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SUMMARY

Ability to demonstrate statistical patterns of distri-
bution by threatened species and by their potential
competitors will determine success in forecasting
locations at greatest risk, and ability to target
management efforts. A self-organizing map algorithm
(SOM) was used to derive probabilities of presence of
native (Austropotamobius pallipes) and exotic (Orconectes
limosus, Pacifastacus leniusculus and Procambarus clarkiz)
crayfish species with respect to physical and land-
cover variables in a large stream system, using a
simple presence-absence dataset of species. Crayfish
were sampled at 128 sites representing 86 rivers.
The probability of occurrence of the native species
increased at higher elevations above sea level and
lower temperatures; populations appeared to be
mostly confined to headwater streams where exotic
competitors were unable to withstand the colder
conditions. The distribution of exotic species was
correlated with anthropogenic factors, such as the
degree of urbanization and agricultural land area.
Complementary modelling tools, such as GIS and
SOMs, can help to maximize the information extracted
from available data in the context of biological
conservation.

Keywords: freshwater, land use, neural networks, occurrence,
species distribution

INTRODUCTION

At the onset of most action plans directed towards the
conservation of threatened species at regional and/or national
scales, numerical patterning is needed to ‘map’ the current
distribution of populations in the area under survey, and,
whenever possible, estimate abundances and densities (see
Guisan & Zimmermann 2000 for a review). Eventually, similar
information is required for non-native ecological analogues,
when competitive interactions are likely to adversely affect
the native species (Morgan 1998; de la Hoz Franco & Budy
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2005). A common way to examine the fit between species
distributions and habitat is through ordination and correlation
of habitat and biotic variables. However, for many non-
mutually exclusive reasons (for example time- and cost-
efforts, species seasonality, detection difficulties and non-
standardized sampling), quantitative data such as population
densities cannot be consistently obtained over a large number
of sampling sites (Margules & Austin 1994; Marshall ez al.
2006), thus preventing conservationists from optimizing large
but heterogeneous datasets built on the basis of field and/or
literature data. There is therefore a need to develop alternative
analytical approaches which can maximize the information
extracted from available data, such as ‘simple’ presence-
absence data (Manel ez al. 1999; Bessa-Gomes & Petrucci-
Fonseca 2003; Céréghino ez al. 2005).

Inspired by the structure and the mechanism of the human
brain, artificial neural networks (ANNSs) provide convenient
tools to extract information from large ecological datasets (Lek
& Guegan 2000). The self-organizing map (SOM; Kohonen
2001) is one of the most well-known unsupervised neural
networks, performing a topology-preserving projection of the
input data onto a regular two-dimensional space. In the output
layer of the network, the neurons act as virtual samples and
approximate the probability density function of the input
data. Therefore, using a binary dataset of species occurrences,
the SOM calculates quantitative continuous values which
vary between 0 and 1, so that the occurrence probability of
any species in a given area, in the form of the connection
intensity, can be visualized onto a virtual map. Moreover,
this technique is relevant to pattern detection in biological
communities in relation to environmental data because the
gradient distribution of some biological variables (for example
species) can be visualized in a SOM previously trained with
environmental variables only (Park ez a/l. 2003), thus allowing
the fit between a set of species and their environment to be
examined.

Amongst threatened aquatic animals, crayfish are the focus
of many conservation studies in the northern hemisphere
(Gil-Sanchez & Alba-Tercedor 2002; Renai et al. 20006;
Trouilhé et al. 2007). Many factors closely related to fishing
activities and/or human destruction of their physical and
hydraulic habitats have led to declines (Light ez al. 1995; Gil-
Sanchez & Alba-Tercedor 2006). The white-clawed crayfish
(Austropotamobius pallipes) is a listed species in Annex II of
the European Community Habitats Directive 92/43/EEC,



