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Abstra
t

The 
oupling between two dissimilar numeri
al methods presents a major 
hallenge, espe
ially in 
ase of

dis
rete-
ontinuum 
oupling. The Arlequin approa
h provides a �exible framework and presents several

advantages in 
omparison to alternative approa
hes. Many studies have analyzed, in stati
s, the ingredients

of this approa
h in 1D 
on�gurations under several parti
ular 
onditions. The present study extends the

Arlequin parameter studies to in
orporate a dynami
 behavior using 3D models. Based on these studies,

a new 3D 
oupling method adapted for dynami
 simulations is developed. This method 
ouples two 3D


odes: DEM-based 
ode and CNEM-based 
ode. The 3D 
oupling method was applied to several referen
e

dynami
s tests. Good results are obtained using this method, 
ompared with the analyti
al and numeri
al

results of both DEM and CNEM.

Keywords: multis
ale method, 
oupling method, dis
rete element, natural element, Arlequin approa
h,

dynami
 simulation

1. Introdu
tion

The dis
rete element method (DEM) [1, 2℄ presents an alternative way to study physi
al phenomena

requiring a very small s
ale analysis or those whi
h 
annot be easily treated by 
ontinuum me
hani
s,

su
h as wear, fra
ture and abrasion problems. In the past de
ades, an in
reasing interest in the dis
rete

element method has led to the development of many interesting variations of this method. The most

re
ent variation involves modeling the intera
tion between parti
les by 
ohesive beams [1℄. This method


orre
tly simulates the 3D linear elasti
 behavior of the 
ontinua. However, numeri
al simulations are

very time 
onsuming (CPU-wise). Furthermore, a very great number of parti
les are required to dis
retize

small domains. This method does not 
onsider large stru
ture simulations. However, in most situations,

the e�e
ts that must be 
aptured by DEM are lo
alized in a small portion of the studied domain. Thus,

the use of a spe
i�
 multis
ale method to treat the phenomena at ea
h s
ale appears to be advantageous.

A 
hallenge that arises in the multis
ale 
oupling approa
h is that the high frequen
y portion of waves are

often spuriously re�e
ted at the small/
oarse s
ale interfa
e. This phenomenon has already been addressed

using the �nite element model with di�erent element sizes [3℄.

The importan
e of this multis
ale approa
h has attra
ted many resear
hers. Therefore, several papers

have been published on the subje
t, and many 
oupling methods have been developed. These methods


an be divided in two 
lasses: edge to edge methods and methods with overlapping zones (
alled overlap

methods). The �rst 
lass [4, 5℄ is mainly applied to stati
 studies. Indeed, using this method, it is very

di�
ult to redu
e spurious re�e
tions at the interfa
e between models. Therefore, this 
lass will not be

treated in this paper. The se
ond 
lass seems to be more appli
able to dynami
 studies, whi
h is the s
ope

of the present work.

Ben Dhia [6, 7, 8℄, in a pioneer work, developed the Arlequin approa
h as a general framework that

allows the intermixing of various me
hani
al models for stru
tural analysis and 
omputation.
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Abraham et al. [9, 10℄ developed a methodology that 
ouples the tight-bending quantum me
hani
s

with the mole
ular dynami
s su
h that the two Hamiltonians are averaged in an overlapping zone. A

damping was used in the overlapping zone to redu
e the spurious re�e
tions at the interfa
e between the

two models. Nevertheless, the 
hoi
e of the damping 
oe�
ient remains di�
ult.

Smirnova et al. [11℄ developed a 
ombined mole
ular dynami
s (MD) and �nite element method (FEM)

model with a transition zone in whi
h the FEM nodes 
oin
ide with the positions of the parti
les in the

MD region. The parti
les in the transition zone intera
t via the intera
tion potential with the MD region.

At the same time, they experien
e the nodal for
es due to the FEM grid.

Belyts
hko and Xiao [4, 12℄ have developed a 
oupling method for mole
ular dynami
s and 
ontinuum

me
hani
s models based on a bridging domain method. In this method, the two models are overlaid at

the interfa
e and 
onstrained with a Lagrange multiplier model in the overlapping subdomain.

Ja
ob et al. [13℄ formulated an atomisti
-
ontinuum 
oupling method based on a blend of the 
ontinuum

stress and the atomisti
 for
e. In term of equations, this method is very similar to the Arlequin method.

In an interesting work, Chamoin et al. [14℄ have analyzed the main spurious e�e
ts in the atomi
-

to-
ontinuum 
oupling approa
hes and they proposed a 
orre
tive method based on the 
omputation and

inje
tion of dead for
es in the Arlequin formulation to o�set these e�e
ts.

Aubertin et al. [15℄ applied the Arlequin approa
h to 
ouple the extended �nite element method

XFEM with the mole
ular dynami
s MD to study dynami
 
ra
k propagation.

Bauman et al. [16℄ developed a 3D multis
ale method, based on the Arlequin approa
h, between highly

heterogeneous parti
le models and nonlinear elasti
 
ontinuum models.

Re
ently, Combes
ure et al. [17℄ formulated a 3D 
oupling method, applied for fast transient simula-

tions, between the smoothed parti
le hydrodynami
s SPH and the �nite element method. This 
oupling

method is, also, based on the Arlequin approa
h.

For more details, a review of these methods 
an be found in [18℄. A 
ommon feature of overlap 
oupling

methods is that a weight fun
tion is introdu
ed to partition a 
ertain quantity in the overlapping zone.

Herein, the Arlequin approa
h [6, 7, 19℄ is used to develop a 3D multis
ale method adapted for dynami


simulations between the 
onstrained natural element method (CNEM) and the dis
rete element method

(DEM). The DEM version, whi
h is used in this work, is the most re
ent version developed by André [1℄.

The CNEM is a mesh-free method, but it is very 
lose to the �nite element method. The 
oupling method

developed here 
an avoid spurious wave re�e
tions without any additional �ltering or damping. Indeed,

the �ne s
ale solution is proje
ted onto the 
oarse s
ale solution in the overlapping zone at ea
h time step.

Thus, it �lters the high frequen
ies 
oming from the �ne s
ale model (dis
rete model), whi
h are greater

than the 
uto� frequen
y of the 
oarse s
ale model (
ontinuum model). This paper is organized as follows:

in Se
tion 2, the governing equations of both the DEM and CNEM models are given. Subsequently, we

des
ribe how both models are 
oupled using the Arlequin approa
h in the most general 
ase. In Se
tion 3,

several interesting previous studies on the Arlequin parameter are summarized: in
luding mathemati
al

studies of Ben Dhia et al. [7, 20℄, the studies of Bauman et al. [21℄ and the stati
 1D numeri
al studies of

Guidault et al. [22℄. After, the di�erent Arlequin parameters are studied dynami
ally using 3D models. In

Se
tion 4, this new 
oupling method is validated for tensile-
ompression, bending and torsional loadings

on beams. Se
tion 5 presents the 
on
lusions and outlooks.

2. The problem statements

A domain Ω is 
onsidered with boundary ∂Ω = ∂Ωu + ∂ΩT
su
h that displa
ements and tra
tions are

pres
ribed on ∂Ωu
and ∂ΩT

, respe
tively. This domain is divided into two subdomains, ΩC and Ωd, whi
h

are modeled using the 
ontinuum approa
h and the dis
rete approa
h, respe
tively. An isotropi
 linear

elasti
 behavior and small deformation gradients are assumed for simpli
ity. The governing equations of

both the 
ontinuum and the dis
rete subdomains are re
alled in Subse
tions 2.1 and 2.2, while ignoring

the 
oupling 
onditions. These 
onditions will be introdu
ed after detailing the 
oupling approa
h in

Subse
tion 2.3.
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2.1. Continuum subdomain ΩC

As an isolated system, the governing equations in the 
ontinuum subdomain ΩC 
an be written as:

∀ x ∈ ΩC(t) and t ∈ [0, T ], given the initial 
onditions, �nd (u,σ) ∈ [H1(ΩC)]
3 × [L2(ΩC)]

6
su
h that:























div(σ) + ρf = ρü in ΩC

σ = A : ε(u)
ε(u) = 1

2(∇u+∇tu)
u = ud on ∂Ωu

C

σ.n = T d on ∂ΩT
C

(1)

where ρ is the density, u is the 
ontinuum displa
ement ve
tor, σ is the Cau
hy stress tensor, ε is the

strain tensor, A is the sti�ness tensor, f is the body for
e ve
tor, ud de�nes the pres
ribed displa
ement

ve
tor on ∂Ωu
C and T d is the pres
ribed tra
tion ve
tor on ∂ΩT

C .

