes of potentials giving rise to an accumulation at 0, of an infinite number of negative

eigenvalues, on the other hand, under a decreasing property of V`, we prove the finiteness

of the discrete spectrum of HA ´ V below 0. We obtain a class of polynomially decreasing

potentials for which HA ´ V has a finite number of negative eigenvalues while the negative

spectrum of ´∆ ´ V is infinite.

1.2. Main results. Using the cylindrical coordinates of R
3, we identify L2pR3q with the

weighted space L2pR` ˆ p0, 2πq ˆ R, rdrdφdzq and the operator HA writes:

HA “ ´1

r
BrrBr ´

B2
φ

r2
` plog r ´ Dzq2

acting on functions of L2pR` ˆ p0, 2πq ˆ R, rdrdφdzq.

Let us recall the fibers decomposition of HA that can be found with more details in [24].

We denote by F3 the Fourier transform with respect to z and Φ the angular Fourier transform.
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We have the direct integral decomposition (see [21, Section XIII.16] for the notations about

direct decomposition):

ΦF3HAF
˚
3Φ

˚ :“
À
ÿ

mPZ

ż À

kPR
gmpkqdk

where the operator

(1.2) gmpkq :“ ´1

r
BrrBr ` m2

r2
` plog r ´ kq2

is defined as the extension of the quadratic form

qkmpuq :“
ż

R`

ˆ
|u1prq|2 ` m2

r2
|uprq|2 ` plog r ´ kq2|uprq|2

˙
rdr

initially defined on C8
0 pR`q and closed in L2

rpR`q :“ L2pR`, rdrq.

For all pm, kq P Z ˆ R the operator gmpkq has compact resolvent. We denote by λm,npkq
the so-called band functions, i.e. the n-th eigenvalue of gmpkq associated with a normalized

eigenvector um,npkq.

It is known ([24], see also Section 2.1) that k ÞÑ λm,npkq is decreasing with

lim
kÑ´8

λm,npkq “ `8; lim
kÑ`8

λm,npkq “ 0.

Exploiting semi-classical tools (with semi-classical parameter h “ e´k, k ąą 1, see Proposi-

tion 2.2), we obtain asymptotic behaviors of the eigenpairs of gmpkq as k tends to infinity. The

main result of Section 2 is the following

Theorem 1.1. For all pm,nq P Z ˆ N
˚, there exist constants Cm,n ą 0 and k0 P R such that

for all k P pk0,`8q,

(1.3) |λm,npkq ´ p2n ´ 1qe´k ` pm2 ´ 1
4

´ npn´1q
2

qe´2k| ď Cm,ne
´5k{2

This asymptotics shows that all the band functions tend exponentially to the ground state

and cluster according to their energy level, see Figures 1 and 2.

Let us consider V , a multiplication operator such that V pHA `1q´1 is compact. Considered

in L2pR` ˆp0, 2πqˆR, rdrdφdzq, V is a function of pr, ϕ, zq and it is said axisymmetric when

it does not depend of ϕ.

We want to know how reacts the ground state of HA under electrical perturbation. For po-

tentials slowly decreasing with respect to r, we have an infinite number of negative eigenvalues

of HA ´ V :

Theorem 1.2. Suppose V is a potential such that V pHA ` 1q´1 is compact and

(1.4) V px, y, zq ě xpx, yqy´α vKpzq, α ą 0.

If α and vK satisfy one of the assumptions (i), (ii) below, then, HA ´ V have a infinite number

of negative eigenvalues which accumulate to 0.

(i) α ă 1
2

and vK P L1pRq such that
ż

R

vKpzqdz ą 0.
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(ii) vK ě Cxzy´γ with γ ą 0 and α ` γ

2
ă 1.

The proof uses a construction of quasi-modes based on the eigenfunctions associated with

λm,npkq that leads to a one-dimensional operator in the z variable. The key point is a projection

(in the r variable) of the potential V against the eigenfunctions of gmpkq that are localized near

the wells of the potential plog r ´ kq2 for large k.

We also have conditions giving finiteness of the negative spectrum.

Theorem 1.3. Assume V is a relatively compact perturbation of HA such that

(1.5) V px, y, zq ď xpx, yqy´α vKpzq,

with α ą 1 and vK P LppRq a non negative function with p P r1, 2s.
Then, HA ´ V have, at most, a finite number of negative eigenvalues.

Let us give some comments concerning the above results in comparison with known bor-

derline behavior of perturbations of the Laplacian. It is not true in general that the number of

negative eigenvalues of ´∆ ´ V is larger than when adding a magnetic field, see Exemple 2

after Theorem 2.15 of [2]. Theorem 1.2 is a case where the number of negative eigenvalues in

presence of magnetic field is infinite as without magnetic field.

However due to the diamagnetic inequality, one might expect for most cases that the density

of negative eigenvalues is more important for ´∆ ´ V than for HA ´ V . The above results

illustrate this phenomenon, indeed we prove that the borderline behavior of the perturbation

determining the finiteness of the negative spectrum of HA ´ V is different than for ´∆ ´ V :

Corollary 1.4. Let V be a measurable function on R
3 that obeys

cxpx, yqy´αxzy´γ ď V px, y, zq ď Cxpx, yqy´αxzy´γ,

with α ` γ ă 2, α ą 1 and γ ą 1
2
.

Then the operator ´∆ ´ V have infinitely many negative eigenvalues while the negative

spectrum of HA ´ V is finite.

Proof. Since xpx, yqy´αxzy´γ ě xpx, y, zqy´pα`γq, according to [21, Theorem XIII.6] we know

that for V px, y, zq ě xpx, yqy´αxzy´γ with α`γ ă 2, the operator ´∆´V has infinitely many

negative eigenvalues. The corollary is then deduced from Theorem 1.3.

�

A natural open question concern the existence of a borderline behavior of V which deter-

mine the finiteness of the negative spectrum of HA ´ V . At the moment we can only say that,

if it exists, such borderline potential Vb satisfies:

C´xpx, yqy´α´xzy´γ´ ď Vb ď C`xpx, yqy´α`xzy´γ` ,

with 0 ă α´ ď maxp1 ´ γ´

2
; 1
2
q, γ´ ą 0 and α` ą 1, γ` ą 1

2
.
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1.3. Organisation of the article. In Section 2 we recall basis on the fibers of the operator

HA and their associated band functions λm,npkq. We give the localization of the associated

eigenfunctions for large k and we prove Theorem 1.1. We also provide numerical computations

of the band functions. In Section 3, we construct quasi-modes for the perturbed operator

HA ´ V that leads to study a one-dimensional problem and allows to prove Theorem 1.2.

Based on an uniform lower bound of the band functions, Section 4 combines the Birman-

Schwinger principle with results of Section 2 to prove Theorem 1.3. The key point is an

estimation of the Hilbert-Schmidt norm of Birman-Schwinger type operator associated with

the perturbed hamiltonian.

2. DESCRIPTION OF THE 1D PROBLEM ASSOCIATED WITH THE UNPERTURBED

HAMILTONIAN

In this section we first recall results from [24] on the behavior of the band functions k ÞÑ
λm,npkq. Then we give Agmon estimates on the associated eigenfunctions and we perform an

asymptotic expansion of λm,npkq when k goes to `8. In Section 3 and 4 we will use these

expansions to analyse the operator HA ´ V .

