Density of potentially crystalline representations of fixed weight

Abstract : Let K be a finite extension of Qp. We fix a continuous absolutely irreducible representation of the absolute Galois group of K over a finite dimensional vector space with coefficient in a finite field of characteristic p and consider its universal deformation ring R. If we fix a regular set of Hodge-Tate weights k, we prove, under some hypothesis, that the closed points of Spec(R[1/p]) corresponding to potentially crystalline representations of fixed Hodge-Tate weights k are dense in Spec(R[1/p]) for the Zariski topology. The main hypothesis we need is the existence of a potentially diagonalizable lift, so that in the two-dimensional case, the result is unconditional.
Type de document :
Article dans une revue
Compositio Mathematica, Foundation Compositio Mathematica, 2016, 152 (8), pp.1609-1647. 〈10.1112/S0010437X16007363〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00909045
Contributeur : Benjamin Schraen <>
Soumis le : jeudi 20 novembre 2014 - 18:55:18
Dernière modification le : samedi 18 février 2017 - 01:17:22
Document(s) archivé(s) le : vendredi 14 avril 2017 - 20:21:37

Fichier

potBTdensevf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Eugen Hellmann, Benjamin Schraen. Density of potentially crystalline representations of fixed weight. Compositio Mathematica, Foundation Compositio Mathematica, 2016, 152 (8), pp.1609-1647. 〈10.1112/S0010437X16007363〉. 〈hal-00909045v2〉

Partager

Métriques

Consultations de
la notice

89

Téléchargements du document

31