The asso
iated weak formulation 
an be written as: �nd u ∈ Uad
su
h that, given the initial 
onditions,

∀ δu ∈ Uad,0
:

ˆ

∂ΩT
C

δu̇ · T d dΓ−

ˆ

ΩC

ε(δu̇) : A : ε(u) dΩ+

ˆ

ΩC

ρ δu̇ · f dΩ =

ˆ

ΩC

ρ δu̇ · ü dΩ (2)

with δu̇ as a test fun
tion and the admissible solution spa
es, Uad
and Uad,0

, are de�ned as follows:

Uad =
{

u = u(x, t) ∈ [H1(ΩC)]
3;u = ud on ∂Ωu

C ;∀ t ∈ [0, T ]
}

Uad,0 =
{

u = u(x, t) ∈ [H1(ΩC)]
3;u = 0 on ∂Ωu

C ;∀ t ∈ [0, T ]
}

2.2. Dis
rete subdomain Ωd

In an isolated system of the dis
rete domain Ωd whi
h is a set of spheri
al parti
les that intera
t via


ohesive beams, the governing equations 
an be written as: for i = 1..np and t ∈ [0, T ], given the initial


onditions, �nd (di,θi,f
int
/i , c

int
/i ) ∈ R

3 × R
3 × R

3 × R
3
su
h that:

{

f ext
/i + f int

/i = mid̈i

cext/i + cint/i = Iiθ̈i
(3)

with di, θi, mi and Ii representing the displa
ement ve
tor, the rotation ve
tor, the mass and the mass

moment of inertia of the ith parti
le, respe
tively. fext
/i and cext/i represent the total external for
es and

the total external torques applied on the ith parti
le, respe
tively. f int
/i and cint/i are the total internal

for
es and the total internal torques applied by other parti
les via the 
ohesive beams on the ith parti
le,

respe
tively.























f int
i =

nnp
∑

j=0

f ij =

nnp
∑

j=0

(EµSµ
∆lµ
lµ

x−
6EµIµ

l2µ
((θjz + θiz)y + (θjy + θiy)z))

cinti =

nnp
∑

j=0

cij =
∑nnp

j=0(
GµIOµ

lµ
(θjx − θix)x−

2EµIµ
l2µ

((θjy + 2 θiy)y + (θjz + 2 θiz)z))

(4)

With:

• nnp is total number of neighbor parti
les of the ith parti
le

• f ij and cij are beam rea
tion for
es and torques a
ting on the ith parti
le by the jth one, respe
tively.

• (Oi,x,y,z) is lo
al frame asso
iated to the beam 
onne
ting ith and jth parti
les.

• θi(θix, θiy, θiz) and θj(θjx, θjy, θjz) are the rotations of beam 
ross se
tions expressed in the beam

lo
al frame.

3



PSfrag repla
ements

Ω

ΩC
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Ωd

Figure 1: Global domain de
omposition

• lµ, Sµ, IOµ and Iµ are the beam length, beam 
ross se
tion area, polar moment of inertia and moment

of inertia along y and z.

• Eµ and Gµ are the beam Young and shear modulus.

As in the 
ontinuum, the asso
iated weak formulation 
an be de�ned as follows: �nd (d,θ,f , c) ∈
Dad ×Oad ×Fad × Cad

su
h that, given the initial 
onditions, ∀ (δḋ, δθ̇) ∈ Ḋad,0 × Ȯad,0
:

np
∑

i=1

f ext
/i · δḋi +

np
∑

i=1

f int
/i · δḋi +

np
∑

i=1

cext/i · δθ̇i +

np
∑

i=1

cint/i · δθ̇i =

np
∑

i=1

mid̈i · δḋi +

np
∑

i=1

Iiθ̈i · δθ̇i (5)

with:

Dad = {d = di(t) i = [1..np] ∀t ∈ [0, T ]}
Oad = {θ = θi(t) i = [1..np] ∀t ∈ [0, T ]}
Fad = {f = f int

/i (t) i = [1..np] ∀t ∈ [0, T ]}

Cad = {c = cint/i (t) i = [1..np] ∀t ∈ [0, T ]}
np: total number of DEM parti
les.

2.3. Coupling approa
h

As mentioned in the previous se
tions, the 
oupling approa
h used here is based on the Arlequin

approa
h [6, 7, 8℄. This approa
h 
onsists of:

1. A superposition of me
hani
al states in the given subdomains ΩC and Ωd with an overlapping zone

ΩO (Fig. 1).

2. A weak 
oupling (based on the weak formulation):

(a) De�nition of the gluing zone ΩG:

In this study, the gluing zone ΩG is the same as the overlapping zone ΩO. Hereafter, the term

�overlapping zone� will be used to design the overlapping zone or the gluing zone.

(b) Mediator spa
e M:

To ensure the 
orre
t dialogue between the models, the 
ontrol quantities in the overlapping

zone must be 
hosen 
arefully. Here, the velo
ity 
oupling, in a weak sense in ΩO), is 
hosen.

From an algorithmi
 point of view, the velo
ity 
oupling is easier than the displa
ement 
oupling

(Remark2). The mediator spa
e denoted by M is de�ned as the spa
e of the velo
ities de�ned

in ΩO.
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Figure 2: Examples of weight fun
tions

(
) Proje
tion operator and jun
tion model:

The proje
tion operator Π proje
ts the 
ontinuum and dis
rete velo
ities on the mediator spa
e.

The jun
tion model de�nes the linking 
onditions between the two models in the overlapping

zone. To proje
t the velo
ities on M, an interpolation, whose shape fun
tions will be de�ned

later, is used. The jun
tion model used in this work is the H1(ΩO) s
alar produ
t de�ned by:

< λ, q >H1(ΩO)=

ˆ

ΩO

λ · (Πu̇−Πḋ) + l2ε(λ) : ε(Πu̇−Πḋ) dΩ (6)

where (Πu̇ − Πḋ) is the di�eren
e between the proje
ted 
ontinuum and dis
rete velo
ities

on ΩO, λ is the Lagrange multiplier �eld and l, the jun
tion parameter, is an H1

oupling

parameter.This parameter has the unit of a length, it is added to ensure the homogeneity of

the integral terms of the H1

oupling model. In this work, l is 
onsidered a variable parameter

and will be studied in Se
tion 3. If l = 0, the H1(ΩO) s
alar produ
t be
omes equivalent to

the L2(ΩO) s
alar produ
t (7) known as the Lagrange multiplier model.

< λ,u >L2(ΩO)=

ˆ

ΩO

λ · (Πu̇−Πḋ) dΩ (7)

The displa
ement and velo
ity �elds in ΩC and Ωd do not have the same nature. Indeed, ΩC

is a 
ontinuum whereas the Ωd is a dis
rete subdomain. The dis
rete �eld asso
iated with Ωd

is de�ned only at the parti
le positions. To be able to 
ompute the jun
tion models (6) and

(7), an intepolation is de�ned on the DEM parti
les in ΩO using shape fun
tions, whi
h will be

de�ned later.