classified as ‘vulnerable’ on the Red List of Threatened
Animals of the International Union for Conservation of
Nature. However, because habitat and/or species surveys are
time- and money-consuming, environmental managers and
policy makers need general trends that could be adopted to
plan specific measures. We used a SOM algorithm to interpret
the probabilities of presence of native (Austropotamobius
pallipes) and exotic (Orconectes limosus, Pacifastacus leniusculus,
Procambarus clarkir) crayfish species with respect to physical
and land-cover variables in the Adour-Garonne stream system
(south-western France, 116 000 km?), using a binary dataset
of species occurrences and GIS-derived information on river
topology and land cover. Given the need to forecast locations at
greatest risk of invasions, our study illustrates a cost-effective
technique to target monitoring efforts.

METHODS
Study area and data collection

The Adour-Garonne stream system (south-western France)
has a 116 000 km? drainage basin, which has been intensively
studied for various ecological aspects (Tockner et al. 2009).
The biological data and some physical variables were extracted
from the French National Agency for Water and Aquatic
Systems (Onema) database (BDMAP). We selected 128
sampling sites belonging to 86 streams, and ranging from 2
to 1080 m altitude. These sites were retained for our analyses
because they were sampled by electrofishing during low-flow
periods during 2002-2007, and they represented mountain,
plain and coastal streams well.

Two-pass removal sampling was used whenever possible,
by wading in smaller rivers and by boat in the larger ones.
Four crayfish species were found to occur in the Adour-
Garonne basin, among which one (white-clawed crayfish
Austropotamobius pallipes [Lereboullet 1858]) is native and
three are exotic, namely the American crayfish Orconectes
limosus  (Rafinesque 1817), signal crayfish Pascifastacus
lensusculus (Dana 1852) and red-swamp crayfish Procambarus
clarkii (Girard 1852). The biological variables assigned to each
site were occurrences of native and exotic species.

The physical variables were elevation above sea level (asl,
m), slope (%0), distance from the source (km), drainage basin
area (km?) and maximum air temperature in June (°C, namely
the mean of maximum temperatures recorded by the French
Meteorological Services in early summer during the whole
sampling period).

For each site, a geographic information system (GIS,
Mapinfo Professional 7.8) was used to delineate a geographical
buffer zone representing a 1000 m-radius centred on the site.
This scale is well suited to assign a land-cover influence to each
site (see also Compin & Céréghino 2007) and falls within that
of the ‘Reach Buffer’ sensu Allan (2004), namely a buffer of 100
m to several 100 m in width on each bank and some hundreds
of metres to a kilometre in length. A given site is most
influenced by the one-kilometre area upstream of the circular

buffer, however crayfish move upstream and downstream,
and long-term movements are greater downstream than in the
upstream direction (Buric et /. 2009). Thus, the downstream
area of the circular buffer was intended to integrate possible
influences of the surrounding landscape. Sampling sites were
then characterized using the five physical variables described
above, and three land-cover variables intended to account
for anthropogenic pressure: buffer zone forest cover (%
area occupied by forest and woodland with native or exotic
coniferous and/or deciduous trees, scrub and herbaceous
vegetation associations), urban development (area covered
by industrial, commercial and transport units, and artificial
and non-agricultural vegetated areas), and agricultural area
(arable land, permanent crops and pasture). Digital landcover
information was obtained from the CORINE land-cover
database for Europe (CL.C 2000, see Furopean Environment
Agency website at URL http://www.eea.europa.eu/; see also
Cruickshank & Tomlison 1996). This database was generated
from orthorectified satellite images and provides thematic
GIS map layers including up to 44 land-cover classes with
a mapping scale of 1:100 000. The eight variables were chosen
because they characterize the location of sampling sites within
the stream system and within the regional landscape mosaic,
and were easy to describe using a GIS. The use of simple
variables in a successful final model could thus reduce the
effort and cost of data collection for water management
applications.

