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Control of nonholonomic wheeled mobile robots via i-PID controller

Yingchong Ma, Gang Zheng, Wilfrid Perruquetti and Zhaopeng Qiu

Abstract— An intelligent PID controller (i-PID controller)
is applied to control the nonholonomic mobile robot with
measurement disturbance. Because of the particularity of the
nonholonomic systems, this paper propose to use a switching
parameter α in the i-PID controller. We show in simulations
that the proposed method is able to control the nonholonomic
mobile robots with measurement disturbance, and it can also
stabilize the robot at a static point.

I. INTRODUCTION

The problem of wheeled mobile robot control has been
widely studied and attracted the interest of many researches
because of its wide application in industries and theoretical
challenges [1], [2]. Generally the robot control problem can
be divided into two main problems: the trajectory tracking
problem and stabilization problem. The control problem of
trajectory tracking can also be categorized into two types:
linear control and nonlinear control. [3] proposed a linear
controller which is robust to the perturbation in robot velocity
control. Separated feedback loops control for robot position
and velocity was used in [4]. The kinematic model of the
robot was linearized in [5], and in which a proportional linear
control was applied. The famous PID controller was applied
in [6], in which a simple linearized mobile robot model is
used.

The linear control indeed has great advantages because
of its simplicity in linear control theory, while however
when comparing with nonlinear control its robustness are
very limited. In linear control the initial states are often
required to stay close to the reference to ensure the stability,
instead nonlinear control is able to guarantee the stability
without this kind of problems. Moveover, it is known that the
feedback stabilization at a given posture cannot be obtained
by smooth time-invariant control [7], this implies that the
problem is truly nonlinear, and linear control is ineffective
here. For nonlinear nonholonomic robot systems, there are
usually open loop controls where the inputs are calculated
from the reference trajectory [8], flatness based control
[9] is a kind of open-loop control, whose robustness can
be strengthened [10], which is widely applied in optimal
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control problems. However, it is well known that the open-
loop control is not robust to modeling errors so that it
cannot guarantee the mobile robot to move along the desired
trajectory. Nonlinear feedback control for mobile robots is
used in [11] to solve the trajectory tracking problem, and
the dynamic feedback linearization is also used in [12].
[13] proposed a nonlinear control law based on partial state
feedback linearization and Lyapunov’s direct method, but
the disturbance and uncertainty were not considered in the
control design.

Recently, an intelligent PID controller (i-PID controller)
introduced in [14] exhibits the robustness to the unmodeled
dynamics and disturbance in the system [15], and it has been
widely studied and applied to many electrical and mechanical
processes [16], [17]. This paper aims at applying the so-
called i-PID controller to the nonholonomic robots in order
to control the robot with measurement disturbance. However,
due to the particularity of the nonholonomic system, this
controller can not be simply applied, for this a switching
parameter is selected and a robust controller is proposed to
control the robot with measurement disturbance.

The paper is structured as follows. Section II presents the
problem statement. Section III explains the determination of
the controller. Simulation results are detailed in Section IV.

II. PROBLEM STATEMENT

This paper considers the unicycle-type mobile robot whose
kinematic model under the nonholonomic constraint of pure
rolling and no slipping can be described as follows:

{
ẋ = ν cos θ
ẏ = ν sin θ

θ̇ = ω
(1)

where ν and ω are linear and angular velocity respectively, x
and y represent the location of the robot, θ is the orientation
of the robot with respect to x-axis(see Fig. 1).
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Fig. 1. Unicycle-type mobile robot

It can be shown that x and y are flat outputs for the studied
system [9]. Indeed, θ, υ and ω can all be expressed by x, y



and their first and second-order derivatives as follows:




θ = arctan ẏ
ẋ

υ =
√

ẋ2 + ẏ2

ω = ÿẋ−ẍẏ
ẋ2+ẏ2

(2)

Suppose that we can only measure the position (x, y) of
the robot, which implies that the relative degree of those
measurements is equal to 1, since the first part of system (1)
is of the following form:

[
ẋ
ẏ

]
=

[
cos θ 0
sin θ 0

] [
v
ω

]

It is clearly that the second control input ω is not involved
in the above equation, since the decoupling matrix is singular.
Due to this fact, one classic solution is to add an integrator
to the first input in order to overcome the singularity of the
decoupling matrix [18]. For this, let us consider the following
extended system:





ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
v̇ = ξ

with u = [ξ, ω] being the new input. One can check that,
with the extended system, the relative degree for both output
is equal to 2. Then one obtains:

[
ẍ
ÿ

]
= G(x, y, ẋ, ẏ)u (3)

where

G =

[
cos θ −ν sin θ
sin θ ν cos θ

]

=

[
cos(arctan ẏ

ẋ
) −

√
ẋ2 + ẏ2 sin(arctan ẏ

ẋ
)

sin(arctan ẏ
ẋ
)

√
ẋ2 + ẏ2 cos(arctan ẏ

ẋ
)

] (4)

which is invertible if v =
√

ẋ2 + ẏ2 6= 0 .
If there is no disturbance in the measurement, a classic

PID controller, which needs the exact value of G−1, can be
used to achieve non-vanishing Cartesian trajectories tracking
(the linear velocity of the robot is assumed to be always non-
zero), since G is singular when v = 0. It has been shown
([19]) that this method cannot be used to stabilize the robot
to a static point due to the same reason.