3. The energy partition between the 
ontinuum and dis
rete media in the overlapping zone:

As shown in Figure 1, the two models 
oexist in ΩO. Therefore, the energies in this zone must be

weighted, and, a kind of partition of unity in terms of energy is performed. Three weight fun
tions,

α(x), β(x) and γ(x), are introdu
ed for the internal energy, the kineti
 energy and the external

work of the 
ontinuum subdomain, respe
tively. All of the fun
tions verify the following:

f(x) : Ω → [0, 1]

x →







1 in ΩC\ΩO

[0, 1] in ΩC ∩ ΩO

0 otherwise

(8)

In a 
omplementary manner, the internal energy, the kineti
 energy and the external work of the

dis
rete subdomain are weighted by ᾱ(x) = 1 − α(x), β̄(x) = 1 − β(x) and γ̄(x) = 1 − γ(x),
respe
tively. Figure 2 presents examples of weight fun
tions.

This 
oupling approa
h is applied to 
ouple the 
ontinuum and the dis
rete models de�ned on ΩC and

Ωd, respe
tively. By introdu
ing the weight fun
tions, in (2) and (5), and the 
oupling 
ondition (6), the

global weighted weak formulation be
omes: �nd (u,d,θ,λ) ∈ Uad ×Dad ×Oad ×M su
h that, given the

initial 
onditions, ∀ (δu̇, δḋ, δθ̇, δλ̇) ∈ Uad,0 ×Dad,0 ×Oad,0 ×M:

5



´

ΩC
β ρ δu̇ · ü dΩ+

´

ΩC
α ε(δu̇) : A : ε(u) dΩ−

´

∂ΩT
C
γ δu̇ · T d dΓ−

´

ΩC
γ ρ δu̇ · f dΩ

+

np
∑

i=1

β̄i mi d̈i · δḋi +

np
∑

i=1

β̄i Ii θ̈i · δθ̇i −

np
∑

i=1

(γ̄i f
ext
/i + ᾱi f

int
/i ) · δḋi

−

np
∑

i=1

(γ̄i c
ext
/i + ᾱi c

int
/i ) · δθ̇i + δ

ˆ

ΩO

λ · (Πu̇−Πḋ) + l2ε(λ) : ε(Πu̇−Πḋ) dΩ = 0

(9)

2.4. Spatial dis
retization and integration issues

In the previous subse
tions, the global weak formulation (9) is presented in a 
ontinuous form. Now,

the spatial dis
retization is introdu
ed. In the literature, there are many interesting 
ontinuum methods

used for solving partial di�erential equations, su
h as SPH [23℄, NEM [24℄ and FEM [25℄. Ea
h method

is distinguished by its 
apability to spatially dis
retize the studied model. Among them, the 
onstrained

natural element method CNEM [26, 27, 28℄, whi
h is an extension of the natural element method (NEM)

[29℄ to non-
onvex domains, is 
hosen in this study. This method has pra
ti
ally all of the advantages

of the FEM approa
h, and it 
ir
umvents the major drawba
ks related to the meshing. Indeed, using

the FEM approa
h, the approximation is dependent on the mesh quality. In 
ontrast, using the CNEM

approa
h, the approximation is dependent only on the relative position of the nodes [30℄. Unlike the

other mesh-free approa
hes: (i) the supports of 
onstrained natural neighbor (CNN) shape fun
tions used

in CNEM approa
h are automati
ally de�ned, (ii) the values of CNN shape fun
tions asso
iated with

internal nodes are null on the border of the domain. This last property is parti
ularly interesting be
ause

it allows a dire
t imposition of the boundary 
onditions, exa
tly as in the �nite elements framework. Given

the broad similarity between the CNEM and FEM approa
hes, the CNEM-DEM 
oupling have the same

performan
es as the FEM-DEM 
oupling with better appli
ability on 
omplex domains and/or behaviors.

Therefore, the 
ontinuum subdomain in ΩC is dis
retized with the CNEM approa
h. Consequently, ΩC is

approximated by a set of nodes in whi
h 
onne
tivity is not ne
essary [26℄.

To obtain a 
ontinuous �eld from the dis
rete quantities de�ned at the DEM parti
le positions in ΩO,

a 
onstrained natural neighbor (CNN) interpolation is introdu
ed in Ωd|ΩO
. Thus, the parti
les asso
iated

with this subdomain are also 
onsidered CNEM nodes. The CNN interpolation is only applied in Ωd|ΩO
,

whi
h is assumed to be far from the �ne s
ale e�e
ts. The mediator spa
e is also dis
retized with the

CNEM approa
h. We denote byMh
C , M

h
d andMh

O the dis
retized spa
es of Uad
, Dad

and M, respe
tively.

The asso
iated dis
retized subdomains are designed Ωh
C , Ω

h
d and Ωh

O, respe
tively. The dis
rete domain

Ωd is a set of parti
les, then it is naturally dis
retized and Ωh
d = Ωd. A

ording to the 
on�gurations of

the dis
retized spa
es in the overlapping zone, four 
ases 
an be distinguished (Fig. 3).

In this study and 
ontrary to previous studies on 
ontinuum/dis
rete 
oupling approa
hes, no 
oin
iden
e


onditions are imposed on the 
oexisting dis
retized subdomains in ΩO. Therefore, the fourth 
on�guration

is studied here (Fig. 3-d) as the general 
on�guration that in
ludes the three other 
on�gurations. This

simpli�es the use of this method in 3D 
omplex domains. Indeed, in this 
ase, it is su�
ient to dis
retize

the subdomains independently and mount them as indi
ated in Figure 3-d. In fa
t, using this 
on�guration,

it is very di�
ult to prove mathemati
ally the existen
e and uniqueness of the solution. Also and 
ontrary

to the three other 
on�gurations, there are no numeri
al works, in literature, studying this 
on�guration.

Thus, the well posedness of the global problem will be analyzed numeri
ally in this paper.

Using the CNN interpolation on the di�erent dis
retized subdomains, Ωh
C , Ω

h
O and Ωh

d|ΩO
, the displa
e-

ment �elds u and d and the Lagrange multiplier unknowns λ are approximated by:

uh(x) =

nC
∑

i=1

NC
i (x)ui (10)

6



PSfrag repla
ements

a) Ωh
C|ΩO

= Ωh
O = Ωh

d|ΩO

b) Ωh
C|ΩO

⊂ Ωh
O = Ωh

d|ΩO


) Ωh
C|ΩO

= Ωh
O ⊂ Ωh

d|ΩO

d) Ωh
C|ΩO

6= Ωh
O 6= Ωh

d|ΩO

Nodes of the 
ontinuum subdomain Ωh
C

Nodes of the overlapping subdomain Ωh
O

Parti
les of the dis
rete subdomain Ωh
d

Figure 3: The di�erent 
on�gurations of the dis
retized subdomains

dh(x) =

npO
∑

i=1

Nd
i (x)di (11)

λh(x) =

nO
∑

i=1

NO
i (x)λi (12)

where nC and nO are total number of nodes lo
ated in Ωh
C and Ωh

O, respe
tively. npO is total number of

parti
les lo
ated in Ωh
d|ΩO

. ui is the nodal displa
ements, di are the parti
le displa
ements and λi are the

nodal Lagrange multipliers. NC
i , N

O
i and Nd

i are the CNN shape fun
tions 
onstru
ted on Ωh
C , Ω

h
O and

Ωh
d|ΩO

, respe
tively.