Depending on the context we shall work with different operators all unitarily equivalent to

the operator gmpkq written in (1.2). Table 1 gives a description of these operators and the

notations we use.

2.1. Semi-classical point of view.

‚ Global behavior of the band functions. As in [24], we introduce the parameter

h :“ e´k

such that log r ´ k “ logphrq. The scaling ρ “ hr shows that gmpkq is unitarily equivalent to

(2.1) gmphq :“ ´h2 1
ρ

BρρBρ ` h2
m2

ρ2
` plog ρq2

acting on L2
ρpR`q :“ L2pR`, ρdρq. We denote by pµm,nphq,um,np¨, hqqně1 the normalized

eigenpairs of this operator and by qm
h the associated quadratic form. We have µm,nphq “

λm,npkq and

um,npρ, hq “ hum,n

´ρ
h
,´ log h

¯

where um,np¨, kq is a normalized eigenfunction associated with λm,npkq for gmpkq. Using the

min-max principle and the expression (2.1), it is clear that h ÞÑ µm,nphq is non decreasing on

p0,`8q and therefore k ÞÑ λm,npkq is non increasing on R. It was already used by Yafaev

(see [24]) who, moreover, shows (see [24, Lemma 2.2 & 2.3]) that

lim
hÑ0

µm,nphq “ 0 and lim
hÑ`8

µm,nphq “ `8 .

Note that these results are extended to more general magnetic fields in [25, Section 3].
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‚ The fiber operator in an unweighted space. Sometimes it will be convenient to work in an

unweighted Hilbert space on the half-line, therefore we introduce the isometric transformation

M : L2pR`, rdrq ÞÝÑ L2pR`, drq
uprq ÞÝÑ

?
r uprq

and we define rgmpkq :“ MgmpkqM˚. This operator expressed as

(2.2) rgmpkq :“ ´B2
r ` m2 ´ 1

4

r2
` plog r ´ kq2 ,

acting onL2pR`q and its precise definition can be derived from the natural associated quadratic

form initially defined on C8
0 pR`q and then closed to L2pR`q.

2.2. Agmon estimates about the eigenpairs of the fiber operator. We write

gmphq “ ´h2 1
ρ

BρρBρ ` V m
h

with

V m
h pρq :“ logpρq2 ` h2

m2

ρ2
.

Let qh
m denote the natural associated quadratic form. Assume that µ is an eigenvalue satisfying

µ ď E ` Ophq with E ě 0, the eikonale equation on the Agmon weight φ writes

h2|φ1|2 “ V m
h ´ E

that is

|φ1pρq|2 “ plog ρq2 ´ E

h2
` m2

ρ2
.

A solution is given by φhpρq{h with

(2.3) φhpρq :“
ˇ̌
ˇ̌
ˇ

ż ρ

1

dˆ
plog ρ1q2 ´ E ` h2

m2

ρ12

˙

`
dρ1

ˇ̌
ˇ̌
ˇ

This function provides the general Agmon estimates:

Proposition 2.1. LetE ě 0 andC0 ą 0. For all β P p0, 1q there existCpE, βq ą 0 and h0 ą 0

such that for all eigenpairs pµ,uµq of gmphq with µ ď E ` C0h and uµ that is L2
ρ-normalized

there holds:

(2.4) @h P p0, h0q, }eβ
φh
h uµ}L2

ρpR`q ď CpE, βq and qh
m

´
eβ

φh
h uµ

¯
ď CpE, βq .

Proof. This proposition is an application of the well-known Agmon estimates for 1D Schrödinger

operators with confining potential. First we have the following identity for any Lipschitz

bounded function φ, see for example [22], [1] or [12]:

(2.5) xgmphqu, e2φuyL2
ρpR`q “ qm

h peφuq ´ h2}φ1eφu}2L2
ρpR`q .
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In particular when u “ uµ is an eigenfunction associated with the eigenvalue µ we get

(2.6)

ż

R`

`
h2|Bρpeφuhq|2 `

`
V m
h ´ h2|φ1|2 ´ µ

˘
|eφuh|2

˘
ρdρ “ 0 .

We now use this identity with φ “ φh{h where φh is defined in (2.3). The remain of the proof

is classical and can be found with details in [11, Proposition 3.3.1] for example. �

Note that

φhpρq ě φ0pρq “
ˇ̌
ˇ̌
ż ρ

1

b
pplog ρ1q2 ´ Eq` dρ1

ˇ̌
ˇ̌

that does not depend neither on m nor on h. Therefore (2.4) remains true replacing φh by φ0

and we get L2 estimates uniformly in m, in particular:

(2.7) @β P p0, 1q, @h P p0, h0q, }eβ
φ0

h um,np¨, hq}L2
ρpR`q ď CpE, βq

for all normalized eigenfunction um,np¨, hq of gmphq associated with any eigenvalue µm,nphq
satisfying µm,nphq ď E ` C0h where C0 ą 0 is a set constant.

When E “ 0 (that means that we are looking at the low-lying energies) the Agmon distance

φ0 is explicit:

φ0pρq “
ˇ̌
ˇ̌
ż ρ

1

| log ρ1|dρ1
ˇ̌
ˇ̌

“ |rρ1 log ρ1 ´ ρ1sρ1| “ |ρ log ρ ´ ρ ` 1| .

Let us express this in the original cylindrical variable r “ ρ

h
with the Fourier parameter k “

´ log h. The associated Agmon distance writes

(2.8) Φ0pr, kq :“ φ0pρq
h

“ ekφ0pre´kq “ rplogprq ´ kq ´ r ` ek .

Writing the previous estimates in these variables we get that for k large enough:

(2.9) }eβΦ0p¨,kqum,np¨, kq}L2
rpR`q ď Cp0, βq and }eβΦ0p¨,kqrum,np¨, kq}L2pR`q ď Cp0, βq

where rum,nprq :“ ?
r um,np¨, kq is a normalized eigenvector associated with λm,npkq for the

operator rgmpkq in the unweighted space L2pR`q.

The function r ÞÑ Φ0pr, kq is positive, decreasing on p0, ekq and increasing on pek,`8q. It

vanishes when r “ ek, so we find that the eigenfunction of the operator gmpkq are localized at

the minimum of the wells r “ ek.

2.3. Asymptotics for the small energy. In this section we provide an asymptotic expansion

of µm,nphq for fixed pm,nq when h goes to 0, namely:

Proposition 2.2. For all pm,nq P Z ˆ N
˚ there exists Cm,n ą 0 and h0 ą 0 such that

@h P p0, h0q, |µm,nphq ´ p2n ´ 1qh ´ pm2 ´ 1
4

´ npn´1q
2

qh2| ď Cm,nh
5{2.
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The operator gmphq written in (2.1) is a semiclassical Schrödinger operator with a potential

which has a unique minimum at ρ “ 1. We will use the technics of the harmonic approximation

as described in [7], [22] or [11] to derive the asymptotics of the eigenvalues. The remain of

this section is devoted to the proof of Proposition 2.2 which implies Theorem 1.1 because

λm,npkq “ µm,npe´kq.

