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ABSTRACT

In this paper, a direct experimental comparison is made between scanning and tomo-PIV, on an unsteady wake flow behind a half-cylinder.

Several seeding densities are used in order to demonstrate the capacities and limitations of both techniques. For the scanning technique,

the effect of particles elongation is investigated and the influence of the seeding density on the volume reconstruction for tomo-PIV is

examinated. The results of the two techniques are compared in terms of volume and velocity fields.

1. Introduction

In the literature, many studies have been carried out on the flow around a cylinder with tools for measuring the two components or

the three components of the velocity [12]. Nevertheless, this classic flow is complex and sensitive to the Reynolds number. Recently

for low Reynolds numbers different configurations have been tested to control the flow by using a half cylinder to fix the separation

points or by adding a splitter plate to reduce the vortex shedding and the drag [10]. The 3D effects seem to have some influence on

the wake and we propose to measure this flow by means of 3D diagnostics. Several methods are currently used to measure the three

components of the velocity field in a volume. Holography [6], tomo-PIV [3], [11], scanning-PIV [5], 3D-PTV [7] and [8] among others

are powerful tools to get three-dimensional measurements. In this paper, only tomo-PIV and scanning-PIV are considered and are

used simultaneously to validate the algorithms of tomography PIV with a technique of scanning. A direct experimental comparison

between the two techniques is performed, which is usually technically difficult. This comparison gives access to a direct validation of

the reconstruction technique in a real case which is more realistic that the previous validation made with a solid block by these two

techniques [4]. Some effects are particularly investigated like the seeding density and the particle elongation for the scanning. The

results of the two techniques are compared in terms of volume and velocity fields.

2. Experimental setup

The flow investigated is a laminar wake behind a half-cylinder. The experimental setup is presented in figure 1. Two pumps supplies

water to a close-loop system. A big tank is imposing the pressure inside the water channel. The flow is regulated using small pipes

and two grids. The Reynolds number is around 300, based on the diameter of the half cylinder and the mean stream velocity. The

cylinder diameter was 20 mm and the channel was 160×160 mm2 squared. The fluid used is water at 20◦C . The flow was seeded using

21µm particles of polyamid (ρ=1.04 g/cm3). The volume was illuminated with a Nd:YLF 10 kHz quantronix laser. The laser sheet

was 1 mm thick. The measurement volume was 30 mm thick and generated using high speed scanning. The measurement volume is

presented in figure 2. One high speed 1024×592 camera (cam5) is used for the scanning-PIV technique and four 1600×1200 cameras

(cam1, cam2, cam3 and cam4), opened during all the laser sheet volume scanning, are used for the tomo-PIV. The configuration of the

cameras is presented in figure 3. The calibration of the cameras was performed using a paper calibration grid, shifted through the whole

measurement volume. Different seeding densities were used, defined by the mass of particles added in the water tank. 0, 1, 2, 3, 4, 5,

6, 8 and 10 grams were tried.

3. Data processing

All the codes used to process the data were developed using the SLIP C++ library [14].

3.1 TOMO-PIV



Figure 1: Experimental setup.

Figure 2: Top view of the

cylinder and the measurement

volume.

Figure 3: Cameras configuration.
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Figure 4: Image of the cylinder and lines of sight coming from the

different cameras and going through the same bubble.



The background of the images was removed subtracting a background image computed using a size 20 temporal median filter. The

cameras were calibrated using a calibration target displaced along a direction perpendicular to the laser sheet. Nine positions were used

to fit a pinhole camera model for each camera. A specific self-calibration procedure was used to be sure that all the cameras are correctly

aligned. Each volume obtained with the scanning technique was projected on cam5, in order to get a fifth tomo-PIV image, used as

a reference during the misalignment procedure. Cameras 3, 4 and 5 were being fixed on a tripod. The self-calibration procedure was

working easily for these three cameras. The two other cameras were being fixed on a rigid structure, and the heavy calibration target

was fixed on it, deforming the structure, and then moving the cameras. Hence, problems arose during the self-calibration procedure

for these cameras. The misalignment errors were to large to be corrected with the standard procedure. The camera models were then

shifted manually before applying the misalignment correction. This shift was evaluated using bubbles staying along the cylinder that

were being visible on all tomo-PIV cameras. The result of the bubble line-of-sight crossing is shown in figure 4. Essentially a 19 mm

shift was applied in the Y direction.

The 0g seeding images were used to perform the self-calibration. The maximum misalignment error was 3.6 pixels and after correction,

it was lower than 0.1 pixels.

The reconstruction was performed using 8 BIMART iterations. The BIMART algorithms is a expansion of the MART algorithm family

and is presented in [13] and [1]. The volumes size is 890×600×300. The voxel physical size is 0.1 mm. The difficulty here was to

choose the best seeding density in order to get the best reconstruction result. Our criterion to achieve this was to take the velocity

field leading to the smallest divergence RMS value. This quantity has been already used to assess a velocity field quality (see [9]).