For the remainder of this paper, the supers
ript �h� will be omitted from the approximated quantities for


larity. Be
ause the global weighted weak formulation (9) is true for any small arbitrary variations of u̇,

ḋ, θ̇ and λ, it 
an be reformulated as follows: �nd (u,d,θ,λ) ∈ Uad × Dad ×Oad ×M su
h that, given

the initial 
onditions, ∀ (δu̇, δḋ, δθ̇, δλ̇) ∈ Uad,0 ×Dad,0 ×Oad,0 ×M:

´

ΩC
β ρ δu̇ · ü dΩ−

´

∂ΩT
C
γ δu̇ · T dΓ +

´

ΩC
α ε(δu̇) : A : ε(u) dΩ−

´

ΩC
γ ρ δu̇ · f dΩ

+
´

ΩO
λ · δΠu̇+ l2ε(λ) : ε(δΠu̇) dΩ = 0

(13)

np
∑

i=1

β̄i mi d̈i · δḋi −

np
∑

i=1

(γ̄i f
ext
/i + ᾱi f

int
/i ) · δḋi −

´

Ωc
λ.δΠḋ + l2ε(λ) : ε(δΠḋ) dΩ = 0

(14)

np
∑

i=1

β̄i Ii θ̈i · δθ̇i −

np
∑

i=1

(γ̄i c
ext
/i + ᾱi c

int
/i ) · δθ̇i = 0 (15)

´

ΩO
δλ · (Πu̇−Πḋ) + l2ε(δλ) : ε(Πu̇−Πḋ) dΩ = 0

(16)

The integral terms will be 
omputed numeri
ally using an integration te
hnique. Integration by a Gauss

quadrature in the CNEM method adds 
onsiderable 
omplexity to the solution pro
edure. The stabilized
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onforming nodal integration [31, 32℄ presents a suitable alternative. This integration te
hnique is used

to 
ompute the 
ontinuum terms using the Voronoï 
ells as the ba
kground of the integration. However,


on
erning the 
oupling terms, this te
hnique 
annot be applied dire
tly. Indeed, the integrands in
lude

variables de�ned on di�erent Voronoï diagrams. The issue here is how to 
hoose the ba
kground of

the integration. In this work, the Voronoï 
ells asso
iated with the mediator spa
e Mh
O are 
hosen as

ba
kground of integration in the overlapping zone ΩO. All of the variables that are not de�ned on Mh
O

are proje
ted on this spa
e.

By repla
ing ü, δu̇, ḋ, δḋ,λ and δλ by their approximated expressions in (13), (14), (15) and (16), the

dis
retized equations 
an be written as:

• DEM equations:

[mβ]
{

d̈
}

=
{

f int
α

}

+
{

f ext
γ

}

+ {f c}

[Iβ]
{

θ̈
}

=
{

cintα

}

+
{

cextγ

}
(17)

where (mβ)ij = β̄i δij · mi, (Iβ)ij = β̄i δij Ii, (c
int
α )i = ᾱi c

int
/i , (c

ext
γ )i = γ̄i c

ext
/i , (f

int
α )i = ᾱi f

int
/i ,

(f ext
γ )i = γ̄i f

ext
/i and {f c} = [cd] {λ} = ([cL

2

d ] + l2[cH
1

d ]) {λ} represents the total 
oupling for
e.

cL
2

d ≈

nO
∑

K=1

V O
I

[

Nd(xI)
]T

[

NO(xI)
]

dΩ And cH
1

d ≈

nO
∑

K=1

V O
I

[

B̃d(xI)
]T [

B̃O(xI)
]

Where xI are the 
oordinates of the I
th
node of Ωh

O, V
O
I is the volume of the Voronoï 
ell asso
iated

with Ith node of Ωh
O,

[

Nd
]

and

[

NO
]

are the interpolation matri
es asso
iated with Ωh
d and Ωh

O,

respe
tively.

[

B̃d
]

and

[

B̃O
]

are the smoothed gradient matri
es [31, 32℄ asso
iated with Ωh
d and

Ωh
O, respe
tively.

• CNEM equations

[Mβ ] {ü} = −
{

F int
α

}

+
{

F ext
γ

}

− {F c} (18)

where (Mβ)ij = δij β(xi)Mi, Mi is the lumped mass of the ith node lo
ated at xi position,
{

F int
α

}

=

[Kα] {u}, [Kα] is the weighted sti�ness matrix and {F c} = [CC ] {λ} = ([CL2

C ] + l2[CH1

C ]) {λ} repre-

sents the total 
oupling for
e.

CL2

C ≈

nO
∑

K=1

V O
I

[

NC(xI)
]T [

NO(xI)
]

dΩ And CH1

C ≈

nO
∑

K=1

V O
I

[

B̃C(xI)
]T [

B̃O(xI)
]

Where

[

NC
]

and

[

B̃C
]

are, respe
tively, the interpolation and smoothed gradient matri
es asso
iated

with Ωh
C .

• Interfa
e equations: Equation 16 leads to:

[CO]
{ .
u
}

− [co]
{ .
d
}

= 0

where: [CO] =
[

CL2

O

]

+l2
[

CH1

O

]

=
[

CL2

C

]T
+ l2

[

CH1

C

]T
and [co] =

[

cL
2

o

]

+l2
[

cH
1

o

]

=
[

cL
2

d

]T
+ l2

[

cH
1

d

]T
.
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2.5. Time integration s
heme and implementation

The numeri
al time integration is based on an expli
it integration s
heme that is well adapted for

dynami
 
omputations. Many expli
it s
hemes 
an be used, su
h as the Runge-Kutta, position Verlet

and velo
ity Verlet s
hemes. A 
omparison between these s
hemes 
an be found in [33℄. A

ording to

this referen
e [33℄, the velo
ity Verlet s
heme provides good results and is also easy to implement. For

these reasons, this s
heme is used in this paper to solve the global dynami
 problem. This s
heme gives

an O(h3) approximation for both velo
ities and displa
ements. Thus, the velo
ity 
oupling, used in this

work, does not a�e
t the 
oupling approa
h a

ura
y 
ompared to the displa
ement 
oupling.

2.5.1. DEM algorithm (DEM 
ode)

• Initialization

{

d̈
}

n
,

{ .
d
}

n
,{d}n,

{

θ̈
}

n
,

{ .
θ
}

n
and {θ}n: The initial 
onditions or the interfa
e results.

• Computation of {d}n+1 and {θ}n+1:

{d}n+1 = {d}n +∆t
{ .
d
}

n
+ ∆t2

2

{

d̈
}

n

{θ}n+1 = {θ}n +∆t
{ .
θ
}

n
+ ∆t2

2

{

θ̈
}

n

(19)

• Computation of

{

f int
α

}

n+1
,

{

fext
γ

}

n+1
,

{

cintα

}

n+1
et

{

cextγ

}

n+1

• Computation of the predi
tive linear a

elerations

{

d̈
}∗

n+1
(omitting the 
oupling for
es {f c} from

Equation 17).

{

d̈
}∗

n+1
= [mβ]

−1 (
{

f int
α

}

n+1
+

{

f ext
γ

}

n+1
) (20)

• Computation of the angular a

elerations

{

θ̈
}

n+1
:

{

θ̈
}

n+1
= [Iβ]

−1 (
{

cintα

}

n+1
+

{

cextγ

}

n+1
) (21)

• Computation of the predi
tive linear velo
ities

{ .
d
}∗

n+1
:

{ .
d
}∗

n+1
=

{ .
d
}

n
+

∆t

2
(
{

d̈
}

n
+

{

d̈
}∗

n+1
)

• Computation of the angular velo
ities

{ .
θ
}

n+1
:

{ .
θ
}

n+1
=

{ .
θ
}

n
+ ∆t

2 (
{

θ̈
}

n
+
{

θ̈
}

n+1
)

• Transfer of the predi
tive linear velo
ities and a

elerations to the interfa
e:

{ .
d
}∗

n+1
and

{

d̈
}∗

n+1

2.5.2. CNEM algorithm (CNEM 
ode)

• Initialization {ü}n,
{ .
u
}

n
et {u}n: The initial 
onditions or the interfa
e results.

• Computation of {u}n+1:

{u}n+1 = {u}n +∆t
{ .
u
}

n
+

∆t2

2
{ü}n (22)

• Computation of the predi
tive linear a

elerations {ü}∗n+1: (omitting the 
oupling for
es {F c} from

Equation 18).