‚ Canonical transformations. As above we introduce the operator rgmphq :“ MgmphqM˚ in

the unweighted space where M : upρq ÞÑ ?
ρupρq. We get

rgmphq “ ´h2B2
ρ ` h2

m2 ´ 1
4

ρ2
` log2 ρ

acting on the unweighted space L2pR`q. Apply now the change of variable t “ ρ´1?
h

. We get

that rgmphq is unitarily equivalent to hpgmphq where

pgmphq :“ ´B2
t ` log2p1 `

?
htq

h
` h

m2 ´ 1
4

p1 `
?
htq2

acting on L2pIhq with Ih “ p´h´1{2,`8q. As we will see below, this operator has a suitable

shape to make an asymptotic expansion of its eigenvalues when h Ñ 0.

‚ Asymptotic expansion and formal construction of quasi-modes. We write a Taylor expansion

of the potential near t “ 0:

log2p1 `
?
htq

h
` h

m2 ´ 1
4

1 `
?
ht

“ t2 ´ h1{2t3 ` p11
12
t4 ` m2 ´ 1

4
qh ` Rpt, hq(2.10)

where Rpt, hq will later be controlled by p1 ` |t|q5h3{2.

We write

pgmphq “ L0 ` h1{2L1 ` hL2 ` Rp¨, hq
where $

’&
’%

L0 :“ ´B2
t ` t2 ,

L1 :“ ´t3 ,
L2 :“

`
11
12
t4 ` m2 ´ 1

4

˘
.

At first we consider these operator as acting on L2pRq and we look at a quasi-mode for L0 `
h1{2L1 ` hL2 defined on R. Using a suitable cut-off function this procedure will provide a

quasi-mode for pgmphq.

We look for a quasi-mode of the form

pEphq, fp¨, hqq “ pE0 ` h1{2E1 ` hE2, f0 ` h1{2f1 ` hf2q .
We are led to solve the following system:

$
&
%

L0f0 “ E0f0 ,(2.11a)

L1f0 ` L0f1 “ E0f1 ` E1f0 ,(2.11b)

L2f0 ` L1f1 ` L0f2 “ E2f0 ` E1f1 ` E0f2 .(2.11c)
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SinceL0 is the quantum harmonic oscillator, to solve (2.11a) we choose forE0 the n-th Landau

level:

(2.12) E0 :“ 2n ´ 1, n ě 1

and

f0 “ f0,n :“ Ψn, n ě 1

where Ψn is the n-th normalized Hermite’s function with the convention that Ψ1ptq “ p2πq´1{4e´t2{2.

We take the scalar product of (2.11b) against f0,n and we find

E1 “ xpL0 ´ E0qf1, f0,ny ` xL1f0,n, f0,ny “ xL1f0,n, f0,ny .
Notice that f0,n is either even or odd and that L1f0,n has the opposite parity. Therefore the

function L1f0,n ¨ f0,n is odd for all n ě 1 and we get

(2.13) E1 “ 0 .

We find f1 by solving (2.11b):

(2.14) pL0 ´ E0qf1 “ ´L1f0,n “ t3Ψnptq .

Using tΨnptq “
b

n´1
2
Ψn´1ptq `

a
n
2
Ψn`1ptq, we write t3Ψnptq on the basis of the Hermite’s

functions:

t3Ψnptq “ anΨn´3ptq ` bnΨn´1ptq ` cnΨn`1ptq ` dnΨn`3ptq
with

(2.15) @n ě 1,

$
’’’’’&
’’’’’%

an “ 2´3{2apn ´ 1qpn ´ 2qpn ´ 3q
bn “ 2´3{23pn ´ 1q

?
n ´ 1

cn “ 2´3{23n
?
n

dn “ 2´3{2anpn ` 1qpn ` 2q .
Therefore the unique solution to (2.14) orthogonal to f0,n is:

f1 “ f1,n :“
ˆ

´an

6
Ψn´3 ´ bn

2
Ψn´1 ` cn

2
Ψn`1 ` dn

6
Ψn`3

˙

with an “ 0 when n ď 3 and bn “ 0 when n “ 1 (see (2.15)).

We now take the scalar product of (2.11c) against f0,n:

(2.16) E2 “ xL2f0,n, f0,ny ` xL1f1,n, f0,ny .
Computations provides

xL2f0,n, f0,ny “
`
11
12

}t2f0,n}2 ` m2 ´ 1
4

˘
“

`
11
16

p2n2 ´ 2n ` 1q ` m2 ´ 1
4

˘

and

xL1f1,n, f0,ny “
ˆ
a2n
6

` b2n
2

´ c2n
2

´ d2n
6

˙
“ 1

16

`
´30n2 ` 30n ´ 11

˘
,

therefore we get

(2.17) E2 “
ˆ

´npn ´ 1q
2

` m2 ´ 1

4

˙
.
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We deduce from (2.11c):

pL0 ´ E0qf2 “ E2f0,n ´ L1f1,n ´ L2f0,n .

Since the compatibility condition is satisfies by the choice of E2 (see (2.16)), the Fredholm al-

ternative provides a unique solution f2 “ f2,n orthogonal to f0,n. As above it may be computed

explicitly using the Hermite’s functions. Notice that f2,n depends on m as E2, see (2.17).

We finally define

fm,npt, hq :“ f0,nptq ` h1{2f1,nptq ` hf2,nptq

‚ Evaluation of the quasi-mode and upper bound. The above formal construction provides

functions on R and we will now use a cut-off function in order to get quasi-modes for pgmphq.

Let χ P C8
0 pR, r0, 1sq be a cut-off function increasing such that χptq “ 0 when t ď ´1{2 and

χptq “ 1 when t ě ´1{4. We define χpt, hq :“ χph1{2tq and

pvm,npt, hq :“ χpt, hqfm,npt, hq .
Recall that pgm,nphq acts on L2pIhq with Ih “ p´h´1{2,`8q. Since supp

`pvm,np¨, hq
˘

Ă
p´1

2
h´1{2,`8q and pvm,np¨, hq has exponential decay at `8, we have pvm,n P domppgmphqq.

Let

Em,nphq :“ E0 ` h1{2E1 ` hE2

where E0, E1 and E2 are defined in (2.12), (2.13) and (2.17).

We now evaluate } ppgmphq ´ Em,nphqq pvm,np¨, hq}L2pIhq. The procedure is rather elementary

but for the sake of completeness we provide details below. We have

(2.18) } ppgmphq ´ Em,nphqq pvm,np¨, hq}L2pIhq ď }rpgmphq, χp¨, hqsfm,np¨, hq}L2pIhq

`}χp¨, hqRp¨, hqfm,np¨, hq}L2pIhq`}χp¨, hq
`
L0 ` h1{2L1 ` hL2 ´ Em,nphq

˘
fm,np¨, hq}L2pIhq

We have rpgmphq, χp¨, hqsfm,npt, hq “ ´2h1{2χ1ph1{2tqf 1
m,npt, hq ´ hχ2ph1{2tqfm,npt, hq there-

fore t ÞÑ rpgmphq, χp¨, hqsfm,npt, hq is supported in r´1
2
h´1{2,´1

4
h´1{2s and since fm,np¨, hq

and f 1
m,np¨, hq have exponential decay we get

(2.19) }rpgmphq, χp¨, hqsfm,np¨, hq}L2pIhq “ Oph8q .
Remind that Rpt, hq is defined in (2.10), we get

DC ą 0, @h ą 0, @t P supppχp¨, hqq, |Rpt, hq| ď Ch3{2p1 ` |t|q5.
Using the exponential decay of fm,n we get Cm,n ą 0 such that

(2.20) }χp¨, hqRp¨, hqfm,np¨, hq}L2pIhq ď Cm,nh
3{2.

