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Abstract: We presenstatistical multi-step flowa new approach for dense motion estimation in long video sequences.
Towards this goal, we propose a two-step framework including an initizdelenotion candidates generation
and a new iterative motion refinement stage. The first step perfornmaliatorial integration of elementary
optical flowscombined with a statistical candidate displacement fields selection ancefoespecially on
reducing motion inconsistency. In the second step, the initial estimates etvély refined considering
several motion candidates including candidates obtained from neigglfoimes. For this refinement task,
we introduce a new energy formulation which relies on strong tempomabgmess constraints. Experiments
compare the proposed statistioallti-stepflow approach to state-of-the-art methods through both quantitative
assessment using théag benchmark dataset and qualitative assessment in the context of ditieg.e

1 INTRODUCTION close to this low dimensional subspace which im-
plicitly acts as a long-term regularization. However,
Dense motion estimation has known significant Stronga-priori assumptions on scene contents must
improvements since early works but deals mainly be provided and dense tracking of multiple objects is
with matching consecutive frames. Resulting dense Possible only if the reference frame is segmented.
motion fields, calledoptical flows can straightfor- The alternative concept ahulti-stepflow (Criv-
wardly be concatenated to describe the trajectorieselli et al., 2012b; Crivelli et al., 2012a) focuses on
of each pixel along the sequence (Corpetti et al., how to construct dense fields of correspondences over
2002; Brox and Malik, 2010; Sundaram et al., 2010). extended time periods usimgulti-step optical flows
However, both estimation and accumulation errors (optical flowscomputed between consecutive frames
result in dense trajectories which can rapidly di- or with larger inter-frame distancedylulti-stepflow
verge and become inconsistent, especially for com- sequentially merges a set of displacement fields at
plex scenes including non-rigid deformations, large each intermediate frame, up to the target frame. This
motion, zooming, poorly textured areas, illumina- Setis obtained via concatenationrofilti-step optical
tion changes... Moreover, concatenating motion fields flowswith displacement vectors already computed for
computed between consecutive frames does not allowneighbouring framedMulti-stepestimations can han-

to recover trajectories after temporary occlusions. _dle temporary occlusions since they (jampoc_clud-
Recent works have contributed to the purpose of ing objects. Contrary to (Garg et al., 2018)ulti-step
dense long-term motion estimation. Multi-frarop- flow considers both trajectory estimation between a

tical flow formulations (Salgado andaBichez, 2007;  reference frame and all the images of the sequence
Papadakis et al., 2007; Werlberger et al., 2009; Volz (from-the-referengeand motion estimation to match

et al., 2011) have been presented but their tempo-€ach image to the reference frane-the-reference

ral smoothness constraints are generally limited to a  Despite its ability to handle both scenarianjlti-
small number of frames. (Sand and Teller, 2008) pro- stepflow has two main drawbacks. First, it performs
poses a sophisticated framework to compute semi-the selection of displacement fields by relying only
dense trajectories using a particle representation buton classicabptical flowassumptions that can some-
the full density is not achieved. To overcome these times fail between distant frames. Second, the can-
issues, Garget al. describe in (Garg et al., 2013) a didate displacement fields are based on previous esti-
variational approach with subspace constraints to gen-mations. It ensures a certain temporal consistency but
erate trajectories starting from a reference frame in a can also propagate estimation errors along the follow-
non-rigid context. They assume that the sequence ofing frames of the sequence, until a new availaégp
displacement of any point can be expressed as a lineagives a chance to match with a correct location again.
combination of a low-rank motion basis. Therefore, These limitations can be resolved by extending
trajectories are estimated assuming that they must lieto the whole sequence the combinatomallti-step



integration and the statistical selection described in

(Conze et al., 2013) for dense motion estimation be-

tween a pair of distant frames. The underlying idea is

to first consider a large set composed of combinations Zref

of multi-step optical flowsand then to study the spa-

tial redundancy of the resulting candidates through a

statistical selection to finally select the best matches.
Toward our goal of dense motion estimation in

long video shots, we present thetistical multi-step

flow two-step framework. First, it extends (Conze

et al.,, 2013) to generate several initial dense corre-

spondences between the reference frame and each ofrer

the subsequent images independently. Second, we

propose to provide an accurate final dense matching

by applying a new iterative motion refinement which

involves strong temporal smoothness constraints.