{ü}∗n+1 = [Mβ ]
−1 (−

{

F int
α

}

n+1
+

{

F ext
γ

}

n+1
) (23)

• Computation of the predi
tive linear velo
ities

{ .
u
}∗

n+1
:

{ .
u
}∗

n+1
=

{ .
u
}

n
+ ∆t

2 ({ü}n + {ü}∗n+1)

• Transfer of the predi
tive linear velo
ities and a

elerations to the interfa
e:

{ .
u
}∗

n+1
and {ü}∗n+1

9



2.5.3. Interfa
e algorithm (Interfa
e developed separately to 
ouple the CNEM and DEM 
odes):

• Re
overy of the predi
tive linear velo
ities from both the CNEM and DEM 
odes:

{ .
u
}∗

n+1
and

{ .
d
}∗

n+1

• Computation of {λ}n+1

{ .
u
}

n+1
=

{ .
u
}∗

n+1
− ∆t

2 [Mβ ]
−1 {F c}n+1

{ .
d
}

n+1
=

{ .
d
}∗

n
+ ∆t

2 [mβ]
−1 {f c}n+1

(24)

{F c}n+1 = [CC ] {λ}n+1

{f c}n+1 = [cd] {λ}n+1

(25)

[CO]
{ .
u
}

n+1
− [co]

{ .
d
}

n+1
= 0 (26)

By introdu
ing Equations 24 and 25 into Equation 26, the interfa
e system of equations 
an be

written as:

[A] {λ}n+1 = {b}n+1 (27)

where the 
oupling matrix [A] and {b}n+1 are de�ned, respe
tively, as:

[A] =
∆t

2
([CO] [Mβ ]

−1 [CC ] + [co] [mβ]
−1 [cd]) (28)

{b}n+1 = [CO]
{ .
u
}∗

n+1
− [co]

{ .
d
}∗

n+1
(29)

By solving Equation 27, {λ}n+1 
an be obtained.

• Computation of {F c}n+1 and {f c}n+1 using Equation 25.

• Computation of the linear velo
ities

{ .
u
}

n+1
and

{ .
d
}

n+1
using Equation 24.

• The linear a

eleration 
orre
tions: {ü}n+1 and

{

d̈
}

n+1
:

{ü}n+1 = {ü}∗n+1 − [Mβ]
−1 {F c}n+1

{

d̈
}

n+1
=

{

d̈
}∗

n+1
+ [mβ]

−1 {f c}n+1
(30)

• Transfer of {ü}n+1 and
{ .
u
}

n+1
to the CNEM pro
ess and

{

d̈
}

n+1
and

{ .
d
}

n+1
the DEM pro
ess.

Remark1:. The system (27) is solved using the well-known LU de
omposition method [34℄. Con
erning

the system (28), sin
e the mass matri
es of both 
ontinuum and dis
rete models are diagonals, it is easy

to derive their inverse matri
es and 
ompute the 
oupling matrix A.

Remark2:. From an algorithmi
 point of view, the velo
ity 
oupling used in this work is easier than the

displa
ement 
oupling. This is be
ause the displa
ement 
oupling requires, in addition to the predi
tive

a

elerations and velo
ities, the 
omputation of the predi
tive displa
ements whi
h must be sent to the

Interfa
e 
ode for 
orre
tion. Therefore, in the 
ase of displa
ement 
oupling, additional steps are ne
essary

to 
ompute and 
orre
t the predi
tive displa
ements. Whereas, in the 
ase of velo
ity 
oupling, the 
orre
t

displa
ement are obtained dire
tly ((19) and (22)), thereby redu
ing the 
omputational 
ost.
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Remark3:. No expli
it 
oupling 
onditions are applied to 
orre
t the angular velo
ities and a

elerations

of the parti
les in the overlapping zone. These quantities are 
orre
ted impli
itly. Indeed, the internal

for
es are 
omputed a

ounting for parti
le displa
ements and rotations. These for
es are later used to


ompute the new displa
ements whi
h are 
orre
ted using the 
oupling 
ondition (16).

Remark4:. To be able to 
ompute the predi
tive a

elerations (Eqs. 20, 21 and 23), the lumped mass

matri
es must be invertible. Thus, the weight fun
tions β and β̄ must be stri
tly positive in ΩO and at

the border ∂ΩO. Then, a small ε will be used instead of zero at the nodes assigned to ∂ΩO. Therefore,

the de�nition of this weight fun
tion β (8) is slightly modi�ed as:

β(x) : Ω → [0, 1]

x →







1 in ΩC\ΩO

[ε, 1− ε] in ΩC ∩ ΩO

0 otherwise

(31)

where ε is a small stri
tly positive real number to be 
hosen.

2.5.4. Implementation

The DEM 
al
ulus is a
hieved using the GranOO workben
h (Granular Obje
t Oriented). Granoo was

developed at the Me
hani
s institute of Bordeaux (I2M) by J.L. Charles et al. The 
ode provides C++

libraries that implement 
lasses useful to des
ribe and solve dynami
 me
hani
al problems using DEM and

expli
it temporal integration s
hemes. The CNEM 
al
ulus is a
hieved using a CNEM-based 
ode, whi
h

was developed at the PIMM laboratory by G. Co�gnal et al. It provides C++ libraries that interfa
e

with Python modules. The 
oupling between DEM and CNEM, des
ribed in the previous se
tions, is

performed by an �interfa
e� written in the Python language. This interfa
e 
ommuni
ates dire
tly with

the CNEM-based pro
ess using Python 
lasses. The Inter Pro
ess Communi
ation (IPC) tool is used to

ensure a syn
hronized 
ommuni
ation between the GranOO pro
ess and the interfa
e pro
ess.

3. Parametri
 study of the 
oupling parameters

Several works have studied mathemati
ally the Arlequin method for both 
ontinuum-
ontinuum 
oupling

[7, 19, 20℄ and 
ontinuum-dis
rete 
oupling [21℄. The main results 
on
erning the well-posedness of the 
ou-

pling problem are re
alled in this paper. The weight fun
tion α must be stri
tly positive in ΩO. Without

this 
ondition the 
oer
ivity of the internal energy 
annot be veri�ed. Another signi�
ant result 
on
ern-

ing the 
oupling jun
tion models is that for the dis
retized problem, 
ontrary to the H1

oupling whi
h

yields a well-posed problem, the L2

oupling model 
an lead to an ill-
onditioned system of equations,

espe
ially in the 
ase of very small mesh size. In this 
ontext, Bauman et al. [21℄ have studied another


oupling model, the H1
seminorm, in whi
h the �rst term of the H1

model is removed. This model leads

to a well-posed problem, but it does not 
onstrain enough the 
ontinuum and dis
rete displa
ements in

the overlapping zone. Other works [22, 35, 21℄ have studied numeri
ally the ingredients of the Arlequin

method using 1D models. Guidault et al. [22, 35℄ noted that, for the L2

oupling model, the weight

fun
tion α must be 
ontinuous at the boundary of the gluing zone ∂ΩO. Indeed, the use of a dis
ontinuous

weight fun
tion 
an 
ause undesirable free 
onditions at ∂ΩO.

Con
erning the 
hoi
e of the mediator spa
e, Ben Dhia [7, 20℄ mentioned that in the 
ase of 
ontinuous

domains, it is 
onvenient to 
hoose M = H1(ΩO); however, it is very di�
ult to 
hoose the �nite approx-

imation spa
e Mh
O. To address this di�
ulty, several works [22, 35, 21℄ proposed a 1D numeri
al study

of Mh
O. The di�erent 
on�gurations that were studied are presented in a, b and 
 of Figure 3. The stati


studies of Guidault et al. [22℄ show that: (i) in the 
ase of a �ne multiplier spa
e (Fig. 3-b), the response

of the stru
ture do not depend on the weight fun
tions and a lo
king phenomenon takes pla
e, i.e, the

�ne solution exa
tly 
onforms to the 
oarse solution in the overlapping zone; (ii) in the 
ase of a 
oarse

11



Young's Modulus Poisson's ratio Radius ratio

Eµ = 265 GPa νµ = 0.3 r̃µ = 0.71

Table 1: The mi
ro properties of the 
ohesive beam bonds in the DEM subdomain

r̃µ is an adimensional 
ohesive beam radius, de�ned as the ratio between the beam radius and the mean parti
le radius; Eµ and νµ are

the mi
ro Young modulus and the Poisson ratio of the beams, respe
tively.

multiplier spa
e, the weight fun
tions has an in�uen
e on the solutions su
h that the larger the weight

fun
tion on the �ne mesh, the smaller be
omes the maximum jump between the two meshes.