The last term of (2.18) is easily computed:
`
L0 ` h1{2L1 ` hL2 ´ Em,nphq

˘
fm,np¨, hq “ h3{2 ppL1 ´ E1qf2,n ` pL2 ´ E2qf1,nq`h2L2f2,n

and we get Cm,n ą 0 such that

}χp¨, hq
`
L0 ` h1{2L1 ` hL2 ´ Em,nphq

˘
fm,np¨, hq}L2pIhq ď Cm,nh

3{2.

Combining this with (2.19) and (2.20) in (2.18) we get

(2.21) DCm,n, Dh0 ą 0, @h P p0, h0q, } ppgmphq ´ Em,nphqq pvm,np¨, hq}L2pIhq ď Cm,nh
3{2.
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Moreover we have

}pvm,np¨, hq}L2pIhq “ }fm,np¨, hq}L2pRq ` Oph8q
“ }f0,n}L2pRq ` Oph1{2q
“ 1 ` Oph1{2q

where the above estimates depends on pm,nq. Since gmphq is unitarily equivalent to hpgmphq,

µm,nphq{h is the n-th eigenvalue of pgmphq and the spectral theorem applied to (2.21) shows

that

(2.22) DCm,n, Dh0 ą 0,
µm,nphq

h
ď Em,nphq ` Cm,nh

3{2

and we have proved the upper bound of Proposition 2.2.

‚ Arguments for the lower bound. The complete procedure for the proof of the lower bound

of the eigenvalues of pgmphq using the harmonic approximation can be found in [7, Chapter 4]

or [11, Chapter 3]. We recall here the main arguments. Let

pΦ0pt, hq :“ p1 `
?
htq logp1 `

?
htq ´

?
ht

be the distance of Agmon in the t-variable, the estimates provided in (2.7) becomes:

@β P p0, 1q, }eβ
pΦ0

h pum,np¨, hq}L2pIhq ď CpE, βq
where pum,np¨, hq is the n-th eigenvector associated to pgmphq. Therefore there holds a priori

estimates on the eigenfunctions proving that they concentrate near t “ 0 when h tends to

0. Using a Grushin procedure (see [10]), these eigenfunctions are used as quasi-modes for

the first order approximation L0 and this provides a rough lower bound on the eigenvalues
µm,nphq

h
of pgmphq by the eigenvalues of L0 that are the Landau levels, modulo some remainders.

Combining this with (2.22), we get that there are gaps in the spectrum of pgmphq and the spectral

theorem applied to (2.21) proved the lower bound on
µm,nphq

h
and therefore the lower bound of

Proposition 2.2.

Notation Operator Space Form Eigenpairs

HA p´i∇ ´ Aq2 L2pR3q spectrum“ R`

gmpkq ´1
r
BrrBr ` m2

r2
` plog r ´ kq2 L2pR`, rdrq qkm pλm,npkq, um,npr, kqq

rgmpkq ´B2
r `

m2´ 1

4

r2
` plog r ´ kq2 L2pR`, drq rqkm pλm,npkq, rum,npr, kqq

gmphq ´h2 1
ρ

BρρBρ ` h2m
2

ρ2
` plog ρq2 L2pR`, ρdρq qh

m pµm,nphq,um,npρ, hqq

rgmphq ´h2B2
ρ ` h2

m2´ 1

4

ρ2
` plog ρq2 L2pR`, dρq rqh

m pµm,nphq, rum,npρ, hqq

pgmphq ´B2
t `h

m2´ 1

4

p1`h1{2tq2 ` plogp1`h1{2tqq2 L2pIh, dtq pqh
m ph´1µm,nphq, pum,npt, hqq

TABLE 1. Operators and notations. Remind that ρ “ hr with r “
a
x2 ` y2,

h “ e´k and Ih “ p´h´1{2,`8q.



GROUND STATE OF A 3D MAGNETIC HAMILTONIAN 13

2.4. Numerical approximation of the band functions. We use the finite element library

Melina ([16]) to compute numerical approximations of the band functions λm,npkq with 0 ď
m ď 2 and 1 ď n ď 4. For k P r´2, 6s), the computations are made on the interval r0, Ls
with L large enough and an articifial Dirichlet boundary condition at r “ L. According to

the decay of the eigenfunctions provided by the Agmon estimates we have chosen L “ 2e6

so that the region tr „ eku where are localized the associated eigenfunction is included in the

computation domain.

On Figure 1 we have plot the numerical approximation of λm,npkq for the range of param-

eters described above. According to the theory, they all decrease from `8 toward 0. Notice

that the band functions may cross for different values of m.

On figure 2 we have zoomed on the lowest energies λ ăă 1 and we have also plotted the

first order asymptotics k ÞÑ p2n ´ 1qe´k. We see that for set 1 ď n ď 4, the band functions

λm,npkq0ďmď2 cluster around the first order asymptotic p2n´1qe´k according to Theorem 1.1.

−2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

k

 

 
m=0
m=1
m=2

FIGURE 1. The band functions λm,npkq for 0 ď m ď 2 and 1 ď n ď 4 and k P r´2, 6s.
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FIGURE 2. Zoom on the lowest energies compared with the first order asymp-

totics p2n ´ 1qe´k. Each cluster corresponds to an energy level n.

3. CONSTRUCTION OF QUASI-MODES AND INFINITENESS OF NEGATIVE

EIGENVALUES

In this section we prove Theorem 1.2 giving infinitely many eigenvalues below 0 for a slowly

decreasing perturbation.

First, we consider V depending only on pr, zq and we construct quasi-modes which allow

to reduce the existence of infinitely many negatives eigenvalues to the existence of sufficiently

small eigenvalues of some 1D-effective problems D2
z ´ Vm,n. Then, we study the effective

potential Vm,n and conclude the proof of Theorem 1.2.

3.1. Quasi-modes. We construct quasi-modes for the perturbed operator HA ´V where V is

axisymmetrical. Let

ψm,npr, φ, z, kq :“ eimφeikzum,npr, kqfpzq
where f P L2pRq, pm,n, kq will be chosen later and um,npr, kq is a normalized eigenfunction

of gmpkq associated with λm,npkq. We have:
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Lemma 3.1. For any ǫ ą 0,

(3.1)

xpHA´V qψm,n, ψm,ny ď p1`ǫqλm,npkq}f}2L2pRq`p1`ǫ´1q ‖ Dzf ‖2L2pRq ´xVm,np., kqf, fyL2pRq

with

(3.2) Vm,npz, kq :“
ż

r

|rum,npr, kq|2V pr, zqdr; rum,npr, kq :“
?
r um,npr, kq.

Proof. We have

(3.3) HAψm,npr, φ, z, kq “ eimφeikzfpzqgmpkqum,npr, kq
` eimφeikzum,npr, kq

`
D2

zf ` 2plog r ´ kqDzfpzq
˘
,

that is

(3.4) pHA ´ V qψm,npr, φ, z, kq “ λm,npkqψm,npr, φ, z, kq
` eimφeikzum,npr, kq

`
D2

zf ` 2plog r ´ kqDzfpzq ´ V pr, zqfpzq
˘
.

