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ABSTRACT

The Van Driest transformation for compressible boundary layers with heat
transfer is studied in the low Mach number limit. The limiting case leads to a
bi-logarithmic type of profile for the mean velocity. A (purely mathematical)
analogy with incompressible boundary layers having mass transfer at the
wall is identified.

The supersonic compressible turbulent boundary layer with or without
heat transfer is fairly well documented.'™® Dimensional analysis of the inner
layer shows that the law of the wall can be described in terms of two non-
dimensional wall parameters, the friction Mach number M, = u, /¢, and the
heat flux parameter By = qy/(pwCpusTy), where u; is the friction velocity
V/Tw/pPw, qw the heat flux, C, the constant-pressure specific heat, and T,
and ¢, the temperature and speed of sound at the wall. Many experimental
and numerical data support the validity of the Van Driest* transformation
of the velocity into the form of the incompressible logarithmic law
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where the additive constant C'is in principle a function of both M, and B,.
The superscript ‘*’ denotes the usual wall scaling UT = U/u, and y* =
PwUry/ 1y The case of significant heat transfer but small Mach number has
received little attention by experimenters. Therefore the usefulness of the
Van Driest transformation to retrieve the classical logarithmic law of the
wall cannot yet be satisfactorily demonstrated in this case. However, since
the transformation is based on the assumption that turbulence structure is



unaltered by large temperature variations it should be as valid at low Mach
numbers as at high ones.

In this Brief Communication, the behavior of the transformation in the
limiting case where B, is finite but M, — 0 is studied, and a mathematical
analogy between heat transfer and transpiration is identified. Note that
M, = oo./c]c/2 so that for typical “low speed” values of My, =~ 0.05
and ¢y ~ 0.003 we have M, ~ 0.002, large enough for round-off errors in
numerical work to be negligible.

The “mixing length” formula (obtainable by simple local-scaling argu-
ments without the erroneous mixing length concept) reads, in the fully tur-
bulent region:
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where 7 and p are the local shear stress and density. In the case of nonzero
M,, U{','D can be deduced! as a function of Ut by integrating the “mixing
length’ formula in the fully turbulent region, assuming a constant turbulent

Prandtl number to derive the temperature and hence the density. We obtain:
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where R = M,/Pry(y —1)/2, H = By/((y—1)M?) and D = \/C; + R?H?>.

If Eq. (3) is expanded as a power series in M, we obtain:
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Although data for C are scarce and unreliable, it is reasonable to assume
Cy ~ 1.} Then, writing W = —PryBy as the strength of the (not necessarily
small) perturbation associated with wall heating or cooling, Eq. (4) can be
re-written in the form:
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The first-order term in Eq. (5), i.e. the limit of the Van Driest transfor-
mation for low-Mach-number flow with small M, but finite VW, is formally
equivalent to the well-known (e.g. Simpson®) transformation of the veloc-
ity profile for incompressible turbulent wall flows with uniform injection,



where again Ui, = (1/k)Iny™ + C. In this case, the perturbation parame-
ter is W = VHJIFJ, the characteristic transpiration velocity being in wall units.
Thus, the “mixing length” formulas suggest that an incompressible wall flow
subject to injection or suction has the same mean velocity profile as a low-
Mach-number flow (with variable density) subject to cooling or heating. It
must be stressed at once that this curious mathematical analogy is most
unlikely to have any simple physical basis.

Consider the z-component momentum equation in the two cases, ne-
glecting streamwise gradients. In the flow with heat transfer, we have the
familiar constant-stress layer, 7 = 7, but combining the mixing length
formula with constant Pry gives py,/p ~T/T,y ~ 1— PrthU+. In the tran-
spiration case, the density is constant, i.e. p = p,, but the x-component
momentum equation, integrated in the y direction, gives 7 = 7, + py VinjU.
In both cases 7/p is of the form (7, /py)(1+WUT), and, inserting this into
Eq. (2), Eq. (5) follows. If U}, is given by Eq. (1) then U™ obeys the
so-called bi-logarithmic law.

We present this mathematical analogy as a curiosity rather than some-
thing with specific physical content, and we make no comment on behavior
in the viscous wall region below the validity of Eq. (2); but perhaps investi-
gators of strong heat transfer and of transpiration may find an exchange of
views worth while. This note is dedicated to the memory of Prof. Hieu Ha
Minh.
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