This work proposes a 3D numeri
al dynami
 study using the general 
on�guration given in Figure 3-d.

It will be demonstrated that some of the results proven in stati
 using 1D models are not valid in 3D

dynami
 simulations.

Assuming the general 
ase of the approximated Lagrange multiplier spa
e, the various 
oupling parameters

studied are:

• The jun
tion model parameter l,

• The weight fun
tions α, β and γ,

• The width of the overlapping domain LO,

• The dis
retization of the approximated Lagrange multipliers spa
e Mh
O.

A 3D beam model is used for the dynami
 study (Fig. 4), in whi
h the length and the diameter are

L = 20mm and D = 2mm, respe
tively. The model is divided into two subdomains with an overlapping

zone. The left subdomain is modeled by the CNEM approa
h using 626 nodes (the asso
iated 
hara
teristi


length is about lc = 0.47mm) and �xed at the left end (x = 0). The right subdomain is modeled by the

DEM approa
h using 20 000 spheri
al parti
les having rc = 0.05mm as mean radius. Based on the


hara
teristi
 length of DEM and CNEM dis
retization (lc and rc), the 
uto� frequen
ies of the two

models 
an be determined: fCNEM
c = 1.9MHz and fDEM

c = 18.2MHz. To 
ontrol the high frequen
y

wave re�exion at the CNEM-DEM interfa
e, the free end (x = L) is submitted to a tensile loading with

a very steep slope (Fig. 5). As shown in lower viewgraph of Figure 5, the Fourier spe
trum 
ontains

powerful high frequen
y waves (greater than fCNEM
c ). The material of the beam is the sili
a: Young's

modulus E = 72GPa, Poisson's ratio ν = 0.17 and density ρ = 2200Kg/m3
. The 
orresponding mi
ro

properties of the 
ohesive beam bonds in the DEM approa
h are given in [1℄ and presented in Table 1.

To 
ontrol the wave propagation in the model, four 
he
k points are pla
ed along this beam (Fig. 4) as

follows:

• CnemChe
kPoint: at the middle of the CNEM subdomain where the 
ontrolled quantities are 
om-

puted using the CNEM nodes in this zone

• OverlapCnemChe
kPoint: at the middle of the overlapping zone where the 
ontrolled quantities are


omputed using only the CNEM nodes in this zone.

• OverlapDemChe
kPoint: at the middle of the overlapping zone where the 
ontrolled quantities are


omputed using only the DEM parti
les in this zone.

• DemChe
kPoint: at the middle of the DEM subdomain where the 
ontrolled quantities are 
omputed

using the DEM parti
les in this zone.

Figure 6 presents the referen
e results obtained by DEM and CNEM separately. Table 2 presents the

mean displa
ement of the right end and the �rst three natural frequen
ies. It 
an be seen that the results

are in good agreement, and they are also in agreement with the beam theory results. This ensures the

equivalen
e of the two models.
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Figure 4: Beam model of the parameter studies
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Figure 5: Tensile loading of study model and the asso
ieted spe
tral analysis (
omputed from FFT)

Umean (mm) f0 (Hz) f1 (Hz) f2 (Hz)

Theory 0.087 71 757 215 272 358 787

DEM 0.083 72 408 217 246 362 072

CNEM 0.088 71 359 214 023 356 491

Table 2: Comparison of DEM, CNEM and analyti
al results
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Figure 6: The free-end displa
ements obtained using DEM and CNEM separately and the asso
iated spe
tral analyses

(
omputed from FFT)

Remark5:. In this study, for the sake of simpli
ity, the weight fun
tions are 
hosen as follows: α = β = γ.

3.1. In�uen
e of the jun
tion parameter l

The parameter l is mainly employed to 
ompute the 
oupling matrix A (28). The parameter's in�uen
e

on the 
onditioning of A (Cond = ‖A‖.‖A−1‖) is analyzed. Figure 7 shows the 
onditioning of A with

respe
t to l obtained for LO = 6 mm using a 
oarse multiplier spa
e and 
ontinuous weight fun
tions with

ε = 0.005 (ε is de�ned in (31)). The 
onditioning de
reases with l and rea
hes a minimum at a small

l = lopt. Beyond this value, the 
onditioning in
reases exponentially as l in
reases. This is true for any


hoi
es of LO, the weight fun
tions and Mh
O. Be
ause l de
reases the 
onditioning, H1


oupling (6) for a

small value of l, is better than L2

oupling (7). However, 
ontrary to what is presented in the literature,

H1

oupling be
omes worse if l ex
eeds some small value. In pra
ti
e, this parameter 
an be 
hosen as

the 
hara
teristi
 length of the overlapping zone dis
retization lΩO
c (lopt ≈ lΩO

c ).

In the remainder of this se
tion we will use the H1

oupling with l = lopt.

3.2. In�uen
e of the weight fun
tions

In this subse
tion, a �ne dis
retization of the approximated multiplier spa
e Mh
O is 
hosen, i.e, at the

same s
ale as Mh
d . The width of the overlapping zone LO is �xed at 2 mm.

3.2.1. Constant weight fun
tions αCNEM = αDEM = 0.5

The mean displa
ement obtained with the 
oupling method is 0.081 mm. This is in agreement with the

referen
e mean displa
ements (Tab. 2). However, the temporal 
urve (Fig. 8) presents several deviations

with regard to the referen
e 
urves. Figure 9 presents the velo
ities in the di�erent 
he
k points (Figure 4)

for the �rst round trip of the wave propagation. It 
an be seen that the major part of the high frequen
y

waves (HFW) are re�e
ted without entering the overlapping zone. Indeed, the HFW initially 
aptured

in the �DemChe
kPoint� did not appear in �OverlapDemChe
kPoint� or �OverlapCnemChe
kPoint�. This

explains the deviation in the temporal displa
ement ea
h time the global wave 
rosses the overlapping zone.

Thus, 
onstant weight fun
tions are not a good 
hoi
e for dynami
 simulations. Indeed, the proje
tion

me
hanism, whi
h o

urs in ΩO, 
annot dampen the HFW, and an additional �ltering is required. In


ontrast, the stati
 studies of Guidault et al. [22℄ showed that 
onstant weight fun
tions 
an be used with

H1

oupling.
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Figure 7: Conditioning of A with respe
t to l

LO = 6mm, 
oarse Multiplier spa
e, 
ontinuous weight fun
tions with ε = 0.005

Figure 8: The free-end displa
ements obtained using DEM and CNEM separately and the 
oupling method, and the asso
iated

spe
tral analyses (
omputed from FFT)

LO = 2mm, �ne Multiplier spa
e, 
onstant weight fun
tions αCNEM = 0.5
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Figure 9: The linear velo
ities at the 
he
k points for the �rst round trip

LO = 2mm, �ne Multiplier spa
e, 
onstant weight fun
tions αCNEM = 0.5

3.2.2. Constant weight fun
tions αCNEM 6= 0.5

This sub-subse
tion analyzes the in�uen
e of the weight 
onstant on the wave propagation. Two 
ases

are studied here; the �rst 
ase uses αCNEM = 0.3 (then, αDEM = ᾱCNEM = 0.7), and the se
ond 
ase

uses αCNEM = 0.8 (then, αDEM = 0.2). The asso
iated results are presented in Figure 10.

Figure 10: The free-end displa
ements obtained using DEM and CNEM separately and the 
oupling method, and the

asso
iated spe
tral analyses (
omputed from FFT) for di�erent weight 
onstants

LO = 2mm, �ne Multiplier spa
e, 
onstant weight fun
tions αCNEM = 0.3, αCNEM = 0.5 and αCNEM = 0.8

A large di�eren
e between the results is observed. In the �rst 
ase (αCNEM = 0.3), the magnitude of the

free-end displa
ement is greater than that obtained using αCNEM = 0.5. However, it is smaller for the


ase of αCNEM = 0.8. To provide an explanation for these results, the temporal velo
ities at the 
he
k

points are presented in Figure 11.