(3.5) pHA ´ V qψm,n ¨ ψm,n “ λm,npkqum,npr, kq2fpzq2`

um,npr, kq2
´
D2

zfpzq ` 2plog r ´ kqDzfpzq ´ V pr, zqfpzq
¯
fpzq.

Integrating over pr, zq in the weighted space pR` ˆ R, rdrdzq we get

(3.6) xpHA ´ V qψm,n, ψm,nyL2pR`ˆR,rdrdzq “ λm,npkq}f}2L2pRq

` }Dzf}2 ` 2

ż

r,z

plog r ´ kq|um,npr, kq|2Dzfpzqfpzqrdrdz ´
ż

z

Vm,npz, kq|fpzq|2dz.

Then, using that for any ǫ ą 0,

|2plog r ´ kqDzfpzqfpzq| ď ǫplog r ´ kq2|fpzq|2 ` ǫ´1|Dzf |2,
we deduce,

xpHA ´ V qψm,n, ψm,ny ď λm,npkq}f}2L2pRq ` p1 ` ǫ´1q ‖ Dzf ‖2L2pRq

`ǫ
ż

r,z

plog r ´ kq2|um,npr, kq|2|fpzq|2rdrdz ´ xVm,np., kqf, fyL2pRq.

Since in the sense of quadratic form in L2pR` ˆR, rdrdzq, we have plog r´ kq2 ď gmpkq, we

obtain (3.1) using again that gmpkqum,npr, kq “ λm,npkqum,npr, kq. �

Remark 3.2. According to the Feynman-Hellmann formula, the third term in the right hand

side of (3.6) is related to the derivative of λm,npkq:

λ1
m,npkq “ ´2

ż

r,z

plog r ´ kq|um,npr, kq|2rdr.

This quantity could be studied more carefully as in [13] where it is done for another fibered

operator, but here, we need only some rough estimates.
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3.2. Estimate on the reduced potential. We are looking at the asymptotic behavior of the 1D

potential z ÞÑ Vm,npz, kq by using the localization properties of the eigenfunctions rum,np¨, kq
when k goes to `8. In this section all the Landau’s notations refers to an asymptotic behavior

when k goes to `8. Set pm,nq P ZˆN
˚, Cm,n ą 2n´1 and choose k large enough such that

λm,npkq ď Cm,ne
´k (see Theorem 1.1). Write that R “ IkYAIk with Ik “ rek´apkq, ek`apkqs

and apkq “ opekq will be chosen later. We use (2.9) with E “ 0:
ż

AIk
|rum,npr, kq|2dr ď Cp0, βq sup

rPAIk
e´βΦ0pr,kq

where the Agmon distance Φ0 is defined in (2.8). Since Φ0p¨, kq is decreasing on p0, ekq and

increasing on pek,`8q we have

inf
AIk

Φ0p¨, kq “ minpΦ0pek ˘ apkqq .

An asymptotic expansion at these points provides

Φ0pek ˘ apkq, kq “
kÑ`8

1

2
a2pkqe´k ` Opapkq3e´2kq .

Assume that

(3.7) lim
kÑ`8

a2pkqe´k “ `8 and lim
kÑ`8

a3pkqe´2k “ 0

then we have

e´βΦ0pek˘apkq,kq „
kÑ`8

e´β
2
apkq2e´k

The condition (3.7) is valid for any apkq satisfying

e
k
2 ăă apkq ăă e

2k
3

and for such an apkq we get

(3.8) sup
rPAIk

e´βΦ0pr,kq „
kÑ`8

e´β
2
apkq2e´k

.

We have

Vm,npz, kq ě inf
rPIk

V pr, zq
ż

Ik

|rum,npr, kq|2dr

ě inf
rPIk

V pr, zqp1 ´ Cp0, βq sup
rPAIk

e´βΦ0pr,kqq

where we have used }rum,np¨, kq}L2pR`q “ 1.

Set β P p0, 1q once for all. Choose ǫ ą 0. Then we deduce from the choice of apkq in (3.7)

and (3.8) that there exists k0 that depends a priori of pm,nq such that

(3.9) @k ě k0, @z P R, Vm,npz, kq ě p1 ´ ǫq inf
rPIk

V pr, zq
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3.3. Proof of Theorem 1.2. According to the min-max principle, since V satisfies (1.4), it

is sufficient to prove the infinity of the negative eigenvalues for the axisymmetric potential

V pr, zq “ xry´αvKpzq. Let us denote Hm
A

the restriction of HA to eimφL2pR` ˆ R, rdrdzq.

For V axisymmetric, HA ´ V is unitarily equivalent to ‘mPZpHm
A

´ V q, then HA ´ V has

infinitely many negative eigenvalues provided that

‚ Either Hm
A

´ V has at least one’s for all m P Z,

‚ or there exists m P Z such that Hm
A

´ V has infinitely many negative eigenvalues.

Thanks to the min-max principle, Lemma 3.1, implies that for each m P Z the number of

negative eigenvalues of Hm
A

´ V is at least the number of eigenvalues of p1 ` ǫ´1qD2
z ´

Vm,np., kq below ´p1 ` ǫqλm,npkq, that is the number of eigenvalues of D2
z ´ ǫ

1`ǫ
Vm,np., kq

below ´ǫλm,npkq.

For V pr, zq “ xry´αvKpzq, the inequality (3.9) implies:

@k ě k0, @z P R, Vm,npz, kq ě Ce´αkvKpzq,
and choosing k large enough such that λm,npkq ď Cm,ne

´k, we deduce that the number of

negative eigenvalues of Hm
A

´ V is at least the number of eigenvalues of

D2
z ´ Cǫ

1`ǫ
e´αkvK

below ´ǫCm,ne
´k. Then Theorem 1.2 follows by applying the following lemmas (Lemma 3.3

and Lemma 3.4), for k sufficiently large with Λpkq “ e´αk, v “ Cǫ
1`ǫ

vK and λpkq “ ǫCm,ne
´k.

3.4. Lemmas on negative eigenvalues for a family of some 1D Schrödinger operators.

Lemma 3.3. Let hpkq “ D2
z ´ Λpkqvpzq on R, k P R with:

v P L1pRq;
ż

R

vpzqdz ą 0, Λpkq ą 0.

Let λpkq be a positive function of k P R such that

(3.10) lim
kÑ`8

λpkq “ 0; lim
kÑ`8

λpkq
Λpkq2 “ 0.

Then, for k sufficiently large, hpkq ` λpkq has at least one negative eigenvalue.

Proof. Let us introduce the L2´normalized function

vkpzq :“ apkq 1

2 e´apkq|z|

with apkq satisfying limkÑ`8 apkq “ 0 and to be chosen. We use vkpzq as a quasi-mode:

xhpkqvk, vky “ apkq2 ´ Λpkqapkq
ż

R

vpzqe´2apkq|z|dz.