In addition, noises and disturbance are inevitable in real
situations, thus the exact computation of G−1 in (4) cannot
be obtained. Consider the output under disturbance as Y =
[x, y]T + D, where D = [d1, d2]T is the disturbance in the
measurement, Thus the estimated values of θ, v and ω are
disturbed: {

θd = arctan ẏ+ḋ2
ẋ+ḋ1

υd =
√

(ẋ + ḋ1)2 + (ẏ + ḋ2)2
(5)

thus we have
Ÿ = G(Y, Ẏ )u + D̈ (6)

with
G(Y, Ẏ ) =

[
cos(θd) −υd sin(θd)
sin(θd) υd cos(θd)

]
(7)

where θd and υd are defined in (5).
It is clear that the system (6) can not be controlled with

the classical PID controller, since G(Y, Ẏ ) defined in (7) can
not be accurately estimated due to the unknown disturbance.
Moreover, G(Y, Ẏ ) becomes singular when υd = 0. In order
to overcome the two drawbacks when applying the simple
PID controller, this paper uses the recently proposed i-PID
controller to control the robot with measurement disturbance.

III. DETERMINATION OF THE CONTROLLER

Since the controller proposed in this paper is based on
the i-PID controller, let us firstly present the basic idea of
this controller, and then detail how to apply this controller
into the control of the unicycle model with measurement
disturbance.

A. i-PID controller

Generally speaking, the method of i-PID controller locally
approximates the system model by a simple local model with
unknown term, and the unknown term can be estimated by
the measurements of the input and output of the system,
then a so-called i-PID controller can be deduced to realize
the control goal.

In this paper the system model (6) is approximated by
the following local model over a small time interval T =
[tk, tk+1] with k ∈ Z+:

Ÿ (t) = F (t) + α(Y, Ẏ )u(t) (8)

where u and Y are known input and output signals with
disturbance, α(Y, Ẏ ) is a non singular 2 × 2 dimensional
matrix which should be well chosen in order to achieve
the control goal. F ∈ R2 represents all unknown terms
including the disturbances, which can be estimated by using
the information of Y , u and α.

For the above locally approximated continuous model
over time interval T , one can estimate F by discretizing it.
Precisely, denote Ts the sampling period, so at each sampling
time k = t/Ts, one has

Ÿk = Fk + α(Y, Ẏ )uk

then it yields Fk = Ÿk − α(Y, Ẏ )uk, where Yk and uk

are measurable signals at time k, and Ÿk is the 2nd order
differentiation of the output Y at sampling time k. If it is
assumed that Ts is small enough such that Fk−1 → Fk, then
the so-called i-PID controller can be designed as follows:

uk = α−1(Y, Ẏ )(−Fk−1 + ek) (9)

where ek = Ÿref,k − K2(Ẏk − Ẏref,k) − K1(Yk − Yref,k)
with Yref being the references of the output to be tracked,
and K1 and K2 being the freely chosen coefficients such
that the polynomial s2 + K2s + K1 is Hurwitz.

As one can see in the controller (9), there are two
parameters to be determined, α(Y, Ẏ ) and Fk, which will
be discussed in the following.



B. Discussion on α(Y, Ẏ )
The determination of α(Y, Ẏ ) is the most important issue

when applying such a controller. A good parameter α(Y, Ẏ )
should well approximate G(Y, Ẏ ) defined in (7), and be
always invertible, and change as fewer times as possible as
time goes on, and it is best that α(Y, Ẏ ) is time-invariant.

In [20] and [21], similar controllers are presented, which
use an unknown term to represent unknown parameters and
disturbance in the system. However, in [20] the similar
G(Y, Ẏ ) in the system is a time-invariant scalar. In [21] the
determination of α(Y, Ẏ ) is discussed, but the similar param-
eter G(Y, Ẏ ) in the system is assumed to be always invertible
and time-invariant. Thus in their controller, α(Y, Ẏ ) can be
set as a fixed number or a fixed invertible matrix.

