Local limits of conditioned Galton-Watson trees: the condensation case

Abstract : We provide a complete picture of the local convergence of critical or subcritical Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set. The generic case, where the limit is a random tree with an infinite spine has been treated in a previous paper. We focus here on the non-generic case, where the limit is a random tree with a node with infinite out-degree. This case corresponds to the so-called condensation phenomenon.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2014, 56, Article 56, pp 1-29
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00909604
Contributeur : Romain Abraham <>
Soumis le : mardi 26 novembre 2013 - 15:14:07
Dernière modification le : vendredi 4 mai 2018 - 01:17:28
Document(s) archivé(s) le : jeudi 27 février 2014 - 10:10:09

Fichiers

condensation-2013-11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00909604, version 1
  • ARXIV : 1311.6683

Collections

Citation

Romain Abraham, Jean-François Delmas. Local limits of conditioned Galton-Watson trees: the condensation case. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2014, 56, Article 56, pp 1-29. 〈hal-00909604〉

Partager

Métriques

Consultations de la notice

355

Téléchargements de fichiers

151