Since

lim
kÑ`8

ż

R

vpzqe´2apkq|z|dz “
ż

R

vpzqdz ą 0,

for k sufficiently large, there exists C ą 0 such that:

xhpkqvk, vky ď apkq2 ´ CΛpkqapkq.
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By using the min-max principle, it remains to chose apkq such that apkq2 ´ CΛpkqapkq ă
´λpkq. Under the assumption (3.10), the polynomial X2 ´CΛpkqX `λpkq has two real roots

a`pkq ą a´pkq ą 0 with a´pkq ď 2λpkq
CΛpkq tending to 0 as k tends to infinity, see (3.10). Then,

there exists apkq such that, for k sufficiently large,

xhpkqvk, vky ă ´λpkq,
and Lemma (3.3) holds. �

Lemma 3.4. Let hpkq “ D2
z ´ Vk on R, k P R with Vk satisfying:

Vkpzq ě Λpkqxzy´γ; γ P p0, 2q; Λpkq P p0, 1q.

Let λpkq be a positive function of k P R such that

(3.11) lim
kÑ`8

λpkq
Λpkq 2

2´γ

“ 0.

Then, for k sufficiently large, hpkq ` λpkq has at least one negative eigenvalue and the

number of negative eigenvalues tends to infinity, as k tends to infinity.

Proof. Using the change of variable y “ Λpkq 1

2´γ z, it is clear that hpkq is unitarily equivalent

to Λpkq 2

2´γ h̃pkq with

h̃pkq :“ D2
y ´ 1

Λpkq 2

2´γ

Vk

˜
y

Λpkq 1

2´γ

¸
.

By assumption on Vk, we have:

1

Λpkq 2

2´γ

Vk

˜
y

Λpkq 1

2´γ

¸
ě pΛ 2

2´γ pkq ` y2q´ γ
2 ě p1 ` y2q´ γ

2

where we have used Λpkq P p0, 1q. Then the min-max principle implies that the number of

negative eigenvalues of hpkq ` λpkq is larger that the number of eigenvalues of D2
y ´ xyy´γ

below ´ λpkq
Λ

2
2´γ pkq

. Since γ ă 2, it is known (see [21, Theorem XIII.82]) that D2
y ´ xyy´γ as

infinitely many negative eigenvalues and Lemma 3.4 follows from (3.11). �

4. FINITE NUMBER OF NEGATIVE EIGENVALUE FOR PERTURBATION BY SHORT

RANGE POTENTIAL

The aim of this section is to prove Theorem 1.3. In Section 4.2, using the Birman-Schwinger

principle, we reduce the proof to the analysis of some compact operator involving the contribu-

tion of the small energies (λm,npkq ď ν ăă 1). Exploiting that the eigenfunctions associated

with λm,npkq are localized near ek, we obtain in Section 4.3 an upper bound of the counting

function including interactions between the behavior in r and z via a convolution product and

the Fourier transform w.r.t. z. Then, exploiting a uniform lower bound of the band functions

(see Section 4.1), we are able to prove Theorem 1.3 by computing the Hilbert-Schmidt norm

of a canonical operator and by using standard Young inequality (see Section 4.4).
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4.1. Uniform estimate for the one-dimensional problem. In order to prove Theorem 1.3 we

need an uniform lower bound on the band functions near 0.

Lemma 4.1. Let ν0 ą 0. There exists C0 ą 0 such that for all pm,n, hq satisfying µm,nphq ď
ν0 we have

µm,nphq ě C0nh

‚ Sketch of the proof. For convenience, first we work with the operator

gmphq “ ´h2 1
ρ

BρρBρ ` V m
h with V m

h pρq :“ logpρq2 ` h2
m2

ρ2
.

We notice that in the sense of quadratic form we have gmphq ě g0phq and dompgmphqq Ă
dompg0phqq, therefore for all m P Z there holds µm,nphq ě µ0,nphq and it is sufficient to prove

the result for m “ 0.

We will split the proof depending on which region belongs the parameter h:

(1) For h P p0, h0q with h0 to be chosen, we will use the semi-classical analysis and the

Agmon estimates on the eigenfunctions in order to compare g0phq with more standard

operators. The idea is to bound from below the potential log2 ρ on a suitable interval

by a quadratic potential such that the associated operator has known spectrum.

(2) Since h Ñ µ0,nphq is unbounded for large h, there exists hν0 such that for h ě hν0 the

eigenvalues µm,nphq are outside the region tµ ď ν0u.

(3) On the compact rh0, hν0s, since n Ñ µ0,nphq is unbounded for large n, we may find

N ě 1 such that for n ě N the eigenvalues µm,nphq are outside the region tµ ď ν0u.

Therefore the Lemma is clear on this region since we have to deal with a finite number

of eigenvalues.

‚ proof. Assume µm,nphq ď ν0. Denote by 0 ă ρ1 ă 1 ă ρ2 the two real numbers (depending

on ν0) such that

log2pρ1q “ log2pρ2q “ ν0 .

Set ρ1
1 P p0, ρ1q, ρ1

2 P pρ2,`8q and Ipν0q :“ pρ1
1, ρ

1
2q. Let Mpν0q :“ minpφ0pρ1

1q,φ0pρ1
2qq

where φ0 is defined by

φ0pρq :“
ˇ̌
ˇ̌
ż ρ

1

b
pplog ρq2 ´ ν0q`dρ

ˇ̌
ˇ̌

By construction we have Mpν0q ą 0 and the Agmon estimate (2.7) provides h0 ą 0 such that

(uniformly in n):

@h P p0, h0q,
ż

AIpν0q
|u0,npρ, hq|2ρdρ ď Cpν0, βqe´βMpν0q{h

where β P p0, 1q is set.

Recall that rum,npρ, hq “ ?
ρ um,npρ, hq is a normalized eigenfunction of rgmphq “ MgmphqM˚

associated with the eigenvalue µm,nphq. It satisfies

(4.1) @h P p0, h0q,
ż

AIpν0q
|ru0,npρ, hq|2dρ ď Cpν0, βqe´βMpν0q{h
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Remark 4.2. Since gmphq ě g0phq, in the sense of quadratic form, the above estimate (4.1)

holds also for rum,n:

@h P p0, h0q,
ż

AIpν0q
|rum,npρ, hq|2dρ “

ż

AIpν0q
|um,npρ, hq|2ρdρ ď Cpν0, βqe´βMpν0q{h

uniformly with respect to pm,nq such that µm,nphq ď ν0. This estimate will be used in Section

4.2.

Set ǫ0 P p0, ρ1
1q. Let pχjqj“1,2 P C8pR`, r0, 1sq be a partition of the unity of R` such that

χ2
1 `χ2

2 “ 1 with χ2 “ 0 on Ipν0q and χ2 “ 1 on p0, ρ1
1 ´ ǫ0qYpρ1

2 ` ǫ0,`8q. We may assume

that there exists C ą 0 such that
ř

j |∇χj|2 ď C.

The IMS formula provides for any eigenfunction ru0,np¨, hq:

rqh
0pru0,np¨, hqq “

ÿ

j“1,2

rqh
0pχjru0,np¨, hqq ´

ÿ

j“1,2

}p∇χjqru0,np¨, hq}2L2pR`q

ě rqh
0pχ1ru0,np¨, hqq ´ C

ż

supppχ1
2

q
|ru0,npρ, hq|2dρ

and therefore using (4.1):

(4.2) rqh
0pru0,np¨, hqq ě rqh

0pχ1ru0,np¨, hqq ´ Cpν0, βqe´βMpν0q{h.