The velocity field was obtained with a 64×64×64 final interrogation window size, with a first pass using 128×128×128 interrogation

windows.

The results concerning the divergence RMS value are presented in figure 5. Two particle densities give a minimum divergence RMS
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Figure 5: Evolution of the divergence RMS value, as a function

of the particles quantity and the final interrogation window size.
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Figure 6: Evolution of the evaluated particle per pixel (ppp) and

the image signal ratio (Ns).

value. For the biggest interrogation windows, the optimal particle quantity is 2 grams, while for the intermediate interrogation window

size, 3 grams is slightly better. The smaller the interrogation window, the higher the particle quantity. Anyway, above a certain

concentration, the result quality decreases. Other quantities characterizing the particle density are interesting to investigate: the number

of particles per pixel (ppp), and the image signal ratio (Ns). It is clear from figure 6 that the image is saturated above a particle quantity

corresponding to 2 grams of particles put in the tank. This justifies also that the reconstruction should be the best around this particle

concentration, as the images begin to saturate, particles hiding each other. As there are four cameras, ambiguities can be eliminated in

some way if the saturation if not very high. Ns values are low for such ppp: a gaussian filter applied on the images can improve the

reconstruction quality in this case.

3.2 Scanning-PIV

The volumes are generated from the stacked images. The images are dewarped using the camera model. After volume reconstruction,

the voxels are not cubic: they are three times more elongated along the Z direction. The volumes are interpolated on the same regular

grid as used in tomo-PIV. The resulting volume contains elongated particles, which are the result of the convolution of the spherical

particles intensity profile with the laser sheet profile. The deconvolution problem is not an easy one, and in this paper, a simple technique

has been tried in order to evaluate the effect of this elongation of the particles. The volume has been filtered in order to reduce this

elongation. This filter consists in detecting all the particles in the volume and replacing them with a spherical particle, with a gaussian

intensity profile. The detection is performed looking for connected components after a global thresholding. The position is computed

using centroid evaluation. The intensity and the variance of the particle are computed using statistics on the voxels inside the detected

particle. Particles that are too small or too elongated are eliminated. The volumes are compared in image 7. The particles match quite

well. All the significant particles are identified and replaced by spherical particles. Concerning the correlation of volumes obtained

with scanning PIV, the best particle concentration is the highest. Indeed, no artifacts appears in the velocity field when the quantity of

particles varies between 2 and 10 grams and using a high concentration, it is possible to decrease the final interrogation window size

for the velocity fields computation. It is possible to go down to 32×32×32 (and probably even less). The result on the velocity fields is

shown in figure 9. A zoom around the cylinder is presented. This comparison shows that the main differences concerns the Z direction.

Even if the velocity fields look very similar on a global point of view, there are some differences near the cylinder and inside the vortex.

The velocity vectors follow better the cylinder wall upstream in the filtered case. In general, the differences on the w component of



Figure 7: Comparison of the volumes (particle density

corresponding to 2 grams) obtained with the scanning technique:

the raw particles are presented smooth and in red, while the

filtered particles are made from blue voxels.

Figure 8: Comparison of the volumes (particle density

corresponding to 2 grams) obtained with the scanning technique

(smooth, red particles) and with Tomo-PIV (blue voxels).

Figure 9: Comparison of velocity fields obtained with and without filtering (vector fields are tangent velocity fields, and lines are iso-w

contours). The data without filtering is in black, while the data with filtering is in white. The cylinder is shown in dark red.

the velocity appear when this velocity component takes low values. The results seems to be slightly improved by the filtering, but it is

probably possible to find a more sophisticated deconvolution technique.

4. Comparison of the techniques

The volumes are generated with the same resolution. A direct comparison of the volumes can be performed. Anyway, a real comparison

can be performed only for low seeding densities as high seeding densities introduces too many ghost particles when using tomo-PIV.

The comparison is performed for the tomo-PIV particle concentration (2 g). The result is shown in figure 8. There is a rather good

correspondence between the particles. The differences are mainly due to the noise which is different in the fast cameras and the normal

cameras, hence the background elimination technique and low level illumination on the fast camera can partially explain the differences.

The velocity fields can also be compared, using 64×64×64 final interrogation windows. The result is shown in figure 10. In this figure,

the vectors are the projection of the velocity on the plane and the lines are the iso-contours of the perpendicular velocity component.