2 STATISTICAL MULTI-STEP
FLOW

Let us consider a sequenceMft 1 RGB images
{In}nefo.....np includinglre s considered as a reference
frame. In this work, we focus on dense motion es-
timation between the reference frarhgr and each
frame I, of the sequence and we aim at computing
from-the-referencandto-the-referencelisplacement

Ir'ef

Figure 1. Multiple motion candidates are generated via a
guided-random selection among all possible mopaths

This combinatorial integration (Conze et al., 2013) is done
independently for each p&ftret,In} which limits the corre-
lation between candidates selected for neighbouring frames.

steps(Crivelli et al., 2012b), i.e. larger inter-frame
distances. Le§, = {s1,%,...,50,} € {L,...,N—n}
be the set 0@, possiblestepsat instann. The follow-
ing set ofoptical flowfields starting from, is there-
fore available:{Vnnis); Vnnisys- -+ Vnntso, I+

fields. From-the-referencalisplacement fields link
the reference framées to the other frames, and
therefore describe the trajectory of each pixelef
along the sequenceTo-the-referencalisplacement
fields connect each pixel &f to locations intde+.
The proposedtatistical multi-step flovperforms

Input optical flow fields are provided with at
tached occlusion and inconsistency masks. For the
pair {In, Inys } with s € {1,...,N—n}, the occlusion
mask attached to thaptical flowfield v, nys indicates
the visibility of each pixel ofy, in In;5. The inconsis-
tency mask attached t@ n5 distinguishes consistent

two main stages. The generation of several initial and inconsistenpptical flowvectors among the ones
dense motion correspondences for each pair of framesstarting from pixels marked as visible (Robert et al.,
{lret,In} independently is described in Section 2.1. 2012). This feature follows the idea that thackward
Section 2.2 presents the iterative motion refinement flow should be the exact opposite of theeward flow.

through strong temporal consistency constraints.

2.1 Initial motion candidates generation

The goal of the initial motion candidates generation

is to compute for each pixeles (resp. Xn) of lret
(resp.ln) K candidate positions iy, (resp.lret). Each
pair of frames{let,In} is processed independently.
Our explanations focus on the estimatiorfrofn-the-
referencedisplacement fields. In the following, we

2.1.2 Baseline method (Conze et al., 2013)

The combinatoriamulti-stepintegration and the sta-
tistical selection on which we rely on work as follows.
For the current paifles,In}, the combinatorial
multi-stepintegration consists in first of all consider-
ing all the possibldrom-the-referencenotion paths
which start from each pixekes, run through the
sequence and end . These motionpaths are

describe the input data and recall the baseline r_nethodbuilt by concatenating all the possible sequences of
(Conze et al., 2013) before focusing on how it has un-occluded inputnulti-step optical flowectors be-
been improved and extended to the whole sequence. tweenl,et+ andl,. A reasonable number & motion

2.1.1 Inputoptical flowsfields

As inputs, our method considers a sebptical flow

pathsare then selected through limitations in terms
of number of concatenationy; and via a guided-
random selection. Each remaining motijasith leads

fields estimated from each frame of the sequence in- {0 @ candidate position iy (Fig. 1top). Finally, we

cluding l,es. Theseoptical flowsare previously es-

obtain a seflief n(Xret) = {X'n}ie[[o ..... Kxg —1] of Ky,

timated between consecutive frames or with larger candidate positions ik, for each pixekes Of lref.



A statistical-based selection stage then selects the

optimal candidate position amog¢n(Xret). This
procedure involves: 1) a statistical criterion which

pre-selects a small set of candidates based on spatiak,.s

density and intrinsic inconsistency values; 2) a global
optimization which fuses these candidates to obtain
the optimal one while including spatial regularization.

2.1.3 Improvements

The combinatoriamulti-stepintegration and the sta-
tistical selection we briefly reviewed has been im-
proved to provide further focus to inconsistency re-
duction betweeffrom/to-the-referenceectors. First,
we use onlymulti-step optical flowectors considered

as consistent according to their inconsistency masks

to generate motiopathsbetweenles andl,. Sec-
ond, we introduce an outlier removal step before the
statistical selection which orders the candidates of
Tret n(Xref) With respect to their inconsistency values.
A percentagé®y, of bad candidates is removed and the
selection is performed on the remaining ones. Third,
at the end of the combinatorial integration and the se-
lection procedure betweég: andl,, the optimal dis-
placement field is incorporated into the processing be-
tweenl, andle+ which aims at enforcing the motion
consistency betweeom/to-the-referencéields.
Compared to (Conze et al., 2013), our displace-
ment fields selection procedure combines differently
statistical selection and global optimization. For
eachXref € lref, We select amongre,n(Xret) Ksp=
2 x K candidates through statistical selection, with
Ksp < Kx,;-  Then, we randomly group by pairs

