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s of Fluids, 12(1):237-238, 2000ABSTRACTThe Van Driest transformation for 
ompressible boundary layers with heattransfer is studied in the low Ma
h number limit. The limiting 
ase leads to abi-logarithmi
 type of pro�le for the mean velo
ity. A (purely mathemati
al)analogy with in
ompressible boundary layers having mass transfer at thewall is identi�ed.The supersoni
 
ompressible turbulent boundary layer with or withoutheat transfer is fairly well do
umented.1{3 Dimensional analysis of the innerlayer shows that the law of the wall 
an be des
ribed in terms of two non-dimensional wall parameters, the fri
tion Ma
h numberM� = u�=
w and theheat 
ux parameter Bq = qw=(�wCpu�Tw), where u� is the fri
tion velo
ityp�w=�w, qw the heat 
ux, Cp the 
onstant-pressure spe
i�
 heat, and Twand 
w the temperature and speed of sound at the wall. Many experimentaland numeri
al data support the validity of the Van Driest4 transformationof the velo
ity into the form of the in
ompressible logarithmi
 lawU+V D = Z u+o � ��w�1=2 du+ = 1� ln y+ + C (1)where the additive 
onstant C is in prin
iple a fun
tion of both M� and Bq.The supers
ript `+' denotes the usual wall s
aling U+ = U=u� and y+ =�wu�y=�w. The 
ase of signi�
ant heat transfer but small Ma
h number hasre
eived little attention by experimenters. Therefore the usefulness of theVan Driest transformation to retrieve the 
lassi
al logarithmi
 law of thewall 
annot yet be satisfa
torily demonstrated in this 
ase. However, sin
ethe transformation is based on the assumption that turbulen
e stru
ture is1



unaltered by large temperature variations it should be as valid at low Ma
hnumbers as at high ones.In this Brief Communi
ation, the behavior of the transformation in thelimiting 
ase where Bq is �nite but M� ! 0 is studied, and a mathemati
alanalogy between heat transfer and transpiration is identi�ed. Note thatM� = M1q
f=2 so that for typi
al \low speed" values of M1 � 0:05and 
f � 0:003 we have M� � 0:002, large enough for round-o� errors innumeri
al work to be negligible.The \mixing length" formula (obtainable by simple lo
al-s
aling argu-ments without the erroneous mixing length 
on
ept) reads, in the fully tur-bulent region: �U�y = (�=�)1=2�y (2)where � and � are the lo
al shear stress and density. In the 
ase of nonzeroM� , U+VD 
an be dedu
ed1 as a fun
tion of U+ by integrating the \mixinglength' formula in the fully turbulent region, assuming a 
onstant turbulentPrandtl number to derive the temperature and hen
e the density. We obtain:U+V D � 1R "sin�1 R(U+H)D !� sin�1 �RHD �# (3)where R =M�pPrt(
 � 1)=2, H = Bq=((
�1)M2� ) and D = pC1 +R2H2.If Eq. (3) is expanded as a power series in M� , we obtain:U+V D � 2pC1PrtBq "1�s1� U+PrtBqC1 #+O(M2� ) (4)Although data for C1 are s
ar
e and unreliable, it is reasonable to assumeC1 � 1.1 Then, writingW � �PrtBq as the strength of the (not ne
essarilysmall) perturbation asso
iated with wall heating or 
ooling, Eq. (4) 
an bere-written in the form:U+V D � 2W hp1 +WU+ � 1i+O(M2� ) (5)The �rst-order term in Eq. (5), i.e. the limit of the Van Driest transfor-mation for low-Ma
h-number 
ow with small M� but �nite W, is formallyequivalent to the well-known (e.g. Simpson5) transformation of the velo
-ity pro�le for in
ompressible turbulent wall 
ows with uniform inje
tion,2



where again U+V D = (1=�) ln y++C. In this 
ase, the perturbation parame-ter is W = V +inj, the 
hara
teristi
 transpiration velo
ity being in wall units.Thus, the \mixing length" formulas suggest that an in
ompressible wall 
owsubje
t to inje
tion or su
tion has the same mean velo
ity pro�le as a low-Ma
h-number 
ow (with variable density) subje
t to 
ooling or heating. Itmust be stressed at on
e that this 
urious mathemati
al analogy is mostunlikely to have any simple physi
al basis.Consider the x-
omponent momentum equation in the two 
ases, ne-gle
ting streamwise gradients. In the 
ow with heat transfer, we have thefamiliar 
onstant-stress layer, � = �w, but 
ombining the mixing lengthformula with 
onstant Prt gives �w=� � T=Tw � 1�PrtBqU+. In the tran-spiration 
ase, the density is 
onstant, i.e. � = �w, but the x-
omponentmomentum equation, integrated in the y dire
tion, gives � = �w + �wVinjU .In both 
ases �=� is of the form (�w=�w)(1+WU+), and, inserting this intoEq. (2), Eq. (5) follows. If U+V D is given by Eq. (1) then U+ obeys theso-
alled bi-logarithmi
 law.We present this mathemati
al analogy as a 
uriosity rather than some-thing with spe
i�
 physi
al 
ontent, and we make no 
omment on behaviorin the vis
ous wall region below the validity of Eq. (2); but perhaps investi-gators of strong heat transfer and of transpiration may �nd an ex
hange ofviews worth while. This note is dedi
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