
HAL Id: hal-00911140
https://hal.science/hal-00911140

Submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements on the accelerated integer GCD algorithm
Sidi Mohamed Sedjelmaci, Christian Lavault

To cite this version:
Sidi Mohamed Sedjelmaci, Christian Lavault. Improvements on the accelerated integer GCD algo-
rithm. Information Processing Letters, 1997, 61 (1), pp.31–36. �hal-00911140�

https://hal.science/hal-00911140
https://hal.archives-ouvertes.fr

Parallel Improvements on the Accelerated

Integer GCD Algorithm

Sidi Mohamed Sedjelmaci

Computer Science Institute, University of Oran Es-Senia. Algeria.

Christian Lavault

LIPN, CNRS URA 1507, Université Paris-Nord, av. J.-B. Clément F-93430 Villetaneuse∗

Abstract

The present paper analyses and presents several improvements to the algorithm for
finding the (a, b)-pairs of integers used in the k-ary reduction of the right-shift k-ary integer
GCD algorithm. While the worst-case complexity of Weber’s “Accelerated integer GCD
algorithm” is O

(

logφ(k)2
)

, we show that the worst-case number of iterations of the while

loop is exactly 1

2

⌊

logφ(k)
⌋

, where φ := 1

2

(

1 +
√

5
)

.
We suggest improvements on the average complexity of the latter algorithm and also

present two new faster residual algorithms: the sequential and the parallel one. A lower
bound on the probability of avoiding the while loop in our parallel residual algorithm is also
given.

Keywords: Parallel algorithms; Integer greatest common divisor (GCD); Parallel arithmetic
computing; Number theory.

1 Introduction

Given two integers a and b, the greatest common divisor of a and b, or gcd(a, b), is the
largest integer which divides both a and b. Applications for integer GCD algorithms include
computer arithmetic, integer factoring, cryptology and symbolic computation. Since Euclid’s
algorithm, several GCD algorithms have been proposed. Among others, the binary algorithm of
Stein and the algorithm of Schonhage must be mentioned. With the recent emphasis on parallel
algorithms, a large number of new integer GCD algorithms has been proposed. (See [5] for a
brief overview.) Among these is the “right-shift k-ary” algorithm of Sorenson which generalizes
the binary algorithm. It is based on the following reduction.

Given two positive integers u > v relatively prime to k (i.e., u, k and v, k are coprime
integers), pairs of integers (a, b) can be found that satisfy

au + bv ≡ 0 (modk) with 0 < |a|, |b| <
√

k. (1)

If we perform the transformation reduction (also called “k-ary reduction”)

(u, v) 7−→ (u′, v′) =
(

|au + bv|/k, min(u, v)
)

,

which replaces u with u′ = |au + bv|/k, the size of u is reduced by roughly 1

2
log2(k) bits.

∗Corresponding author. Email: Christian.Lavault@ura1507.univ-paris13.fr

1

Note also that the product uv is similarly reduced by a factor of Ω(
√

k), that is uv is reduced
by a factor ≥ k/

(

2⌈
√

k⌉
)

> 1

2

√
k − 1

2
(see [5]). Another advantage is that the operation au + bv

allows quite a high degree of parallelization. The only drawback is that gcd(u′, v) may not be
equal to gcd(u, v) (one can only argue that gcd(u, v) divides gcd(u′, v)), whence spurious factors
which must be eliminated.

In the k-ary reduction, Sorenson suggests table lookup to find sufficiently small a and b such
that au + bv ≡ 0 (modk). By contrast, Jebelean [2] and Weber [6, 7] both propose an easy
algorithm, which finds small a and b satisfying property (1). The latter algorithm is called the
“Jebelean-Weber Algorithm” (or JWA for short) in the paper.

The worst-case time complexity of the JWA is O
(

log2(k)2
)

. In this paper, we first show in
Section 2 that the number of iterations of the while loop in the JWA is exactly t(k) = 1

2
⌊logφ(k)⌋

in the worst case, which makes Weber’s result in [7] more precise. In Section 3, we suggest
improvements on the JWA and present two new faster algorithms: the sequential and the parallel
residual algorithms. Both run faster than the JWA (at least on the average), and their time
complexity is discussed. Finally, Section 4 provides a lower bound on the probability of avoiding
the while loop of the parallel residual algorithm.

2 Worst case analysis of the JWA

Let us first state the JWA presented in [7] as the “Accelerated GCD Algorithm” or the
“General ReducedRatMod algorithm”.