theseKsp candidates and choose tHebest onest

vk € [[0,...,K—1] by pair-wise fusing them follow-
ing a global flow fusion approach. Finally, this same
global optimization method fuses thesédest candi-
dates to obtain an optimal one&;,. In other words,

z,
Y @,
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%wﬂ
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[ previous estimation  y candidates from neighbouring frames

@ Kinitial candidates 4% candidate coming from d;, . ; inverted

Figure 2: The displacement fieltf,; , is questionned by
generating for each pixelet competing candidates Ig.

with respect to the temporal distance between frames.
In practice N is computed using Eg. (1) which leads
to a good compromise between a too large number
of concatenations which would lead to large propa-
gation errors and the opposite situation which would
limit the effectiveness of the statistical processing due
to an insufficient number of candidates.

Nl = {

The guided-random selection (Conze et al., 2013)
which selects for each pair of framésers,In} one
part of all the possible motiopathslimits the corre-
lation between candidates respectively estimated for
neighbouring frames. This avoids the situation in
which a single estimation error is propagated and
therefore badly influences the whole trajectory. The
example Fig. 1 shows the motigrathsselected by
the guided-random selection for paiffer,In} and
{let,In+1}. We notice that motiorpaths between
lret andly 1 are not highly correlated with those be-
tweenles andl,. Indeed, the sets afptical flow
vectors involved in both cases are not the same ex-

|[n—ref|if |[n—ref|<5
0p.log10(a;y./n—ref|) otherwise

1)

these two last steps give a set of candidate displace-Cept for Vet ref+1 and vret n—1 Which are then con-

ment fieldsalr(ef.n and finally d;o¢ ,, the optimal one.
For pairs of frames relatively close or in case of
temporary occlusions, the statistical selection is not
adapted due to the small amount of candidates. There
fore, betweerK 4 1 andKsp candidates, we use only
the global optimization up to obtain thébest ones.
Our approach is applied bi-directionally. An ex-
actly similar processing betweénandl,e; leads taK
initial to-the-referenceandidate displacement fields.

2.1.4 Extention to the whole sequence

This improved version of the combinatorial integra-
tion and the statistical selection of (Conze et al., 2013)
processes independently all the pditgs,In}. Only

catenated with different vectorsv,_>, contributes

for both cases but the considered vectors do not start
from the same position. These considerations about
the statistical independence of the resulting displace-
ment fields are not addressed by existing methods for
which a strong temporal correlation is inescapable.

2.2

The previous stage guarantees a low correlation be-
tween the initial motion candidates respectively es-
timated for pairs{les,In}. Without losing this key
characteristic, this second stage aims at iteratively re-
fining the initial estimates while enforcing the tempo-
ral smoothness along the sequence.

We propose to question the matching between

Iterative motion refinement

Nc, the maximum number of concatenations, changeseach pixelxes (resp. xn) of let (resp. Iy) and the



selected position;; (resp. Xjz¢) in I (resp. lref) es-
tablished during the previous iteration (or the initial
motion candidates generation stage if the current iter-
ation is the first one). For this task, we generate sev-
eral competing candidates which are comparexito ~ *r<f
(resp.x7,;) through a global optimization approach.

2.2.1 Competing candidates

The competing candidates used to queskpifresp. o o o
Xr. ;) are illustrated in Fig. 2 and deals with: Trey Iny In
— . e Figure 3: Matching cost anBuclideandistance®d, m and
k X
e the K initial candidate posmonxn. (resp. Xfg() ednn defined with respect to each temporal neighboring
vk € [0,...,K—1] (obtained Section 2.1), candidatex}, and involved in the proposed energy. These

e acandidate pOSitiOﬂ coming from the previous es- three terms act as strong temporal smoothness constraints.

timation of dy e (resp. dief ) Which is inverted 1o each neighbouring candidasé, defined for the
to obtainxy, (resp.xjey), as illustrated in Fig. 2, frames inside the temporal window. These terms
o candidates from neighbouring frames to enforce are illustrated in Fig. 3 and deal more precisely with:
temporal smoothing. L&V be the temporal win-
dow of widthw centered arount},. Betweenl,ef
andly,, we use theptical flowfieldsvy between
Imandly withme [n—%,....n+ %] andm#n
to obtain fromx};, € I, the new candidate]' in I,.