Modelling procedure

Because ecological and environmental data often vary and co-
vary in a nonlinear fashion, nonlinear modelling methods such
as artificial neural networks (ANNs) should theoretically deal
better with such data. Combining ordination, clustering, and
gradient analysis functions, the SOM (see Kohonen 2001 for
details) is relevant to the analysis of non-linear data and/or
variables that have skewed distributions, without an a priori
transformation (Park e/ a/. 2003). Additionally, the SOM
algorithm averages the input dataset using weight vectors and
thus removes noise. These features were relevant in our study
because we analysed a presence/absence dataset with many
zeroes.

The SOM Toolbox (version 2) for Matlab® developed
by the Laboratory of Information and Computer Science
at the Helsinki University of Technology (http://www.cis.
hut.fi/ projects/somtoolbox/) was used (see Vesanto et al.
1999 for practical instructions). The structure of the SOM
for our study consisted of two layers of neurons connected
by weights (i.e. connection intensities): the input layer was
constituted by 12 neurons (one per variable, but see below)
connected to the 128 samples (sites), the output layer was
constituted by 56 neurons (visualized as hexagonal cells)
organized on an array with eight rows and seven columns.
In the output layer, the neurons acted as virtual sites and
approximated the probability density function of the input
data. During the training, we used a mask function to



give a null weight to the four biological variables (crayfish
occurrences), whereas environmental variables were given a
weight of 1 so that the ordination process was based on the
eight environmental variables only (Compin & Céréghino
2007). Setting mask value to zero for a given component
removed the effect of that component on organization (Sirola
etal. 2004). The occurrence probability of each crayfish species
in a given area in the form of the connection intensity was
visualized on the SOM map in grey scale, and therefore
allowed us: (1) to analyse the effect of each environmental
variable on the patterning input dataset (sites), and (2) to
predict the occurrence probability of each species in areas (i.e.
subsets of sites or clusters) where they were not consistently
collected during the sampling.

The SOM algorithm is an unsupervised learning procedure
which can be summarized as follows. The virtual sites were
initialized with random samples drawn from the input data set.
The virtual sites were updated in an iterative way . A sample
unit was randomly chosen as an input unit. The Euclidean
distance between this sample unit and every virtual site was
computed. The virtual site closest to the input was selected
and called ‘best matching unit’ (BMU). The BMU and its
neighbours were moved a bit towards the input unit.

The training was broken down into two phases (Lek &
Guégan 2000): (1) an ordering phase (the first 2000 steps):
when this first phase takes place, the sites are highly modified
in a wide neighbourhood of the BMU. (2) A tuning phase
(75000 steps): during this phase, only the virtual sites adjacent
to the BMU are lightly modified.

The map size is important to detect the deviation of the
data. Specifically, if the map is too large (i.e. when the
number of map units is as large or larger than the number of
samples), it is possible to ‘overfit’ the models (Park ez al. 2003).
Therefore, the network was trained with different map sizes
(10-200 units), and the optimum map size was chosen based on
local minimum values for quantization and topographic errors
(see Céréghino & Park 2009). Quantization error (QE) is the
average distance between each data vector and its BMU and,
thus, measures map resolution (Kohonen 2001). Topographic
error (TE) measures map quality (i.e. it assesses whether the
map has been properly trained), representing the proportion of
all data vectors for which 1st and 2nd BMU s are not adjacent,
and is thus used for the measurement of topology preservation.
The total of 56 output neurons retained for this study fitted
the heuristic rule of Vesanto ez al. (2000) well. Vesanto er al.
(2000) reported that the optimal number of map units C is
close to C = 5/ n, where # 1s the number of samples; in the
present case 128 sampling sites were classified on the basis
of eight environmental variables. At the end of the learning
process, each sampling site was set in the corresponding
hexagon of the SOM. Neurons that were neighbours on
the grid were expected to represent neighbouring clusters
of sites; consequently, sites separated by a large distance
from each other, according to environmental variables, were
expected to be distant from each other in the output
space.