The Jebelean-Weber Algorithm (JWA)

Input: x, y > 0, k > 1, gcd(k, x) = gcd(k, y) = 1
Output: (n, d) such that 0 < n, |d| <

√
k and ny ≡ dx (modk)

c := x/y mod k;
f1 = (n1, d1) := (k, 0);
f2 = (n2, d2) := (c, 1)

while n2 ≥
√

k do
f1 := f1 − ⌊n1/n2⌋f2

swap (f1, f2)
return f2

The above version of the JWA finds small n and d such that ny = dx mod k; a = −d and
b = n meet the requirements of the k-ary reduction, so the need for large auxiliary tables is
eliminated. Besides, the output from the JWA satisfies property (1). (The proof is due to Weber
in [6, 7].)

To prove Theorem 2.1 which gives the number of iterations of the while loop in JWA, we
need the following technical Lemma 2.1 about the Fibonacci numbers.

Lemma 2.1. Let (Fn)n∈N be the Fibonacci sequence defined by the relation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n > 2).

The following two properties hold:
(i) n =

⌈

logφ(Fn+1)
⌉

for n ≥ 0.
(ii) F 2

⌈n/2⌉ < Fn < F 2
⌈n/2⌉+1

for n ≥ 3.

2

Proof. For n ≥ 2, φn−1 < Fn+1 < φn clearly holds, whence property (i). Now considering both
cases when n is either even or odd yields the two inequalities in (ii).

Theorem 2.1. The number of iterations of the while loop of the JWA is t(k) = frac12⌊logφ(k)⌋
in the worst case.

Proof. By [3, 4], for 0 < u, v ≤ N , the worst-case number of iterations of the “Extended Eu-
clidean Algorithm”, or EEA for short, is O

(

logφ(N)
)

. Moreover, the worst case occurs whenever
u = Fp+1 and v = Fp. The situation is very similar in the JWA’s worst case, which also occurs
whenever u = Fp+1 and v = Fp. However, the (slight) difference between the EEA and the JWA
lies in the exit test. The EEA’s exit test is ni+1 = 0, where ni = gcd(u, v), whereas the JWA’s
exit test is

ni <
√

k ≤ ni+1. (2)

Let then j = p − i, the worst case occurs when k = Fp+1 and c = Fp = n0. The number
of iterations of the while loop is t = i = p − j, when i satisfies inequalities (2). In that case,
ni = Fp−i = Fj , and the exit test (2) may be written F 2

j < Fp+1 < F 2
j+1. Thus, by Lemma 2.1,

we have j =
⌈

1

2
(p + 1)

⌉

and t = p−
⌈

1

2
(p + 1)

⌉

, which yields

p =

{

p/2− 1 if p is even, and

frac12(p− 1) if p is odd

Hence, the worst case happens when p is odd, and t(k) = 1

2
⌊logφ(k)⌋.

In the JWA, Euclid’s algorithm is stopped earlier. Yet, as shown in the above proof, the worst-
case inputs remain the same when the algorithm runs to completion: u = Fp+1 and v = Fp, i.e.
k = Fp+1 and c = Fp.

Example 1. Let (k, c) = (F12, F11) = (144, 89). From the JWA, we get t = 5 as expected, and
t(144) = 1

2
⌊logφ(144)⌋ = 5.

Notice that if k = 22ℓ, the worst case never occurs since k cannot be a Fibonacci number.
However, the case when k = 22ℓ corresponds to how the algorithm is usually used in practice.
The actual worst running time of the algorithm is still less than its theoretical worst-case number
of iterations. More precisely, whenever k = 22ℓt(k) = O (log2(k)) only.

3 Two residual algorithms

In the sequel, we make use of the following notation: for k ≥ 4, Ak, Bk and Uk are the sets
of positive integers defined by

Ak =]0,
√

k[, Bk =]k −
√

k, k[, Uk = Ak ∪Bk.

Definition 3.1. Let (x, y) ∈ Uk × Uk. The T -transformation is defined as follows.

If x, y ∈ Ak, then T (x, y) = (x, y).

If x ∈ Ak and y ∈ Bk, then T (x, y) = (x, y − k).

If x ∈ Bk and y ∈ Ak, then T (x, y) = (k − x,−y).

If x, y ∈ Bk, then T (x, y) = (k − x, k − y).

3

Remark 1. The (equivalent) analytic definition of the T -transformation is

T (x, y) =
(

(1− 2χ(x))x + χ(k)k, (1 − 2χ(x))(y − χ(y)k)
)

,

where χ is the characteritic function of the set Bk.