Ix
o the matching cost betweeq ™" € I, andx, of I,

e theeuclideardistanceedn, betvveerxlnxref and the
ending point of theptical flowvy,, starting from
X} (see Eq. (4))ednn encourages the selection of

2.2.2 Global optimization approach X, the candidate coming froty, via theoptical

flow field v and therefore tends to strengthen

the temporal smoothness. Indeed, %§y theeu-

clideandistanceedn is equal to 0.

We perform a global optimization method in order to
fuse the previously described competing candidates
into a single optimal displacement field.

In the from-the-referencease, we introduck =

{Ix.;} a@s a labeling of pixelxt where each label ~ €tnn= (Xf€f+d|—ef n) (Xret + digt m+ Vmn)

4)
2

. . Xref . .
indicatesx,~, one of the candidates listed above. Let | the euclideandistanceed, m betweerx, and the

Ix . . . ; ; -
d.o¢, be the corresponding motion vector. We define ending point of theoptical flowvectorv, , start-
the energy in Eqg. (2) and minimize it with respect to

L usingfusion movegLempitsky et al., 2010):

Xre f

Ix
ing fromx,"" (see EQ. (5)). lvmn is consistent,
I.8. Vmn =~ —Vnm, €Chm IS approximately equal to

0 for x, the candidate coming frork,, whose
d 1 il
Erefn(L) = Efen(L) +Efern(L) = x; Pd(ref,n) selection is again promoted.

IX ef Yref

ref, n(XTEf) dref n(yref)

()

2
The regularization terng, , involves motion

The data terEZ , described with more details ~ similarities with neighbouring positions, as shown in

in Eq. (3), involves both matchlng cost and inconsis- Ed. (2). Ox,.y,; @ccounts for local color similarities
in the reference framies. The robust functiongqy

andp; are respectively the negative log oB&udent-t
distribution and th&seman-McClurdunction.
The refinement oto-the-referencalisplacement
Ix Ix fields with our approach is straightforward except that
fetn = C(Xref, Qg n(Xrer)) +INC(Xret, Ot (Xrer)) the data term ir?\f)olves neithergt]he matching cc?st be-
n+¥ I tween the current candidate and the temporal neigh-
+ Z Cxn™", x5, 'e')+ednn+ednm (3) bouring one nor theuclideandistanceedy,, due to
trajectories which can not be handled in this direction.
”‘7&” The global optimization method fuses the dis-
The temporal smoothness constraints translate placement fields by pairs and finally chooses to up-
into three new terms which are computed with respect date or not the previous estimations with one of the

de

|
(Xref + d?ef_,m) — (Xret + dr:?,fn +Vn.m)

+ et Vet pr(

Xref Yref

\ ) @ ethm—
1

tency value with respect td}erifn (Conze et al., 2013).

In addition, we propose to introduce strong temporal
smoothness constraints into the energy formulation:



previously described candidates. The motion refine-
ment phase consists in applying this technique for
each pair of frameqles,In} in from-the-reference
and to-the-referencadirections. The pairglres,In}

are processed in a random order in order to encourage

temporal smoothness without introducing a sequential
correlation between the resulting displacement fields.

This motion refinement phase is repeated itera-
tively N;; times where one iteration corresponds to the
processing of all the pair§les,In}. The proposed
statistical multi-step flovis done once the initial mo-
tion candidates generation and tNg iterations of
motion refinement have been performed.

3 EXPERIMENTS

Our experiments focus on the following se-
guences:MPI S1(Granados et al., 2012) Fig.4 and
6a-h, Hope Fig.6-p, NewspaperfFig.6g-t, Walking
CoupleFig.7 andFlag (Garg et al., 2013) Fig.8. The
proposedstatistical multi-step flows referred to as
StatFlowin the following. For the experiments, the
following parameters have been uséd; = 7, Ns =
100,Ry, =50%,K = 3,00 = 3,01 =15,w=>5. The
set of stepsand inputoptical flowestimators will be
specified for each experiment and each sequence.