A k-means algorithm was applied to cluster the trained
map. The SOM units (hexagons) were divided into clusters
according to the weight vectors of the neurons, and clusters
were justified according to the lowest Davis Bouldin Index
(i.e. for a solution with low variance within clusters and
high variance between clusters). A GIS was used to visualize
the modelled structures (clusters of sites) further in a more
popular way.

RESULTS

After training the SOM, the k-means algorithm helped to
derive four clusters, based on the minimum Davies Bouldin
Index (DBI = 1.0465, 0.9684, 0.8486 and 1.0012 for a solution
with 2, 3, 4 and 5 clusters, respectively). Thus, sampling
sites were classified into four subsets according to eight
environmental variables (Fig. 1). Clusters were plotted on
a geographical map of the Adour-Garonne Basin in order to
ease interpretations (Fig. 2).

Sites in clusters A and B corresponded to headwater streams
located at higher altitudes (Fig. 1). Within this frame, cluster A
was delineated by higher proportions of forested areas (Fig. 3),
while cluster B was characterized by steeper slopes and lower
summer temperatures. Sites in cluster C were located in urban
landscapes and were characterized by higher air temperature,
high distance from the source and the largest drainage basin
area (Fig. 3). Finally, sites in cluster D were located at low
elevation, and primarily corresponded to agricultural areas

Figure 1 Distribution of the sampling sites on the self-organizing
map (SOM). Codes correspond to sampling sites. Sites that are
neighbours on the grid are expected to be similar in terms of
environmental variables, and similarities decrease as sites are
increasingly distant.
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Figure 2 (a) Map of the Adour-Garonne stream system.
Distribution of the 128 sampling sites and correspondence with
their location (clusters) on the Kohonen map (see also Fig. 1).

(b) Distribution maps for the four crayfish species. Filled squares
denote locations where species are present, white squares denote
locations where they are absent.

(Fig. 3). When the distribution of species was visualized on
the trained SOM using a shading scale (Fig. 4), headwater
streams (clusters A and B) showed the highest probability of
occurrence of the native crayfish Austropotamobius pallipes and
the introduced species Pacifastacus leniusculus. Distribution
maps (Fig. 2) showed that P. leniusculus occurred in the
eastern part of the stream system (Massif Central mountains),
while A. pallipes was rather found at few sites in the eastern
Massif Central and southern areas (Pyrenées Mountains) of

the drainage basin. It also appeared from the SOM analysis
that A. pallipes was more likely to occur at sites located in
forested areas or having steeper slopes, while P. leniusculus
showed preferences for sites located at higher elevations and
characterized by the lowest air temperatures. The units on
the left bottom area (cluster C, urban landscapes) had highest
probabilities of hosting Orconectes limosus (see also Fig. 2). The
units on the right bottom corner (cluster D, agricultural areas)
had high probability values for Procambarus clarkii.

DISCUSSION

The complex relationships between the spatial heterogeneity
of physical conditions, and the local to regional distributions
of target species have often been studied through correlative
techniques (Jongman ef al. 1995). Other authors have taken
into account habitat variability, by considering the pro-
portional use of particular habitats among the available ones
(Hastie et al. 2000), but this approach is rather suited
to the modelling of mesohabitat preferences on a local
scale. However, the need for quantitative data, collected
in a standardized manner, is a pre-requisite for the use
of correlative techniques and habitat modelling. The SOM
algorithm (Kohonen 1982) is a heuristic model used to
visualize and explore linear and non-linear relationships in
high-dimensional datasets. SOMs were first used in the
1980s in speech recognition (Kohonen et al. 1984). Since
Chon et al. (1996) first applied the SOM to pattern benthic
communities in streams, SOMs have been implemented in
various aspects of water research, such as classifying biological
and environmental data (Gevrey e/ al. 2004; Tison ez al. 2004)
and patterning long-term data (Kangur ez /. 2007). Although
the SOM visualization is an indirect gradient analysis like a
principal component analysis, SOMs can be used as an analysis
tool to establish the relationships between sampling sites,
and environmentaland biological variables. The advantages
of the SOM in comparison with conventional multivariate
analyses have been established (Gevrey et al. 2003). In
adding to the calculation of occurrence probabilities using
binary data, it is important to highlight one of the most
innovative applications of the SOM for conservation issues:
the possibility of introducing a set of variables (for example
biological variables) into a SOM that has been previously
trained with other variables (for example environmental
variables). This application, which enables researchers to
tease out the relationships between two sets of variables,
is convenient to examine the fit between species and their
environment (as detailed in Céréghino & Park 2009). In
this context, the SOM further maximizes the information
extracted from large species matrices made of occurrence data,
by transforming binary values into probabilities of presence,
then allowing the comparison of environmental gradients and
the likelihood that species will occur. Comparison among
closely related species can also be made; any species association
can be indicated by overlapping several maps. Thus, this