It 
an be seen that for αCNEM = 0.8, a portion of the prin
iple wave is positively re�e
ted at the interfa
e

between the two models, or more pre
isely, without entering the overlapping zone. Furthermore, only a


omplementary part is transmitted in the CNEM model. Quantitatively, the transmission and re�e
tion

16



Figure 11: The linear velo
ities at the 
he
k points for di�erent weight 
onstants

LO = 2mm, �ne Multiplier spa
e, 
onstant weighting αCNEM = 0.3, αCNEM = 0.5 and αCNEM = 0.8
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oe�
ients 
an be introdu
ed as:

tnumDEM−CNEM = magnitude of the transmitted wave
magnitude of the incident wave = 9,90

22,01 = 0.44 and rnumDEM−CNEM = 0.56

By analogy with the wave propagation between media with di�erent a
ousti
 impedan
es, the transmission

and re�e
tion 
oe�
ients 
an theoreti
ally be de�ned as:

tthDEM−CNEM = 2 αDEM

αDEM+αCNEM
and rthDEM−CNEM = αCNEM−αDEM

αDEM+αCNEM

Then, it 
an be veri�ed that tnumDEM−CNEM and rnumDEM−CNEM are of the same order of magnitude as

tthDEM−CNEM = 0.4 and rthDEM−CNEM = 0.6, respe
tively. For αCNEM = 0.3, the same re�e
tion me
ha-

nism takes pla
e but with a negative 
oe�
ient. Indeed, the velo
ity magnitude of the transmitted wave

(measured at �CnemChe
kPoint�) is greater than the velo
ity magnitude of the forward wave (initially

measured at �DemChe
kPoint�).

{

tnumDem−Cnem = 31.49
21.86 = 1.44

rnumDem−Cnem = 1− 31.49
21.86 = −0.44

and

{

tthDem−Cnem = 2×0.7
1 = 1.4

tnumDem−Cnem = 1− 1.4 = −0.4

Then, for the 
ase of a 
onstant weighting, αCNEM = αDEM = 0.5 must be used. Otherwise, there will be

a re�e
tion of a part of the prin
ipal forward wave. This result proves that the 1D stati
 studies available

in literature 
annot be used to perform dynami
 
oupling. In e�e
t, Guidault et al. [22℄ noted that, in

stati
s and using a �ne multiplier spa
e, the solutions do not depend on the weight fun
tions.

3.2.3. Continuous weight fun
tions

As explained in Remark 4, the weight fun
tions must not vanish at the boundary of the overlapping

zone, and a small value ε must be adopted rather than 0 at ∂ΩO. Prior to studying the in�uen
e of the


ontinuous weight fun
tions, the in�uen
e of ε is studied. Figure 12 presents the free-end displa
ement

using 
ontinuous weight fun
tions for ε = 0.05, ε = 0.005 and ε = 0.0005 and the same 
onditions for

LO and Mh
O. The parameter ε, when less than 0.05, has no pra
ti
al in�uen
e on the results, but a very

small ε 
an lead to instability problems. Indeed, as shown in Table 3, the smaller the ε, the greater the


onditioning of the 
oupling matrix A be
omes.

Figure 12: The free-end displa
ements obtained using the 
oupling method, and the asso
iated spe
tral analyses (
omputed

from FFT) for di�erent values of ε

LO = 2mm, �ne Multiplier spa
e, 
ontinuous weight fun
tions
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ε 0.05 0.005 0.0005

Cond[A(lopt)] 2.53e4 8.93e4 5.67e5

Table 3: Conditioning of A with respe
t to ε

LO = 2mm, �ne Multiplier spa
e, 
ontinuous weight fun
tions

In the remainder of this paper, ε = 0.05 will be 
hosen ea
h time a 
ontinuous weight fun
tion is used.

Figure 14 shows the free-end displa
ement for the 
ase of a 
ontinuous weight fun
tion (Fig. 2-b). No

high frequen
y waves (HFW) are re�e
ted at the interfa
e between the two models. Using 
ontinuous

weight fun
tions, the HFW enter the overlapping zone, and then, they are dampened by the proje
tion

onto the 
oarse spa
e. The lower subplot in Figure 14 eviden
es that with a �ne multiplier spa
e, a small

overlapping zone is su�
ient to 
an
el out all of the HFW. As shown in Figure 13, the use of a 
ontinuous

weight fun
tion signi�
antly improves the results. However, a small deviation from the referen
e results

still persists and be
omes greater ea
h time the wave travels ba
k (CNEM-DEM dire
tion). Be
ause of

the very �ne dis
retization of the DEM subdomain, the weight of the parti
les in ΩO de
reases smoothly

when approa
hing the CNEM subdomain. Therefore, the forward wave 
orre
tly 
rosses the interfa
e

between the pure DEM (Ωd\ΩO) and the overlapping zone ΩO. Thus, by examining the �rst round-trip

(Fig. 13), it is apparent that no deviation from the referen
es is noted when wave travels from the DEM

subdomain to the CNEM subdomain. In the CNEM subdomain, a 
oarse dis
retization is used. The jump

between the weights of two adja
ent nodes is relatively large. The dis
rete weight fun
tions of the CNEM

subdomain are dis
ontinuous stair
ase fun
tions with large jumps. Thus, the same re�e
tion me
hanism,

observed previously, o

urs when the wave travels ba
k (CNEM-DEM dire
tion). To redu
e the deviation,

the width of the overlapping zone must be in
reased to redu
e the slope of the weight fun
tions. Another

solution 
onsists of using 
ontinuous di�erentiable weight fun
tions (Fig. 2-
) to redu
e the weighting

jump in the vi
inity of the overlapping zone boundary ∂ΩO. Figures 19, 20 and 21 present the results

using the two solutions. The wave 
orre
tly 
rosses ΩO without any deviation.

Figure 13: The free-end displa
ements obtained using DEM and CNEM separately and the 
oupling method, and the

asso
iated spe
tral analyses (
omputed from FFT)

LO = 2mm, �ne Multiplier spa
e, 
ontinuous weight fun
tions, ε = 0.05
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Figure 14: The linear velo
ities (a) at the di�erent 
he
k points for the 
ase of 
ontinuous α and (b) at the "DemChe
kPoint"

for the 
ase of 
ontinuous and 
onstant α

LO = 2mm, �ne Multiplier spa
e, 
ontinuous weight fun
tions, ε = 0.05

3.3. In�uen
e of the approximated multiplier spa
e Mh
O

In the previous subse
tion, a �ne multiplier spa
e was used. In this 
ase, the velo
ity in Ωd|ΩO
is

pra
ti
ally lo
ked at a value equal to the velo
ity in the ΩC|ΩO
, as shown in the upper subplot of Figure 15.

Indeed, the velo
ity 
urve at �OverlapDemChe
kPoint� 
oin
ides with that at �OverlapCnemChe
kPoint�.

The same lo
king phenomenon is noted when the se
ond 
on�guration (Fig. 3-b) is used [22℄. Now, to

study the in�uen
e of Mh
O on the results, a 
oarse multiplier spa
e is used, i.e, at the same s
ale as Mh

C .

As shown in the bottom subplot of Figure 15, equality of the velo
ities in ΩO is satis�ed only in a weak

sense and not in ea
h multiplier spa
e node. This allows the �ne model (DEM model) to 
orre
tly a
t

in ΩO. However, in this 
ase a small overlapping zone is insu�
ient to 
orre
tly transmit the prin
ipal

tensile wave and 
an
el the high frequen
y waves.

3.4. In�uen
e of the width of the overlapping zone LO

It is apparent that for the 
ase of �ne multiplier spa
e, the lo
king phenomenon o

urs and a small LO

is su�
ient to 
an
el the high frequen
y waves (HFW). Be
ause the DEM parti
les are strongly 
onstrained

in ΩO, the use of a large overlapping zone 
an slightly dampen the global free-end displa
ement (Fig. 16).

For the 
ase of a 
oarse multiplier spa
e, the DEM parti
les are able to 
orre
tly a
t in the overlapping

zone. Then, even for the 
ase of a large ΩO, the global results will not be dampened. As shown in Figure

17, the larger the overlapping zone, the better the results be
ome. Indeed, the use of a large ΩO redu
es

the HFW re�e
tion and allows a better transfer of the forward wave.