Experiments have been conducted as follows. In
Section 3.1, we evaluate the performance of our ex-
tended version of the combinatorial integration and
the statistical selection (Conze et al., 2013) through

Frame pairs {25,45 | {25,46 | {2547 | {2548
(Conze etal., 2013) 21.83 24.98 25.56 25.83
StatFlowinitial phase| 29.02 28.4 27.27 27.23
Frame pairs {25,49 | {25,50; | {2551} | {25,52
(Conze etal., 2013) 25.04 24.83 24.48 24.3

StatFlowinitial phase| 26.84 26.33 26.1 25.69

Table 1: Registration and PSNR assessment with the com-
binatorial integration and the statistical selection introduced
in (Conze et al., 2013) and the proposed extended version
described in Section 2.1 (initial phase $fatFlow). PSNR
scores are computed on the kiosk\P| S1(Fig. 4).

Frame pairs {160,180 | {160,19¢ | {160,200¢
(Conze etal., 2013) 22.50 21.21 18.59
StatFlowinitial phase 22.70 21.39 19.28
StatFlow 22.93 22.18 20.25
Frame pairs {160,210 | {160,220 | {160,23¢
(Conze et al., 2013) 17.12 15.87 15.76
StatFlowinitial phase 18.21 17.12 16.58
StatFlow 18.68 17.40 16.81

Table 2: Registration and PSNR assessment with: 1) com-
binatorial integration and statistical selection introduced in
(Conze et al., 2013), 2) proposed extended vers&tat{
Flow init. phase), 3) whol&tatFlowmethod. PSNR scores
are computed on whole imagesiéwspape(Fig.6q-t).

PSNR scores are computed betwégnand the reg-
istered frame for non-occluded pixels.

Tables 1 and 2 show the PSNR scores for various
distances betwedp ; andl, respectively on the kiosk
of MPI S1 (Fig.4) and on whole images dfiews-

registration and PSNR assessment. The effects of thepaper (Fig.6q-t). Results onMPI S1show that the

iterative motion refinement are also studied. Then, we
compareStatFlowto state-of-the-art methods through
guantitative assessment using flag dataset (Garg

initial phase ofStatFlowoutperforms the combinato-
rial integration and the statistical selection of (Conze
et al., 2013) for all pairs. An example of registra-

et al., 2013) (Section 3.2) and qualitative assessmenttion of the kiosk for a distance of 20 frames is given

via texture propagation and tracking (Section 3.3).

3.1 Registration and PSNR assessment

The first experiment aims at showing how the im-
provements we made with respect to (Conze et al.,
2013) impacts the quality of the displacement fields.
We focus on frames pairs taken fromiPl S1 and
Newspape(NP). The sets oftepsare 1- 5, 10 (\NP),

15 (MPI SJ), 20 (NP) and 30 \P). The algorithms are
performed taking inputnulti-step optical flowgom-
puted with a 2D version of the disparity estimator de-
scribed in (Robert et al., 2012), referred ta2&%DE.

We compare the optimal displacement fields ob-
tained in output of our initial motion estimates gener-
ation (Section 2.1) with those resulting from (Conze
et al.,, 2013). The comparison is done through reg-
istration and PSNR assessment.
{lret,In}, the final fields are used to reconstruct
lres from I, through motion compensation and color

For a given pair

Fig.4. Multi-stepestimations deal satisfactorily with
the temporary occlusion. Experiments Mawspaper
reveal the same finding: the novelty in terms of incon-
sistency reduction improves the displacement fields
quality. Moreover, the iterative motion refinement
stage Ni; = 9) allows to obtain better PSNR scores
for all pairs compared to the initial stage $fatFlow

3.2 Comparisons withFlag dataset

Quantitative results have been obtained using the
dense ground-trutbptical flowdata provided by the
Flag dataset (Garg et al., 2013) for théag sequence
(Fig. 8). Experiments focus on:

e direct estimation between each pdtes,In}
using LDOF (Brox and Malik, 2011),ITV-L1
(Wedel et al., 2009) and the keypoint-based non-
rigid registration of (Pizarro and Bartoli, 2012),

e concatenation obptical flowscomputed between
consecutive frames usindOF (LDOF acg,



@)l2s » (b) lao (€) lss (d) l2s (e) (Conze etal., 2013)  (BtatFlowinitial phase
Figure 4: Source frames of thdPI S1sequence (Granados et al., 2012) and reconstruction of the kidsk fsbm I45

with: e) the combinatorial integration and the statistical selection introducétbinze et al., 2013), f) the proposed extended
version described in Section 2.1 (initial phaseStdtFlow. Black boxes focus on differences between both methods.