Figure 3 Gradient analysis of each Elevation (m)
variable on the trained SOM, with
visualization in shading scale
(dark = high values, light = low
values). Fach individual map is to
be compared with, or
superimposed onto, the map in
Figure 1.

approach can better analyse relationships between variables
than general indirect gradient analysis.

The model probabilities of presence of native A. pallipes
showed good agreement with current distributions at the
watershed scale. In many European countries, the white-
clawed crayfish is one of the most widespread decapod
crustaceans (Holdich 2002), but both species distribution
and population densities have drastically declined during
the last decade (Gil-Sanchez & Alba-Tercedor 2006). At
the catchment scale, populations are scarce and reduced
to marginal areas of stream systems, which are often
disconnected from the main stream (Gil-Sanchez & Alba-
Tercedor 2002; Bramard ez al. 2006). Such observations reveal
that some river sections remain more suitable than others
in terms of habitat conditions, and this pattern was clearly
illustrated in our study by differences in probabilities of
presence among neighbouring sites within the stream system.
However, as it is often reported, A. pallipes populations
appeared to be mostly confined to headwater streams (i.e.
colder waters), almost certainly because exotic competitors
were unable to withstand the colder conditions that prevail
in mountainous areas (Gil-Sanchez & Alba-Tercedor 2002;
Legalle ez al. 2008). Introduced crayfish usually grow faster,
have a greater size and less restricted habitat requirements
than native species (Changeux 2003; Dunn et al. 2009).
Such ecological advantages are detrimental to the partition
of habitat and food resource, and native populations subjected
to antagonistic interactions with such species may rapidly
decline to extinction (Gil-Sanchez & Alba-Tercedor 2006).
Moreover, foreign species may be predators on native species,
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% Urbanized areas
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and/or may be vectors of diseases (Moyle & Light 1996;
Gozlan et al. 2006). This problem typically affects the
white-clawed crayfish. The introduction of Orconectes limosus,
Pacifastacus lentusculus and Procambarus clarkii (among others)
was the main reason for the decline of A. pallipes in the
downstream sections of European rivers, as it led to a
competitive exclusion of native crayfish (Vorburger & Ribi
1999; Dunn ez al. 2009), and brought the crayfish plague
caused by the fungus Aphanomyces astaci (Kozubikova et al.
2008).

Although A. pallipes and P. leniusculus had quite distinct
geographic distributions (Fig. 2/), they showed rather similar
preferences for local environments. Gradient distributions
for P. leniusculus (Fig. 4) could be perceived as a negative
picture of the gradient depicting the distribution of A.
pallipes. Our analyses suggest that A. pallipes and P. leniusculus
have different preferences within a common range of
headwater environments for certain variables such as slope
and land cover. Conversely, such a pattern also suggests
that competitive exclusion occurs within the stream system,
and that subsequent competition with the exotic species P.
leniusculus 1s a key factor explaining the current distribution
of A. pallipes within the stream system. P. leniusculus is
indeed recognized as the principal competitor of A. pallipes
(Changeux 2003; Bramard et /. 2006). This highly invasive
species commonly leads to the displacement of native A.
pallipes. According to probabilities of occurrence, Procambarus
clarkii and Orconectes limosus had distinct distributions
that showed little spatial overlap with any other species.
Procambarus clarkii is well adapted to life in agricultural areas;
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Figure 4 Gradient analysis of the probability of occurrence of each
crayfish species on the trained SOM (see Fig. 1), with visualization
in shading scale (dark = high probability of occurrence, light = low
probability of occurrence). Each individual map is to be compared
with, or superimposed onto, the maps in Figures 1 and 3.