We aim to find out an invertible time-invariant α to well
approximate G(Y, Ẏ ) in the controller. However, let us take
a look at G(Y, Ẏ ) in our system (6). Firstly it is a matrix
whose entries vary as time goes on, and the sign of all entries
in G(Y, Ẏ ) is changing, which makes it impossible to use a
time-invariant α to approximate G(Y, Ẏ ).

In order to approximate G(Y, Ẏ ) with α(Y, Ẏ ), α(Y, Ẏ )
needs to vary with G(Y, Ẏ ). One can of course set that

α(Y, Ẏ ) =
[

cos θ̂ −v̂ sin θ̂

sin θ̂ v̂ cos θ̂

]

where θ̂ = arctan
˙̂y
˙̂x

is the estimation of θ with noises, ˙̂x
and ˙̂y are the estimation of ẋ and ẏ with noises, and v̂ is the
estimation of v defined in (2). In this way, this method is in
fact equivalent to the controller linked to exact linearization
by feedback with the estimate of θ and v. However, one
can notice that α(Y, Ẏ ) will be singular when v̂ = 0. In
order to make α(Y, Ẏ ) being invertible and well approximate
G(Y, Ẏ ), another intuitive choice is to remove v̂ in the above
matrix and one obtains:

α(Y, Ẏ ) =
[

cos θ̂ − sin θ̂

sin θ̂ cos θ̂

]

The above selected α(Y, Ẏ ) is suitable for the controller,
since it is always invertible and it can be well approximate
G(Y, Ẏ ). However, since this choice of θ̂ is always time-
varying when robot moves, which will increase the compu-
tation of the controller. In order to make the selected α(Y, Ẏ )
changing as fewer times as possible when robot moves, this
paper proposes to choose it as follows:

α(Y, Ẏ ) =
[

sig(cos θ̂) −sig(sin θ̂)

sig(sin θ̂) sig(cos θ̂)

]

where sig(σ) is the sign function which extracts the sign of
the real number σ, and it is assumed that sig(0) = 1. For
this proposed α(Y, Ẏ ), let us define the following switching
signal i(θ̂) : R→ I with I = {1, 2, 3, 4}:

i(θ̂) =





1 if θ̂ ∈ (2kπ, 2kπ + π
2
)

2 if θ̂ ∈ (2kπ + π
2
, 2kπ + π)

3 if θ̂ ∈ (2kπ + π, 2kπ + 3π
2

)

4 if θ̂ ∈ (2kπ + 3π
2

, 2(k + 1)π)

(10)

where k ∈ Z. The corresponding constant matrices can then

be defined as follows:

α1 =

[
1 −1
1 1

]
α2 =

[ −1 −1
1 −1

]

α3 =

[ −1 1
−1 −1

]
α4 =

[
1 1

−1 1

]

Therefore, the proposed matrix αi(θ̂) satisfies:

α(Y, Ẏ ) = αi(θ̂),∀θ̂ ∈ R

Summarily, the selected αi(θ̂) has several advantages.
Firstly it has only 4 values when θ̂ changes in [2kπ, 2(k +
1)π], which is able to make α(Y, Ẏ ) changed as fewer times
as possible. Secondly it is always invertible, so that the
controller can stabilize the robot at a static point with the
robot velocity equals to zero.

C. Numerical differentiation

It can be seen that the choice of α(Y, Ẏ ) involves the
estimation values θ̂, ˙̂x and ˙̂y, then the efficient estimation
of these values becomes significant. This paper uses the
algebraic technique proposed by Fliess et al in [22] for the
estimation. Mathematical foundation of this approach can be
referred to [23], [24] and the references therein.

Generally speaking, this algebraic approach has several
advantages: it provides explicit formulae, which can be
directly implemented; it is of non-asymptotic nature, the
desired estimation can be obtained instantaneously, which is
a significant advantage for real-time applications; it does not
require any assumption concerning the statistical distribution
of the unstructured noise.

Consider a signal h(t) =
∞∑

k=0

h(k)(0) tk

k! which is assumed

to be analytic around t = 0 and its truncated Taylor

expansion hN (t) =
N∑

k=0

h(k)(0) tk

k! , where t > 0. Its Laplace

transform is of the form:

HN (s) =

N∑

k=0

h(k)(0)

sk+1
(11)

Introducing the algebraic derivation d
ds , and multiply both

sides of equation (11) by dρ

dsρ sN , ρ = 0, 1, ..., N , one has a
triangular system of linear equations and from which the
derivatives can be obtained:

dρsNHN

dsρ
=

dρ

dsρ
(

N∑

k=0

h(k)(0)sN−k−1) (12)

which is independent of all the unknown initial conditions,
and the coefficients h(0), ..., h(k)(0) are linearly identifiable
[25], then the h(k)(0) can be obtained by taking the inverse
laplace transform of (12) over a time window T .