’ Method ‘ RMS endpoint error (pixelsi R A
StatFlow(LDOF) 0.69 '
MSF (Crivelli et al., 2012a)(DOF) 141
LDOF direct(Brox and Malik, 2011) 1.74 T
LDOF acc(Brox and Malik, 2011) 4 £

g .
MFSF-PCA (Garg et al., 2013) 0.69 5
MFSF-DCT(Garg et al., 2013) 0.80 5

=

=
(Pizarro and Bartoli, 2012jirect 1.24 %
ITV-L1 direct(Wedel et al., 2009) 1.43 =

Table 3: RMS endpoint errors for different methods on the v
Flag benchmark dataset (Garg et al., 2013).

o multi-frame subspace flogMFSF) (Garg et al., T meNamber R
2013) USIng PCA or DCT baSIS' === LDOF direct ===LDOF acc ——MSF (LDOF) ——StatFlow (LDOF)
. . R Figure 5: RMS endpoint errors for each pflit, In} along
e multi-step flow fusion MSF) (Crivelli et al.,  Fjagsequence (Fig. 8) with different methods.

2012a) with.DOF multi-step optical flows Tab. 3 and Fig. 5 prove that with the saogtical
o StatFlow(N; = 3) with LDOF optical flows flowsas inputs StatFlowshows a clear improvement
) ) ~ compared tavVISF (0.69 against 41). Although both
For the comparison task, Tab. 3 gives for all the previ- methods achieve the same quality for first pairs or for
ously described methods the RM8¢t mean squale  some pairs which coincide with existirgeps other
endpoint errors between the respective obtained dis-gdjsplacement fields are computed with a better ac-
placement fields and the ground-truth data. RMS er- cyracy usingStatFlow Moreover, StatFloWLDOF)
rors are estimated for all the foreground pixels and yeaches the same RMS error with respechMBSF-
for all the pairs of frameglrer,In} together. RMS er-  pca the best one of thelFSFapproaches, with.89.

rors computed for each pair of frames are shown in Thjs proves thaGtatFlowis competitive compared to
F|95 fOI’ a” the methOdS based QDOF: LDOF d|' Cha”enging State_of-the_art methods_

rect, LDOF acg MSF(LDOF) andStatFlow(LDOF). . .
The last twomulti-stepstrategies have considered as 3-3  Texture propagation and tracking
inputs steps £ 5, 8, 10, 15, 20, 25, 30,40 and 50.  We aim now at showing that our method provides sat-
We can firstly observe th&atDOF accrapidly di- isfying results in a wide set of complex scenes. More-
verge. This is due to both estimation errors which are over, we focus on the comparison betwettatFlow
propagated along trajectories and accumulation errors(Niy = 9) andMSF (Crivelli et al., 2012a) to prove that
inherent to the interpolation process. Moreover, the StatFlowperforms a more efficient integration and se-
results obtained through direct motion estimation are lection procedure compared MSF using the same
reasonably good, especially for (Pizarro and Bartoli, optical flowsas inputs. Experiments have been firstly
2012).LDOF directgives a lower RMS endpoint er- conducted in the context of video editing: we evaluate
ror thanLDOF acc(1.74 against 4). However, it is the accuracy of both methods by motion compensat-
not possible to draw conclusions in the light of the ingin I, ¥ntextures/logos manually insertedlig;.
Flag sequence because the flag comes back approx- In Fig. 6 and 7, textures/logos have been respec-
imately to its initial position at the end of the se- tively inserted inl115 of MPI S1, I5036 Of HOpe 1230
guence (Fig.8g). Motion estimation for complex  of Newspaperand |y of Walking Couple To-the-
scenes cannot generally rely only on direct estimation referencedields computed witlstatFlow @D-DE) and
and combiningpptical flowaccumulations and direct MSF 2D-DE) serve to propagate textures/logos up to
matching is clearly a more suitable strategy. respectivelyl137, Isps3 1170 andlso. 2D-DE has been



(b) Texture insertion idy15 (f) Prop. tol12s, StatFlow(2D-DE)  (g) Prop. tol13o, StatFlow(2D-DE)  (h) Prop. tol137, StatFlow(2D-DE)