These data are drawn in black for the scanning technique and in white for tomo-PIV. A very good correspondence is observed between

the two techniques. Both vectors and lines match very well. The only big difference concerns the region upstream of the cylinder: the

results for tomo-PIV are not accurate because the light goes through the cylinder and this is not modeled by the camera models. The

same result can be presented in other planes (see figures 11 and 12). The same conclusion can be made about the correspondence of

the techniques. Even in the Z direction, the velocity fields match closely.

5. Results

The best result is given by the scanning technique (giving a divergence RMS of 2.6 s−1) because it is possible to get a higher spatial

resolution. The main drawback of the technique is that the flow must be slow enough so that the flow can be considered as frozen.



Figure 10: Comparison of the velocity fields obtained in the XY plane with scanning (in black) and tomo-PIV (in white). The velocity

vectors represented are tangential ones and the lines are iso-contours of the perpendicular velocity component.

Figure 11: Comparison of the velocity fields obtained in the YZ

plane with scanning (in black) and tomo-PIV (in white). The

velocity fields represented are tangential and the iso-contours

represents the velocity component perpendicular to the plane.

Figure 12: Comparison of the velocity fields obtained in the XZ

plane with scanning (in black) and tomo-PIV (in white). The

velocity fields represented are tangential and the iso-contours

represents the velocity component perpendicular to the plane.

More precisely, that means that the equation (1) should be verified.

||
∂u

∂t
|| ≪ 2

||u||

∆T
(1)

where ∆T is the time interval between the beginning and the end of the scan. In our case, the measurements are time-resolved hence it

is possible to check this condition by approximating the time derivative by finite differences, leading to equation (2).

||u(t +∆t)−u(t)||

||u(t +∆t)+u(t)||
≪

∆t

∆T
(2)

where ∆t is the time interval between the second and the first exposure. In the present experiment, ∆t
∆T

= 2. A computation of the

ratio from the experimental data gives a maximum value around 0.25. That means that scanning-PIV is usable for the present flow.

The temporal coherence of the technique is shown here through the consideration of figure 13 showing the temporal evolution of the

Q-criterion iso-contours, colored by a vorticity direction index. The Q-criterion is computed robustly using some averaging around the

point where it is computed. The temporal evolution is coherent. Large coherent structures parallel to the cylinder are clearly visible

and form a Von Kármán vortex street. Some horizontal structures are also present. With this great experimental tool, it will be possible

to better understand the physics of this flow.

6. Conclusion

In this paper, for the first time a direct experimental comparison between scanning and tomo-PIV is achieved. The scanning technique

leads to better spatial resolution but it is limited to slowly varying flows. The elongation of the particles along the scanning direction

due to a convolution between the particle intensity profile and the laser sheet profile reduce the measurement precision and a filtering

of the particles, in case of very elongated particles, can be necessary. Tomo-PIV does not have restrictions on the velocity of the

flow. However, the calibration procedure is crucial in order to get results, and the spatial resolution is limited by the reconstruction

problems (linked to ghost particles). The choice of the seeding density is also important, even if it is possible to get proper results with



Figure 13: Example of Q criterion iso-values computed on the velocity field obtained with the scanning-PIV technique, for T=0 s

(left) and T=2 s (right). Each instant contains four views. side view (top-left), top view (bottom-left), left-view (top-right) and 3d-view

(bottom-right). The colors correspond to a vorticity direction index. For example, the green color means that the vorticity is in the -X

direction.

rather different seeding densities. For a seeding density adapted to tomo-PIV, scanning-PIV and tomo-PIV leads to the same velocity

field. This confirms that the volume reconstruction technique gives good results even on noisy experimental data. A good compromise

between the two techniques is a combination of scanning and tomo-PIV, as used in [2]. In order to scan more rapidly a volume, it

is possible to use a larger laser sheet and instead of stacking images, it is possible to stack volumes reconstructed by tomo-PIV. This

technique reduces the seeding density limitation of tomo-PIV and the scanning velocity limitation of scanning-PIV.
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[10] A. Santa Cruz, L David, J Pécheux, and A. Texier. Characterization by proper-orthogonal-decomposition of the passive controlled

wake flow downstream of a half cylinder. Exp. in Fluids, 39:730–742, 2005.

[11] F Scarano. Tomographic piv: principles and practice. Meas. Sci. Technol., 24(1):1–28, 2013.

[12] F Scarano and C Poelma. Three-dimensional velocity patterns of cylinder wakes. Exp. in Fluids, 47:69–83, 2009.

[13] L. Thomas, B. Tremblais, and L. David. Optimisation of the volume reconstruction for classical tomo-piv algorithms (mart,

bimart and smart): synthetic and experimental studies. Exp. in Fluids, submitted, 2013.

[14] B. Tremblais, L. David, D. Arrivault, J. Dombre, L. Chatellier, and L. Thomas. Slip : Simple library for image processing (version

1.0). http://www.sic.sp2mi.univ-poitiers.fr/slip/, 2010.