3.5. How to 
hoose the 
oupling parameters in a general 
ase?

In a general 
ase, there is not an obvious method to determine, in a single way, the various 
oupling

parameters to avoid wave re�exion. This subse
tion gives several re
ommendations and trends to 
hoose


orre
tly these parameters. The weight fun
tions must be 
ontinuous. Indeed, with 
onstant weight

fun
tions, the high frequen
y waves (HFW) are re�e
ted without entering the overlapping zone and 
annot

be dampened by the proje
tion me
hanism. The 
hoi
es of the width of the overlapping zone depends on

the 
hara
teristi
 dimension of the dis
retization in this zone. In the 
ase of �ne dis
retization, a narrow

overlapping zone is su�
ient to dampen the HFW, be
ause, the DEM parti
les are strongly 
onstrained
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Figure 15: Velo
ity 
omparison in the overlapping zone using �ne and 
oarse multipier spa
es

LO = 2mm, 
ontinuous weight fun
tion, ε = 0.05

Figure 16: The free-end displa
ements obtained using the 
oupling method for LO = 2mm, LO = 4mm and LO = 6mm.

Fine Multiplier spa
e , 
ontinuous weight fun
tions, ε = 0.05
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Figure 17: The free-end displa
ements obtained using the 
oupling method for LO = 2mm, LO = 4mm and LO = 6mm.

Coarse Multiplier spa
e , 
ontinuous weight fun
tions, ε = 0.05

Dynami
 simulation

Coupling type H1

oupling

Jun
tion parameter l l = lopt
Approximated Multiplier spa
e Coarse Multiplier spa
e

Width of the overlapping zone LO As large as possible

Weight fun
tions Continuous , ε = 0.05

Table 4: Re
ommended Arlequin parameters for dynami
 simulations

in ΩO. On the 
ontrary, 
oarse dis
retization requires a large ΩO. To minimize the 
onditioning of the


oupling matrix A, the H1

oupling with l = lopt is re
ommended. lopt 
an be 
hosen as the 
hara
teristi


length of the overlapping zone dis
retization lΩO
c (lopt ≈ lΩO

c ). Table 4 presents the 
onvenient Arlequin

parameters to 
orre
tly perform the 
oupling.

4. Validation

The previous parametri
-based study on tensile loading has allowed us to retain the 
onvenient pa-

rameters to perform a 
orre
t 
oupling. In this se
tion, the results of this study are used to validate the


oupling between CNEM and DEM in a general 3D 
ase. Contrary to the tensile 
ase, in bending and

torsion, the deformations in the 
ross se
tions are signi�
ant. To a

ount for these e�e
ts, new geometri



hara
teristi
s of the 3D model are used: L = 100mm and D = 20mm (L/D = 5). The DEM method

is applied only for the portion lo
ated 20 mm from the right end (the se
tion lo
ated at x = L) and the

remainder of the model is modeled using the CNEM method (Fig. 18).

The following Arlequin's parameters are 
hosen: LO = 10mm, 
ontinuous di�erentiable weight fun
tions,

ε = 0.05, l = lopt and 
oarse multiplier spa
e.

Figures 19 and 20 present the temporal free-end displa
ements with respe
t to the x-axis and y-axis,

respe
tively, using tensile and bending loading. The deviation from the referen
e, as observed in the

previous simulations when the wave 
rosses the ΩO, disappeared in the present results. Then, for this

model, LO = 10 mm is su�
ient to 
orre
tly transmit the wave between the dis
rete and 
ontinuum

models.
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Figure 18: Validation model

Figure 19: Test1: The free-end displa
ements Ux mean obtained by DEM, CNEM and the 
oupling method

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weighting, ε = 0.05

Figure 20: Test2: The free-end displa
ements Uy mean obtained by DEM, CNEM and the 
oupling method

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weighting, ε = 0.05
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Figure 21: Test3: The free-end rotation θx mean obtained by DEM, CNEM and the 
oupling method

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weight fun
tions, ε = 0.05

Beam theory DEM CNEM Coupling

Tensile

Ux mean(mm) 4.40e − 3 4.44e − 03 4.49e − 03 4.61e − 03

f0(Hz) 14 351 14 235 14 262 14 425

Bending

Uy mean(mm) 5.85e − 1 5.86e − 1 6.27e − 1 6.13e − 1

f0(Hz) 1 606 15 94 1 557 1 595

Table 5: Comparison of results

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weight fun
tions, ε = 0.05

Figure 21 presents the temporal free-end rotation about the x-axis using the torsional loading. The


oupling results are in good agreement with the DEM results (Tab. 6).

Finally, the 
oupling method was tested using an initial velo
ity loading (Test 4 of Figure 18). Figure

22 presents the free-end displa
ement with respe
t to x-axis. The 
oupling result is 
omparable to the

referen
e one.

The 
omparison (Figs. 19, 20, 22 and 21 and Tabs. 5 and 6) between the 
oupling results and the results

obtained using DEM and CNEM separately, validates the new 
oupling method.

5. Con
lusions

In this paper, based on the Arlequin approa
h, a 3D 
oupling method adapted for dynami
 simula-

tions is developed. This method 
ouples two dissimilar methods: DEM-based method and CNEM-based

method. Sin
e the CNEM approa
h is a mesh-free method and has pra
ti
ally all the advantages of the

FEM method, this 
oupling approa
h has the same performan
es as the FEM-DEM 
oupling with better

appli
ability on 
omplex problems.

At the beginning of this work, the Arlequin parameters are studied dynami
ally, using 3D models. The

most general 
on�guration is used in the overlapping zone (Fig. 3-d). As shown, the well posedness of the

global problem is veri�ed numeri
ally. The H1

oupling, for the 
ase of a small jun
tion parameter lopt,

Beam theory DEM Coupling

Torsion

θx mean(mm) 2.05e − 3 2.34e − 3 2.32e − 3

f0(Hz) 9 382 9 252 9 106

Table 6: Comparison of results

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weight fun
tions, ε = 0.05
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Figure 22: Test4: The free-end displa
ement Ux mean obtained by DEM and the 
oupling method

LO = 10mm, 
oarse Multiplier spa
e , 
ontinuous di�erentiable weight fun
tions, ε = 0.05

is more a

urate than the L2

oupling. Indeed, it de
reases the 
onditioning of the 
oupling matrix A.

However, beyond lopt, it 
an lead to instability problems or even divergen
e. Then, it is important to 
hoose

this parameter 
arefully. In the 
ase of 
onstant weight fun
tions, αDEM = αCNEM = 0.5 must be 
hosen

to ensure the 
orre
t transmission of the prin
ipal wave between the two models. Otherwise, a portion of

the wave will be re�e
ted in su
h a way that the re�e
tion 
oe�
ient is proportional to αDEM −αCNEM .

Additionally, with 
onstant weight fun
tions, the high frequen
y waves (HFW) are re�e
ted without

entering the overlapping zone, and, they 
annot be dampened by the proje
tion me
hanism in ΩO. Thus,


ontinuous weight fun
tions are better suited for dynami
 simulations. This allows the HFW to enter

the overlapping zone and be dampened by the proje
tion me
hanism. The results 
an be improved

using 
ontinuous di�erentiable weight fun
tions (Fig. 2-
). For the 
ase of a �ne multiplier spa
e, the

lo
king phenomenon takes pla
e, and a narrow overlapping zone is su�
ient to 
an
el the HFW. A large

overlapping zone for the 
ase of �ne multiplier spa
e 
an dampen the global wave, be
ause the DEM

parti
les in ΩO are strongly 
onstrained. In 
ontrast, for the 
ase of a 
oarse multiplier spa
e, the larger

the ΩO, the better the results be
ome. Indeed, large overlapping zone allows a better damping of the

HFW. Additionally, be
ause the parti
les in this zone 
an behave 
orre
tly (not strongly 
onstrained), no

damping of the global wave is noted.
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