Proposition 3.1. For every (x, y) ∈ Uk × Uk, the pair (x′, y′) = T (x, y) satisfies
(i) 0 < x, |y′| <

√
k.

(ii) x′y ≡ xy′ (modk).

Proof.
(i) If k −

√
k < x < k, then 0 < k − x <

√
k and 0 < |k − x| <

√
k.

(ii) is easily derived from the definition of T .

3.1 The residual algorithm

The residual Algorithm Res

Input: x, y > 0, k > 1, gcd(k, x) = gcd(k, y) = 1
Output: (n, d) such that 0 < n, |d| <

√
k and ny ≡ dx (modk)

a := x mod k; b := y mod k

if (a, b) ∈ Uk × Uk then f2 := T (a, b) else
f1 = (n1, d1) := (k, 0)
f2 = (n2, d2) := (c, 1)

while n2 ≥
√

k do
f1 := f1 − ⌊n1/n2⌋f2

swap (f1, f2)
return f2 /* f2 = Res(x, y) */

The worst-case complexity of the residual algorithm remains in the same order of magnitude
as the JWA, O

(

log2(k)2
)

. However, the above algorithm runs faster on the average. The use of
transformation T makes it possible to avoid the while loop quite often indeed. (See the related
probability analysis in Section 4.) For example, the residual algorithm provides an immediate
result in the cases when (a, b) ∈ Uk × Uk or c > k −

√
k.

Note that the computational instruction c := a/b mod k may be performed either by the
euclidean algorithm [1], or by a routine proposed by Weber when k is an even power of two [6, 7].
Since x and y are symmetrical variables, the same algorithm can also be designed with the
instruction s := b/a mod k instead of c := a/b mod k, and then by swapping n and d at the end
of the algorithm. This remark leads to an obvious improvement about the residual algorithm:
why not compute in parallel both c and s? The following parallel algorithm is based on such an
idea.

4

3.2 The parallel residual algorithm

The Parallel Residual Algorithm Pares

Input: x, y > 0, k > 1, gcd(k, x) = gcd(k, y) = 1
Output: (n, d) such that 0 < n, |d| <

√
k and ny ≡ dx (modk)

a := x mod k; b := y mod k

if (a, b) ∈ Uk × Uk then f2 := T (a, b) else pardo
v1 = Res(a, b); v2 = Res(b, a)

return f2

v1 and v2 are two variables whose values are the result returned in the parallel computation
performed by Res(a, b) and Res(b, a), respectively. The algorithm Pares ends when either of
these two algorithms terminates.

Res(a, b) is the residual algorithm described in §3.1 and Res(b, a) is the following (very
slightly) modified version of Res.

a := b/a mod k;

if s ∈ Uk then f2 := T (1, s) else
f1 = (n1, d1) := (k, 0)
f2 = (n2, d2) := (s, 1)

while n2 ≥
√

k do
f1 := f1 − ⌊n1/n2⌋f2

swap (f1, f2)
endwhile

swap (n2, d2)
return f2

Remark 2. Res(b, a) and Res(b, a) are the only parallel routines performed in the algorithm
Pares, and they are both to terminate if either one or the other finishes. Such a (quasi-) serial
computation certainly induces an overhead on most parallel computers. Overhead costs may
yet be reduced to a minimum thanks to a careful scheduling and synchronization of tasks and
processors.

Note also that s may belong to Uk while c does not. This may be seen in the following
example.

Example 2. Let k = 1024, (a, b) = (263, 151), and
√

k = 32. Then, c = a/b mod k = 273, and
c /∈ Uk. But s = b/a mod k = 1009 ∈ Uk. So, the while loop is simply avoided by performing
f2 := T (1, 1009). Such an example shows that the parallel residual algorithm is very likely to
run faster than its sequential variant, at least on the average.

4 Probability analysis

We first need a technical result to perform the evaluation of the probability that the while
loop is avoided in the parallel residual algorithm.

5

Lemma 4.1. Let k be a square such that k ≥ 9, and let

Ek =
{

x ∈ N | 1 ≤ x ≤ k and gcd(x, k) = 1
}

.

Then, for every x ∈ Ek and 1 < x <
√

k, we have

√
k < 1/x mod k < k −

√
k. (3)

Proof. Notice first that, obviously, there cannot exist any integer 1 < x < 4 for k = 1 and k = 4;
whence the statement of the lemma: k ≥ 9.

Let x ∈ Ek such that 1 < x <
√

k and set y = 1/x mod k ∈ Ek. The whole proof is by
contradiction.