We now bound from below rqh
0pχ1ru0,np¨, hqq using a lower bound on the potential. We have

(4.3) DCpν0q P p0, 1q, @ρ P Jpν0q, Cpν0qpρ ´ 1q2 ď log2 ρ

where we have denoted Jpν0q :“ pρ1
1 ´ ǫ0, ρ

1
2 ` ǫ0q.

Assume n ‰ n1. Since xru0,np¨, hq, ru0,n1p¨, hqyL2pR`q “ 0, we deduce from (4.1) that

(4.4)
ˇ̌
xχ1ru0,np¨, hq, χ1ru0,n1p¨, hqyL2pR`q

ˇ̌
ď Cpν0, βqe´βMpν0q{h.

Let us introduce the harmonic oscillator

glowphq :“ ´h2B2
ρ ` pρ ´ 1q2, ρ P R

initially defined on C8
0 pRq and close on L2pRq, whose eigenvalues are tp2n ´ 1qhunPN˚ . Due

to (4.3) and since supppχ1q “ Jpν0q we have

(4.5) rqh
0pχ1ru0,np¨, hqq ě Cpν0qxglowphqχ1ru0,np¨, hq, χ1ru0,np¨, hqyL2pRq

´ h2

4pρ1
1 ´ ǫ0q2 }χ1ru0,np¨, hq}2L2pR`q

where in the right hand side, χ1ru0,n, extended by 0 on R´, is also considered as a function

defined on R.

Recall (4.4), the min-max principle combined with (4.5) provides

(4.6) rqh
0pχ1ru0,np¨, hqq ě

´
Cpν0qp2n ´ 1qh ´ rCpν0, βqh2

¯
}χ1ru0,np¨, hq}2L2pR`q.

Using (4.1) we get |1 ´ }χ1ru0,np¨, hq}2L2pR`q| ď Cpν0, βqe´βMpν0q{h.
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Therefore combining (4.2) and (4.6) we have proved the existence of h0 ą 0 and C0 ą 0

such that for all p0, n, hq such that µ0,nphq ď ν0 we have

@h P p0, h0q, µ0,nphq “ rqh
0pru0,np¨, hqq ě C0nh.

We now have to deal with the region h P ph0,`8q. Since µ0,nphq tends to `8 as h tends to

`8, there exists hν0 ą 0 such that

@n P N
˚, @h ě hν0 , µ0,nphq ě ν0 .

Therefore we are led to prove the lower bound for h P rh0, hν0s. Since for all h ą 0 the

sequence pµm,nphqqně1 converges toward `8, there exists nphq such that for all n ě nphq we

have µm,nphq ě ν0. Due to a compact argument we find N P N
˚ such that

@n ą N, @h P rh0, hν0s, µ0,nphq ě ν0 .

Define Cphq :“ min1ďnďN µ0,nphq{n and C :“ minhPrh0,hν0
s
Cphq
h

. We clearly have C ą 0 and

by construction, for all pn, hq P N
˚ ˆ rh0, hν0s such that µ0,nphq ď ν0 we have

µ0,nphq ě Cnh

therefore the lemma is proved for h P rh0, hν0s.

Remark 4.3. In (4.6), the remainder term of order h2 involves the contributions of ´h2

4ρ2
and has

been controlled on Jpν0q. Another strategy, which improves the remainder term, would have

been to work in the weighted space L2
ρpR`q and to consider

glowphq :“ ´h2 1
ρ

BρρBρ ` pρ ´ 1q2, ρ ą 0.

In this case, (4.6) is replaced by

qh
0pχ1u0,np¨, hqq ě Cpν0qpζnphq ´ Cpν0, βqe´βMpν0q{hq}χ1u0,np¨, hq}2L2

ρpR`q

with ζnphq the n-th eigenvalue of the operator glowphq. These eigenvalues have already been

studied in [25, Section 4.2] and [17] and they can be bounded from below by C1nh by exploit-

ing the results from [17].

4.2. Bring the norm of a canonical operator. Let λ ą 0, for simplicity we denote by

N pλq :“ NA,V pλq the number of negative eigenvalues of HA ´ V below ´λ:

N pλq :“ 7
´
SpHA ´ V qXs ´ 8,´λs

¯
.

We want to prove that there exists C ą 0 independent of λ, such that N pλq ď C. Let us

introduce the axisymmetric non negative potential

(4.7) V0pr, zq :“ xry´α vKpzq.
The assumption (1.5) means that V ď V0. Then the min-max principle gives:

(4.8) N pλq ď N0pλq :“ 7
´
SpHA ´ V0qXs ´ 8,´λs

¯
.
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According to the Birman-Schwinger principle, for λ ą 0,

(4.9) N0pλq “ n`

´
1, V

1

2

0 pHA ` λq´1V
1

2

0

¯
,

where for a self-adjoint operator T , n`ps, T q :“ Tr1ps,8qpT q; is the counting function of

positive eigenvalues of T .

Fix a real number ν ą 0 (chosen sufficiently small later) and let us introduce the orthogonal

projections Pν :“ 1r0,νspHAq and Pν :“ I ´ Pν “ 1sν,`8rpHAq.

Since HAPν ě ν, the compact operator V
1

2

0 pHA ` λq´1PνV
1

2

0 is uniformly bounded with

respect to λ ě 0 and from the Weyl inequality, for any ǫ ą 0, we have:

(4.10) n`

´
1, V

1

2

0 pHA ` λq´1V
1

2

0

¯
ď n`

´
1 ´ ǫ, V

1

2

0 pHA ` λq´1PνV
1

2

0

¯
` Cν , Cν ě 0.

According to the decomposition:

HA “ Φ˚F˚
3

¨
˝

À
ÿ

pm,nqPZˆN˚

ż À

kPR
λm,npkqPm,npkqdk

˛
‚F3Φ,

with Pm,npkq : f ÞÑ xf, um,np¨, kqyum,np¨, kq, the orthogonal projection onto um,np., kq P
L2pR`, rdrq, we have

V
1

2

0 pHA ` λq´1PνV
1

2

0 “ V
1

2

0 Φ˚F˚
3

¨
˝

À
ÿ

pm,nqPZˆN˚

ż À

kPR
Pm,npkq1r0,νspλm,npkqq

λm,npkq ` λ
dk

˛
‚F3ΦV

1

2

0 .

Since V0 is axisymmetric, this operator is unitarily equivalent to the direct sum of

Kν,mpλq :“ V
1

2

0 F˚
3

˜ż À

kPR

À
ÿ

nPN˚

rPm,npkq1r0,νspλm,npkqq
λm,npkq ` λ

dk

¸
F3V

1

2

0 ,

defined in L2pR` ˆ R, drdzq, with rPm,npkq :“ M˚Pm,npkqM “ x., rum,npkqyrum,npk, .q, the

orthogonal projection onto rum,np., kq P L2pR`, drq, rum,npr, kq “ ?
rum,npr, kq.

Let us prove that for some s Ps0, 1r, there exists ν sufficiently small such for any m P Z and

any λ ą 0

(4.11) n`ps,Kν,mpλqq “ 0.

Then Theorem 1.3, is a consequence of (4.8), (4.9), (4.10) and (4.11).