translocations have been most successful in agricultural areas
employing irrigation systems (Hobbs et al. 1989). In Spain,
this species has severe impacts on rice agriculture (Cruz &
Rebelo 2007), while in France, it often occurs in marshy
and rice areas (Bramard et al. 2006). Although P. clarkii is
often described as a competitor of A. pallipes, our results show
that its habitat preferences differ from those of A. pallipes,
resulting in a spatial segregation of the species. In fact, P.
clarkii seems to be unable to colonize mountainous headwater
streams where A. pallipes has found refuge (Gil-Sanchez &
Alba-Tercedor 2002). Orconectes limosus occurs in urbanized
areas corresponding to lower elevation streams. In the other
European countries, the American spiny-cheek crayfish (O.
limosus) is also mainly found in lower reaches of watercourses
(Petrusek ez al. 20006) or in large lakes (Schulz et /. 2002) and
does not penetrate far upstream. Its distribution in standing
waters is largely the result of intentional human-mediated
translocations (Petrusek et a/. 2006) and reflects the intensity
of human activities (Schulz er al. 2002).

Manel et al. (1999) demonstrate that the overall success of
prediction of ANNSs is superior to that of logistic regression
and discriminant analyses when predicting the presence
or absence of river birds according to the environmental
variables. ANN predictions outperformed logistic regression,
linear discriminant analysis and classifications trees
approaches for predicting fish species presence/absence
(Olden & Jackson 2002). ANNs present major advantages
where species-environment links cannot be transformed to
linearity (Lek et al. 1996) and offer an alternative to traditional
statistical methods for classifying complex data. Moreover,
ANNSs are not dependent on particular relationships, need
no assumptions regarding underlying data distributions and
no a priori understanding of variable relationships (Olden &

Jackson 2001). This independence from assumptions makes
ANNs a powerful option for exploring complex potential
non-linear relationships such as the associations between
animal species and their environment (Joy & Death 2004).
ANNSs also allowed a single model to predict the entire
considered assemblage in one procedure (Joy & Death 2004).
Studies involving predictive modeling of species occurrence
increasingly combine the power of GIS with multivariate
statistical tools to formalize the link between species and
their environment and to enhance the potential to create
accurate predictive models (Joy & Death 2004). In this study,
the predictions from the ANN using land cover information
(obtained from GIS) and simple environmental data showed
that SOMs are a valuable technique to forecast crayfish
distributions. This technique yields a clear bidimensional
projection of a relatively large volume of site-specific data
on species occurrences and then allows their interpretation
in terms of occurrence probabilities of species in different
geographic areas. Moreover, by overlapping various species
maps (for example Fig. 4), any spatial overlap or segregation
of the different species become clear. Most surveillance
techniques for aquatic aliens use extensive numbers of site-
specific data to allow predictions of the distribution of species
inagiven area, using a set of environmental variables (Ricciardi
& Rasmussen 1998). The SOM visualization can be used
as an analytical tool to bring out relationships between
sample locations, biological variables and the occurrence of
each species. Our study demonstrates the association of two
modelling tools (GIS and neural networks) could improve
ecological risk assessments;the techniques may have many
potential uses, notably to identify areas in need for protection
or areas suitable for reintroduction of endangered species such
as the white-clawed A. pallipes.
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