(i) Original imagelsgss (k) Prop. tolsgss, MSF (2D-DE) (1) Prop. tolsgsz, MSF (2D-DE) (m) Prop. tolspss, MSF (2D-DE)

(n) Prop. tolsgse StatFlow(2D-DE) (o) Prop. tolspsy, StatFlow(2D-DE)  (p) Prop. tolsges, StatFlow(2D-DE)

(q) Logo insertion inl30 (r) Prop. tolz10, StatFlow(2D-DE)  (s) Prop. toligs, StatFlow(2D-DE)  (t) Prop. toli7o, StatFlow(2D-DE)

Figure 6: Texture/logo insertion iR 15 (resp.lso3s andl23p) and propagation along thédPI-S1 (resp.HopeandNewspapéer
sequence up thz7 (resp.lspszandli70) using: 1)multi-stepflow fusion MSF) (Crivelli et al., 2012a) withmulti-step optical
flow fields from (Robert et al., 2012) [2DE): MSH2D-DE); 2) the proposedtatistical multi-step flowStatFlow with

2D-DE multi-step optical floviields: StatFlow(2D-DE).



(c) Originl imagéao (j) Prop. tolyo, StatFlow(2D-DE) (k) Prop. tols, StatFlow(2D-DE) (0] Pro. tolyo, tatFIow(2D—DE)

Figure 7: Texture insertion ity and propagation up thyo (Walking Couplesequence). We compare: d-f) concatenation of
LDOF (Brox and Malik, 2011)optical flowfields computed between consecutive framdsqF acq; g-i) multi-stepflow
fusion MSF) (Crivelli et al., 2012a) usingulti-step optical flowiields from (Robert et al., 2012) (RDE); j-I) the proposed

statistical multi-step flofStatFlow) using DD-DE multi-step optical flovfields.

(b) 110 (€) l20 (d) 10 (&) lao ) lso
Figure 8: Source frames of tikag sequence (Garg et al., 2013).
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(a) 1115 with tracking area (b) Point tracking frohiys to l13s, MSF (2D-DE) (c) Point tracking from 15 to I13s, StatFlow(2D-DE)

Figure 9: Point tracking fronh;15 up toli3g, MPI-SL sequence (Granados et al., 2012). We comparenuti-stepflow
fusion (MSF) (Crivelli et al., 2012a) usingnulti-step optical flowfields from (Robert et al., 2012) (RDE); c) the proposed

statistical multi-step floWfStatFlow method using B-DE multi-step optical floviields.




chosen for its good results for video editing tasks. The Brox, T. and Malik, J. (2011). Large displacement optical

stepsnvolved are: -5, 8 Hop@, 10, 15 (except for
NP), 20 Hope NP), 30 (MPI S1, NP).

Given these results, it appears thSF some-
times distorts structures (bottom left zoom Fig.6
e, Fig.d,m), makes shadow textures appear (bot-
tom right zoom Fig.6-€) and does not estimate mo-
tion with accuracy (top right zoom Fige6Fig.g,m).
Visual results withStatFlow reveal a better long-
term propagation (see also Figi§. Fig.7 compares
StatFlow@D-DE) andMSF@D-DE) with LDOF acc
We observe thdtDOF accbadly performs motion es-
timation for periodic structureddSF encounters also
matching issues (Fighf whereasStatFlowperforms
propagation without any visible artifacts.

Finally, StatFlowand MSF are assessed through
point tracking. In Fig. 9, the bottom right part of
the woman face is tracked frohys to l135 (MPI S1).
The D+t visualization indicates that some trajecto-
ries drift to the background witMSF. This illustrates
the inherent issue d/ISF which propagates estima-

tion errors due to the sequential processing. Con-

versely,StatFlowprovides accurate fields while lim-

iting the temporal correlation between displacement
fields respectively estimated for neighbouring frames.

4 CONCLUSION

We presenstatistical multi-step floya two-step
framework which performs dense long-term motion
estimation. Our method starts by generating initial

dense correspondences with a focus on inconsistency

reduction. For this task, we perform a combinato-
rial integration of consistenpptical flowsfollowed
by an efficient statistical selection. This procedure

is applied independently between a reference frame

and each frame of the sequence.
low temporal correlation between the resulting cor-

respondences respectively estimated for each of these
pairs. We propose then to enforce temporal smooth-
ness through a new iterative motion refinement. It
considers several motion candidates including candi-
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