Let us introduce the operator:

Smpλq : L2pR, l2pN˚qq ÝÑ L2pR` ˆ R, drdzq,
defined, for pgnp.qqnPN˚ P L2pR, l2pN˚qq by

(4.12) Smpλqpgnqpr, zq :“ V
1

2

0 pr, zq?
2π

ÿ

nPN˚

ż

R

gnpkqe
izk

1r0,νspλm,npkqq
pλm,npkq ` λq 1

2

rum,npr, kqdk,
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and its adjoint defined for f P L2pR` ˆ R, drdzq, by

Smpλq˚pfqnpkq “ 1?
2π

1r0,νspλm,npkqq
pλm,npkq ` λq 1

2

ż

R`ˆR

e´izkrum,npr, kqpV
1

2

0 fqpr, zqdrdz.

We have:

Kν,mpλq “ SmpλqSmpλq˚,

and since

(4.13) n`ps,Kν,mpλqq “ n`ps, SmpλqSmpλq˚q “ n`ps, Smpλq˚ Smpλqq,
we have to prove that for ν sufficiently small, the L2´norm of Smpλq˚ Smpλq admits an upper

bound by s ă 1 uniformly with respect to m P Z and λ ą 0.

4.3. Computations on the integral kernel of the canonical operator.

Proposition 4.4. Let V0 defined in (4.7) and Smpλq defined in (4.12). Then there exist C ą 0

and ν0 ą 0 such that for all ν P p0, ν0q, the following upper bound of the Hilbert-Schmidt

norm holds:

(4.14) }Smpλq˚Smpλq}22 ď C
ÿ

n,n1

ż

k

ż

k1

ιm,n1pk1, νqιm,npk, νq|xvKpk1 ´ kq|2dk1dk

where we have set

ιm,npk, νq :“ 1r0,νspλm,npkqq
λm,npkq ` λ

e´αk .

Proof. We check that Smpλq˚Smpλq : L2pR, l2pN˚qq ÝÑ L2pR, l2pN˚qq corresponds with

(4.15) pSmpλq˚Smpλqpgn1qqn pkq “
1

2π
Lm,npkq

ż

z

ż

r

rum,npr, kqV0pr, zq
ÿ

n1

ż

k1

gn1pk1qLm,n1pk1qrum,n1pr, k1qeizpk1´kqdk1drdz

where we have denoted

Lm,npkq :“ 1r0,νspλm,npkqqa
λm,npkq ` λ

.

The integral kernel of this operator is

Nm,n,n1pk, k1q :“ Lm,npkqLm,n1pk1q
ż

r

ż

z

V0pr, zqrum,npr, kqrum,n1pr, k1qeizpk´k1qdzdr .

“ Lm,npkqLm,n1pk1qxvKpk1 ´ kq
ż

r

xry´αrum,npr, kqrum,n1pr, k1qdr.

Then the Hilbert-Schmidt norm is given by

(4.16) 4π2}Smpλq˚Smpλq}22 “
ÿ

n,n1

ż

k

ż

k1

ż

r

Lm,npkq2Lm,n1pk1q2|xvKpk1 ´ kq|2
ˇ̌
ˇ̌
ż

r

xry´αrum,npr, kqrum,n1pr, k1qdr
ˇ̌
ˇ̌
2

dkdk1.



24 VINCENT BRUNEAU AND NICOLAS POPOFF

Set ν0 ą 0 and pm,n, kq such that λm,npkq ď ν0. Applying Remark 4.2 we know that there

exists Ikpν0q :“ rρ1
1e

k, ρ1
2e

ks, ρ1
1 ă 1 ă ρ1

2, such that for any k ě k0 sufficiently large

(independent of pm,nq),
ż

AIkpν0q
xry´α | rum,npk, rq |2 dr ď

ż

AIkpν0q
| rum,npk, rq |2 dr ď Cpν0, βqe´βMpν0qek

with β P p0, 1q and Mpν0q ą 0. On the other hand, on Ikpν0q, we have
ż

Ikpν0q
xry´α | rum,npk, rq |2 dr ď Cpν0qe´αk

ż

Ikpν0q
| rum,npk, rq |2 dr ď Cpν0qe´αk.

Consequently,

(4.17)

ż

R`

xry´α | rum,npk, rq |2 dr “ Ope´αkq,

uniformly with respect to pm,n, kq P ZˆN
˚ ˆR satisfying λm,npkq ď ν0. Using the Cauchy-

Schwarz inequality we deduce from (4.16) that for all ν P p0, ν0q:

(4.18) }Smpλq˚Smpλq}22 ď C
ÿ

n,n1

ż

k

ż

k1

ιm,n1pk1, νqιm,npk, νq|xvKpk1 ´ kq|2dk1dk

and the lemma is proved �

We notice that the influence of V appears as an interaction between the behaviors in r and

z via a convolution product in the phase space. We now estimate the norm of the function

ιm,npk, νq:

Lemma 4.5. There exists C ą 0 and ν0 ą 0 such that for all pm,n, kq P ZˆN
˚ ˆR, we have

@ν P p0, ν0q, @q ě 1, }ιm,np¨, νq}Lq ď C
να´1

nα
.

Proof. Set ν0 ą 0 and assume λm,npkq ď ν0. According to Lemma 4.1 there exists C0 ą 0

such that

(4.19) λm,npkq ě C0ne
´k,

uniformly with respect to pm,n, kq P ZˆN
˚ˆR. Then for ν P p0, ν0q there holds 1r0,νspλm,npkqq ď

1r0, ν
C0

spne´kq and for any λ ą 0 we have

}ιm,n}qLq “
ż

k

1r0,νspλm,npkqq
pλm,npkq ` λqq e

´αqkdk ď
ż

kělog
C0n

ν

1

pλm,npkq ` λqq e
´αqkdk

ď 1

pC0nqq
ż

kělog
C0n

ν

ep´α`1qqkdk

“ 1

qpα ´ 1qpC0nqq
ˆ

ν

C0n

˙pα´1qq

and the lemma is proved. �
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4.4. Convergence of the series and proof of Theorem 1.3. We notice that the r.h.s of (4.14)

coincides with ÿ

n,n1

ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|2qpkqdk .

Assume that vK P Lp with p P r1, 2s. Then |xvK|2 P Lp1{2 with p1 “ p

p´1
ě 2. Young’s inequality

provides for all q ě 1:

}ιm,n1 ˚ |xvK|2}Lr ď }ιm,n1}Lq}vK}Lp

where 2
p1 ` 1

q
“ 1 ` 1

r
. We now use Holder’s inequality combined with lemma 4.5 and we get

for all pm,n, n1q:

@ν P p0, ν0q,
ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|2qpkqdk ď C}vK}Lp

ν2α´2

nαn1α

Since α ą 1, we get

ÿ

n,n1

ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|2qpkqdk “ Opν2α´2q}vK}Lp

ÿ

ně1

1

nα

ÿ

n1ě1

1

pn1qα

and therefore using Proposition 4.4:

(4.20) }Smpλq˚Smpλq}22 “ Opν2α´2q
which, for α ą 1, tends to 0 with ν, uniformly with respect to pm,λq P Z ˆ p0,`8q. Then,

(4.11) follows from (4.13). In conclusion the hypotheses we have used on V pr, zq is V pr, zq ď
xry´αvKpzq with α ą 1 and vK P LppRq, p P r1, 2s and we deduce Theorem 1.3.
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[12] B. HELFFER, J. SJÖSTRAND. Puits multiples en limite semi-classique. II. Interaction moléculaire.
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