First, on the assumption that 1 < x <
√

k, suppose that y ≤
√

k. Hence, xy < k and since
xy ≡ 1 (modk) with x > 1, the contradiction is obvious. Thus y = 1/x mod k >

√
k.

Now, let us prove that y < k −
√

k in Eq. (3). On the assumption that 1 < x <
√

k,
suppose also by contradiction that y ≥ k −

√
k, with gcd(y, k) = 1 and y ≤ k. Let m, n be

two non-negative integers, and let x =
√

k −m, where 1 ≤ m ≤
√

k − 2 and y = k −
√

k + n,
where 0 ≤ n ≤

√
k. The upper bound on n may be reduced as follows: n 6=

√
k, since if y = k,

gcd(y, k) 6= 1 and y /∈ Ek. So that 0 ≤ n ≤
√

k − 1.
The product xy writes

xy = (
√

k −m)(k −
√

k + n) = k(
√

k −m) + P (m, n) + 1− k,

where P (m, n) = k − 1− (
√

k −m)(
√

k + n).
Now we have that xy ≡ 1 (modk) and, therefore, P (m, n) must satisfy

P (m, n) ≡ 0 (modk). (4)

From the bounds on m and n we can derive bounds on P (m, n),

k − 1− (
√

k − 1)
√

k ≤ P (m, n) ≤ k − 1−
(
√

k − (
√

k − 2)
)(
√

k − (
√

k − 1)
)

√
k − 1 ≤ P (m, n) ≤ k − 3

and, since k ≥ 9, 1 < P (m, n) < k: a contradiction with Eq. (4).

Remark 3. Lemma 4.1 is false when k is not a square: e.g., let k = 17. Then x = 4 and
y = 1/x mod k = 13, while k −

√
k < 17− 4 = 13.

Proposition 4.1. Let k be a square such that k ≥ 9. Let λ be a one-one mapping, λ : Ek ←→ Ek,
defined by λ(x) = 1/x mod k. Then we have

(i) Uk ∩ λ(Uk) = {1, k − 1)}.

(ii) |Uk ∪ λ(Uk)| = 4ϕ(
√

k)− 2,

where ϕ denotes Euler’s totient function ϕ(m) = |(Z/kZ)∗| defined for any integer m ≥ 1.

Proof. Recall that

Ek = {x ∈ N | 1 ≤ x ≤ k and gcd(x, k) = 1},
Uk = {x ∈ Ek |O < x <

√
k or k

√
k < x < k},

6

and
λ(Uk) = {y ∈ Ek | y = 1/x mod k} ⊂ Ek.

(i) Obviously, 1 and k − 1 belong to Uk. Let x ∈ Uk, such that x 6= 1 and x 6= k − 1. By
definition, x may belong to either distinct subset of Uk:

Case 1: 1 < x <
√

k. By Lemma 4.1, λ(x) /∈ Uk and λ(λ(x)) /∈ Uk.
Case 2: k −

√
k < x < k − 1. Let x′ = k − x, the integers x and x′ play a symmetrical role,

which brings back to Case 1, and λ(x′) /∈ Uk.
Hence, λ(x′) = λ(k − x) = k − λ(x) /∈ Uk. It follows that λ(x) /∈ Uk and x = λ(λ(x)) /∈ Uk.

Therefore, every integer x ∈ Uk distinct from 1 and k− 1 does not belong to λ(Uk), and equality
(i) follows.

(ii) The function λ being one-to-one, |λ(Uk)| = |Uk|, which yields

|Uk ∪ λ(Uk)| = |Uk|+ |λ(Uk)| − |Uk ∩ λ(Uk)|
= |Uk| − |Uk ∩ λ(Uk)|.

Now x <
√

k and gcd(x, k) = 1, so gcd(x,
√

k) = 1, and thus,

|{x ∈ Ek | gcd(x, k) = 1, x <
√

k}| = ϕ(
√

k) and |Uk| = 2ϕ(
√

k).

By equality (i), |Uk ∩ λ(Uk)| = |{1, k− 1)}| = 2 and ((ii) holds: |Uk ∪ λ(Uk)| = 4ϕ(
√

k)− 2.

From the previous results we can estimate the probability p1 that x ∈ Uk or 1/x mod k ∈ Uk

when k is a square (k ≥ 9). In particular we have the following theorem.