In practice, the above algebraic technique is implemented
with discrete measured data, thus it is necessary that the
sampling time Ts should be small enough [24],[26].

It is worthy noting that this algebraic technique is robust
with respect to noise involved into the controls and outputs,
since noises are viewed here as quick fluctuations around 0.
They are therefore attenuated by low-pass filters, like iterated
integrals with respect to time.



D. Algebraic estimation of F

Now there is only one parameter F left in the i-PID
controller to be determined. The calculation of F also uses
the algebraic technique described above.

Let us consider the local approximated model:

Ÿ = F + αu (13)

where F can be considered as constant between two sam-
pling time. Then by taking the Laplace transformation of
both sides of equation (13), one obtains

s2Y(s)− sY(0)− Y ′(0) =
F

s
+ αU(s) (14)

In order to eliminate the unknown terms Y(0) and Y ′(0)
which are linked to unknown initial conditions, we take the
2nd order derivative of both sides with respect to s:

s2Y ′′(s) + 4sY ′(s) + 2Y(s) =
2F

s3
+ αU ′′(s) (15)

By dividing both sides of equation (15) with s3, one has:

Y ′′(s)
s

+
4Y(s)′

s2
+

2Y(s)

s3
=

2F

s6
+

αU ′′(s)
s3

(16)

Take the inverse Laplace transformation of both sides of
equation (16), one obtains:

∫ T

0
(−τ)2Y dτ +

∫ T

0
4(T − τ)(−τ)Y dτ +

∫ T

0
(T − τ)2Y dτ

=
2FT 5

5!
+ α

∫ T

0

(T − τ)2

2!
(−τ)2udτ

(17)

where [0, T ] is a short time window, and the window is
sliding in order to get the estimate at each time instant.
Let τ = δT ∈ [0, T ], where δ ∈ [0, 1], after simplification
equation (17) becomes:

T 3

∫ 1

0

(6δ2−6δ+1)Y dδ =
FT 5

60
+

T 5α

2

∫ 1

0

(1−δ)2δ2udδ (18)

Hence, at sampling step k, the numerical estimate value
of Fk can be expressed as:

Fk =
60

T 2

∫ 1

0

(6δ2 − 6δ + 1)Y dδ − 30α

∫ 1

0

(1− δ)2δ2udδ (19)

IV. SIMULATION RESULTS

In the simulation, the parameters are set: K2 = 20, K1 =
100, time window T = 3s, sampling time Ts = 0.01. The
reference trajectory is set as:

{
xr = sin 2t
yr = sin t

2

Fig. 4 to Fig. 8 show the simulation result of the designed
control applied on the nonholonomic wheeled mobile robot
with white Gaussian noise of SNR = 30dB (signal-to-noise
ratio) in the measurement (noises are shown in Fig. 2 and
Fig. 3). Fig. 4 and Fig. 5 show the tracking result, i(θ̂) is
shown in Fig. 6, and the control inputs are shown in Fig.
7 and Fig. 8. As we can see that the robot is able to track
the trajectory with measurement noises, and the controller
designed is effective and robust to the noises.
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Fig. 4. Tracking of position X with white Gaussian noise SNR = 30dB
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Fig. 5. Tracking of position Y with white Gaussian noise SNR = 30dB
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Fig. 9 to Fig. 13 illustrate the simulation of stabilize the
robot at point (4, 1), a white Gaussian noise of SNR =
30dB is added to the measurement as well. Tracking result
is shown in Fig. 9 and Fig. 10, control inputs are shown in
Fig. 12 and Fig. 13. As we can see that the controller is able
to stabilize the robot at a static point with the velocity equals
to 0.

Two more real-time 3D simulations are made in the
attached video by using ROS (Robot Operating System),
one is reference tracking simulation and the other is the
stabilization of the robot at a static point with the robot
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Fig. 8. Angular velocity control with white Gaussian noise SNR = 30dB
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Fig. 9. Tracking of Position X of stabilization
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Fig. 10. Tracking of Position Y of stabilization
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Fig. 12. Linear velocity control of stabilization
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Fig. 13. Angular velocity control of stabilization

velocity equals to zero. Besides, a real implementation is
going on.

V. CONCLUSION

This paper presents the i-PID controller applied to the
nonholonomic wheeled mobile robot. After the study of the
system, the parameter α in the controller is selected as
a switching function according to the information of the
system. The presented i-PID controller is robust to the mea-
surement disturbance of the robot, and it can even stabilize
the robot at a static point with the robot velocity equals to
zero with the proposed parameter α. The effectiveness and
robustness of the designed controller were shown thereafter
via several different simulations.
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