Theorem 4.1. Let k be a square such that k ≥ 9, and p1 = P
(

x ∈ Uk or 1/x mod k ∈ Uk

)

.
Then,

p1 = 2√
k

(

2− 1√
k

)

Proof. Ek = {x ∈ N | 1 ≤ x ≤ k and gcd(x, k) = 1} and |Ek| = ϕ(k).
Let x ∈ Ek. If x /∈ Uk and λ(x) = 1/x mod k ∈ Uk, x = λ(λ(x)) ∈ A(Uk).
Now, |λ(Uk)| = |Uk| = 2

√
k. Let r be the number of integers x ∈ Ek such that x ∈ Uk or

1/x mod k ∈ Uk. By Proposition 4.1, r = |Uk ∪ λ(Uk)| = 4ϕ(
√

k) − 2, and p1 = r/ϕ(k). Since
ϕ(k) =

√
kϕ(
√

k, the result follows.

Remark 4. Among all possible values of k, the case if k = 22ℓ is especially interesting since it
allows easy hardware routines. If k = 22ℓ , ℓ ≥ 2, k is a square ≥ 9 and Thm. 4.1 applies. Since

ϕ
(√

22ℓ
)

= ϕ
(

2ℓ
)

= 2ℓ−1, and

p1 = 1/2ℓ−2 − 1/22ℓ−2.

Examples 1.

1. Let k = 16. We have

x 1 3 5 7 9 11 13 15
1/x mod k 1 11 13 7 9 3 5 15

Table 1: Values of 1/x mod 16 for the 8 first odd integers.

7

In Table 1, 1, 3, 13, 15 ∈ U16, and also 1/5 mod 16, 1/11 mod 16 ∈ λ(U16). Thus, the while
loop is avoided 6 times (at least) among the 8 possible cases, and p1 = 6/8.

Similarly, by Thm. 4.1, r = 4ϕ(4) − 2 = 6, p1 = 1

2
(2 − 1

2
) = 3/4. In that case, the while

loop is avoided 75 % of the time.

2. Let k = 64. U64 ∪ λ(U64) = {1, 3, 5, 7, 9, 13, 21, 43, 51, 55, 57, 59, 61, 63}: r = 14
and p1 = 14/32 = (23 − 1)/24 = 7/16. The while loop is avoided 14 times among the 32
possible cases, which corresponds to 43.75 % at least.

It is worthwhile to notice that if c = 39, then c /∈ U64 and s = 1/c mod 64 = 23 /∈ U64.
In some particular cases however, the while loop can still be avoided. This happens for
example when (a, b) = (3, 5): c = 39 /∈ U64, s = 23 /∈ U64; yet the while loop is avoided
since (3, 5) ∈ U64 × U64.

3. Let k = 216 or k = 232. When dealing with 16-bits words, p1 = (28 − 1)/214 ∼= 1.55 %.
With 32-bits words, p1 = (216 − 1)/230 = 6× 10−3 %.

This latter examples show that p1 is only a lower bound on the actual probability p of
“systematically” avoiding the while loop, at each iteration of the parallel residual algorithm.

5 Summary and remark

We proved that the number of iterations of the while loop in the worst case of the Jebelean-
Weber algorithm equals t(k) = 1

2
⌊logφ(k)⌋. We presented two new algorithms, the sequential and

the parallel residual algorithm, which both run faster than the JWA (at least on the average).
Preliminary experimentations on these algorithms meet the above results and confirm the actual
and potential efficiency of the method. A lower bound on the probability of avoiding the while
loop of the parallel residual algorithm was also given.

These improvements have certainly more effect when k is small, and this is precisely the
case when using table-lookup is more efficient than the use of the JWA. However, even if such
improvements might seem negligible for only a few iterations of our algorithm, avoiding the inner
loop several times repeatedly makes them significant indeed in the end.

References

[1] R.T. Gregory and E.V. Krishnamurthy, Methods and Application of Error-Free Computa-
tion, Springer, 1984.

[2] T. Jebelean, A generalization of the binary GCD algorithm, in Proc. Int. Sympp. on Symbolic
and Algebraic Computation (ISSAC’93), (1993), pp. 111–116.

[3] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 2nd
ed., Addison Wesley, 1981.

[4] G. Lamé, Note sur la limite des diviseurs dans la recherche du plus grand commun diviseur
entre deux nombres entiers, C.R. Acad. Sci. Paris, 19 (1844), pp. 867–870.

[5] J. Sorenson, Two fast GCD algorithms, J. Algorithms, 16 (1994), pp. 110–144.

[6] K. Weber, The accelerated integer GCD algorithm, Dept. of Mathematics and Computer
Science, ((1995), Kent State Un..

8

[7] K. Weber, Parallel implementation of the accelerated integer GCD algorithm, J. Symbolic
Comput. (Special Issue Parallel Symbolic Computation), (1996), to appear.

9

